Abstract

To explore the potential mechanism of long-chain non-coding ribonucleic acid (lncRNA) maternal expression gene 3 (MEG3) in colorectal cancer (CRC). The relationship between MEG3 and miR-31 was detected by dual-luciferase assay. Quantitative polymerase chain reaction was utilized to determine the expression of MEG3 in CRC cell lines. Cell Counting Kit-8 assay was performed to detect cell proliferation. Transwell, cell scratch wound assay, and monoclonal proliferation assay were used to detect the proliferation, migration, and invasion of cells. In addition, cell motility was evaluated by detecting the expression of cellular pseudopodia protein α-actinin via immunofluorescence assay, and cell proliferation and motility were judged by determining the expressions of Ki-67, MMP2 and MMP9 via Western blotting. The effect of MEG3 and miR-31 on the development of colorectal cancer was verified by nude mouse tumor-bearing assay and HE staining. Transient transfection with MEG3 overexpression plasmid revealed that MEG3 inhibited the proliferation and motility of cells. The results of dual-luciferase assay showed that MEG3 could specifically inhibit the expression of miR-31, which inhibits the development of colorectal cancer. Transwell, cell scratch wound assay, and monoclonal proliferation experiment showed that miR-31 enhanced cell proliferation, migration and invasion. MEG3 overexpression plasmid was capable of reversing the proliferation and motility of CRC cells enhanced by miR-31. MEG3 can inhibit the proliferation and motility of CRC cells by competitively suppressing the binding of miR-31 to the target gene SFRP1, thus playing an inhibitory role in the pathogenesis of CRC.