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ABSTRACT 
 

Purpose: Necroptosis plays an important role in the tumorigenesis, development, metastasis, and drug 
resistance of malignant tumors. This study explored the new model for assessing stomach adenocarcinoma 
(STAD) prognosis and immunotherapy by combining long noncoding RNAs associated with necroptosis. 
Methods: Patient clinical data and STAD gene expression profiles were curated from The Cancer Genome Atlas 
(TCGA). Immune-related genes were sourced from a specialized molecular database. Perl software and R 
software were used for data processing and analysis. Necroptosis-related lncRNAs in STAD were pinpointed via 
R’s correlation algorithms. These lncRNAs, in conjunction with clinical data, informed the construction of a 
prognostic lncRNA-associated risk score model using univariate and multivariate Cox regression analyses. The 
model’s prognostic capacity was evaluated by Kaplan-Meier survival curves and validated as an independent 
prognostic variable. Further, a nomogram incorporating this model with clinical parameters was developed, 
offering refined individual survival predictions. Subsequent analyses of immune infiltration and 
chemosensitivity within necroptosis-related lncRNA clusters utilized an arsenal of bioinformatic tools, 
culminating in RT-PCR validation of lncRNA expression. 
Results: Through rigorous Cox regression, 21 lncRNAs were implicated in the risk score model. Stratification by 
median risk scores delineated patients into high- and low-risk cohorts, with the latter demonstrating superior 
prognostic outcomes. The risk model was corroborated as an independent prognostic indicator for STAD. The 
integrative nomogram displayed high concordance between predicted and observed survival rates, as 
evidenced by calibration curves. Differential immune infiltration in risk-defined groups was illuminated by the 
single sample GSEA (ssGSEA), indicating pronounced immune presence in higher-risk patients. Tumor 
microenvironment (TME) analysis showed that cluster-C3 had the highest score in the analysis of the three 
TMEs. Through the differential analysis of immune checkpoints, it was found that almost all immune 
checkpoint-related genes were expressed differently in various tumor clusters. Among them, CD44 expression 
was the highest. By comparing all drug sensitivities, we screened out 29 drugs with differences in drug 
sensitivity across different clusters. Risk score gene expression identification results showed that these lncRNAs 
were abnormally expressed in gastric cancer cell lines. 
Conclusions: This investigation provides a robust methodological advance in prognosticating and personalizing 
immunotherapy for STAD, leveraging quantitatively derived tumor cluster risk scores. It posits the use of 
necroptosis-related lncRNAs as pivotal molecular beacons for guiding therapeutic strategies and enhancing 
clinical outcomes in STAD. 
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INTRODUCTION 
 

Stomach adenocarcinoma (STAD) is a widespread 

malignancy that poses a significant global health 

challenge. According to the 2012 World Cancer 

Statistics, STAD accounted for 6.8% of all malignant 

tumors, with 951,000 new cases reported, ranking  

it fifth among malignancies [1]. Although surgical 

resection remains the primary treatment for advanced 

STAD, the 5-year survival rate after surgery remains 

low. Based on adjuvant therapy, the 5-year survival  

rate was approximately 20% to 25% [2]. In recent  

years, immunotherapy has emerged as one of the most 

promising strategies in cancer treatment, demonstrating 

remarkable therapeutic efficacy in tumors such as 

melanoma, non-small cell lung cancer, and kidney 

cancer [3–5]. Immunotherapy research on STAD has 

become a research hotspot, and various immunotherapy 

strategies have been developed, including immune 

checkpoint inhibitors, cellular adoptive immunotherapy, 

cancer vaccines, etc. [6]. These immunotherapy methods 

aim to increase the patient’s immune system response  

to tumors or the immunogenicity of the tumors [7]. 

However, it is important to note that many new 

immunotherapies are still in the early stages of clinical 

research. Hence, it was deemed of utmost importance to 

investigate the mechanism of immunotherapy in STAD, 

along with the immune, molecular, and genetic 

characteristics of STAD patients. 

 

Apoptosis was the earliest discovery of programmed 

cell death, first proposed in 1972 by Kerr JF et al.  

[8]. In 2005, American scholars Degterev found that 

receptor-interacting protein kinase 3 (RIPK3) activates 

mixed lineage kinase domain-like protein (MLKL) 

leading to cell membrane rupture of the cell membrane 

in the form of cell necrosis, called necroptosis [9]. 

Subsequently, other forms of programmed cell death 

such as pyroptosis, ferroptosis, and autophagy, were 

discovered. Necroptosis has been found to have a 

regular regulatory mechanism, which is a necrotic form 

of cell death that occurs when the apoptosis pathway is 

inhibited. Further research has revealed that necroptosis 

is not only involved in the inflammatory pathological 

mechanism, but is also closely related to the occurrence 

and development of tumors, as well as the mechanism 
of drug resistance. Furthermore, it is worth noting that 

necroptosis may potentially contribute to the initiation 

of immunogenicity and facilitate natural anti-cancer 

immune surveillance [10–12]. Given the involvement  

of necroptosis in the pathogenesis of various diseases, it 

is imperative to investigate its role in the development 

of STAD and to devise novel therapeutic approaches for 

this condition. 

 
Some studies have shown that the occurrence  

and development of STAD were accompanied by a  

variety of dysregulation of the long non-coding  

RNAs (lncRNAs) [13, 14]. The abnormal expression  

of lncRNAs can ultimately impact epigenetics, 

resulting in the development of malignant tumor  

phenotypes. Targeting the proliferation, infiltration, and  

metastasis of tumor cells through early intervention  

could potentially serve as a treatment option for 

STAD. Therefore, it can be argued that identifying the 

biological behavior of lncRNAs may provide a basis 

for the diagnosis and treatment of STAD. It has been 

suggested that lncRNAs have the ability to alter the 

activity of multiple signaling pathways by regulating 

target gene expression, such as Wnt/β-catenin [15,  

16], PI3K-AKT/mTOR [17, 18], JAK/STAT [19], NF- 

κ B [20], thereby potentially promoting or inhibiting  

tumor cell activity. The role of lncRNA in tumors  

has only been preliminarily recognized in recent  

years, and further study is needed to understand the 

specific regulatory mechanism in STAD. Therefore,  

a comprehensive understanding of the lncRNAs 

regulatory network associated with necroptosis will 

help deepen the understanding of the mechanism of 

STAD and may provide new ideas and methods for the 

clinical immunotherapy of STAD. 

 
The in-depth study of necroptosis has been found  

to deepen our understanding of the way cells die  

and has helped in the study of the development and 

variation of different disease models. Additionally, the 

relationship between necroptosis and the occurrence, 

development, and outcome of tumors is an area of 

ongoing research interest. The study of the role of 

necroptosis in tumor pathogenesis has the potential  

to advance the development of new therapeutic  

targets. Although there is currently limited research  

on necroptosis-related lncRNAs in STAD, this study 

aims to investigate their expression and prognostic 

significance in STAD. The findings will contribute to 
a better understanding of the pathogenesis of STAD 

and provide valuable insights for the development of 

drugs targeting related molecular pathways. 

Conclusions: This investigation provides a robust methodological advance in prognosticating and personalizing 
immunotherapy for STAD, leveraging quantitatively derived tumor cluster risk scores. It posits the use of 
necroptosis-related lncRNAs as pivotal molecular beacons for guiding therapeutic strategies and enhancing 
clinical outcomes in STAD. 
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MATERIALS AND METHODS 
 

Collection and processing of clinical data 

 

RNA-seq data and clinical information were obtained 

from the TCGA database (https://portal.gdc.cancer.gov/). 

The dataset included 375 tumor samples and 32 

normal samples. Perl software was utilized for data 

integration, including the extraction of necrotizing 

apoptosis gene expression data, lncRNA expression 

data, and corresponding clinical data. To ensure 

comparability of gene expression across samples, the 

data were converted into TPM values. This adjustment 

made the gene expression data more comparable 

between samples, increasing the similarity to the 

transcript samples produced by the microarray. The 

gene expression data extraction project included  

gene name, sample number, and expression value, 

while the clinical data included patient number, 

survival time, survival status, age, gender, and TNM 

staging. 

 

Selection of necroptosis-related genes and lncRNAs 

 

According to studies related to necroptosis, a total  

of 67 genes related to necroptosis were identified.  

The expression of these genes was extracted using  

the ‘limma’ package in R (Supplementary Table 1). 

Abnormally expressed lncRNAs were screened using 

the criteria of | Log2 fold change (FC)|> 1 and p < 

0.05. Necroptotic-related lncRNAs were identified by 

correlating necroptosis-related genes with abnormally 

expressed lncRNAs using R software. 

 

Establishment and verification of risk prognostic 

model 

 

Prognostic models were established by examining the 

expression levels of necroptosis-associated lncRNAs 

and corresponding STAD clinical data. Initially,  

the relationship between the expression levels of 

necroptosis-related lncRNAs and overall survival 

(OS) was assessed using univariate Cox regression 

analysis. Subsequently, necroptosis-related lncRNAs 

that were significantly associated with STAD prognosis 

were identified based on a P-value of less than  

0.01. Subsequently, the screened necroptosis-related 

lncRNAs were included in the multivariate Cox 

regression analysis. The necroptosis-related lncRNAs 

that ultimately constituted the riskScore model were 

selected based on the optimal Akaike information 

criterion (AIC) simulation criteria. The model formula 

is as follows: [21]:  

 

1
Risk score (Ei Ci)

N

i =
=   

The variable N represents the number of necroptosis-

related lncRNAs used to construct the riskScore model. 

Ci denotes the coefficient of necroptosis-related 

lncRNAs, while Ei represents their expression level. 

 

Using this risk scoring model, patients are assigned  

a corresponding risk score. Based on the median risk 

score, patients can be classified into either high-risk or 

low-risk groups. The Kaplan-Meier (K-M) method was 

utilized to analyze the survival of high- and low-risk 

groups, and the difference in total survival time was 

examined using the log-rank test. In order to further 

evaluate this model, risk scores and other clinical 

features were subjected to univariate and multifactor 

Cox regression analysis to determine whether they were 

independent prognostic factors. 

 

Construction of nomogram 

 

The nomogram of STAD is constructed using variables 

such as age, gender, TNM staging, and risk score. To 

evaluate the consistency between actual and predicted 

survival, calibration curves are plotted. To locate the 

corresponding point on the nomogram, patient variables 

are used to find the corresponding axis. A vertical  

line is then drawn over this point, and the value of  

the point that intersects the score axis represents the 

fraction of the variable. The total score is calculated  

by summing the fractions for each variable. Similarly, 

the total score value was observed on the survival rate 

axis, representing the likelihood of the patient’s survival 

during the corresponding time period [22]. 

 

Gene set enrichment analysis (GSEA) 

 

GSEA 4.0.3 was used to analyze the effects of genome-

wide expression changes on various biological functions 

and pathways in patients in the high and low-risk groups. 

GSEA was used as a reference “c5: gene ontology (GO) 

gene sets” (c5.all.v7.0.sym-bols.gmt) and “c2: curated 

gene sets” (c2.cp.kegg.v7.0.symbols.gmt) from the 

molecular signatures database (MSigDB). The number  

of permutations was set to repeat 1,000 times. P < 0.05 

and false discovery rate (FDR) less than 0.05 gene set  

as significantly enriched gene sets. 

 

Immune-related and drug-sensitivity analysis 

 

The TIMER2.0 tool was utilized to evaluate the 

potential correlation between the expression of 

necroptosis-lncRNAs and the abundance of tumor-

infiltrating immune cells (TIIC), such as CD4+ T cells, 

CD8+ T cells, macrophages, and others. Furthermore, to 
determine the relative changes in gene expression 

between groups, the CIBERSORT deconvolution 

algorithm, which is based on gene expression, was 
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employed [23]. The National Cancer Institute Genomic 

Data Commons was the source of information on the 

immune-related characteristics of STAD samples. The 

375 tumor samples were divided into high- and low- 

risk groups using the median risk score as the cut-off 

value. This was done to analyze and assess the effect  

of necroptosis-related lncRNAs on the immune system 

microenvironment. The R package ‘ggpubr’ was used to 

analyze differences in tumor microenvironment (TME) 

scores and immune checkpoints between the low- and 

high-risk groups. 

 

The gene set variation analysis (GSVA) is a non-

parametric unsupervised analysis method that can be 

used to assess gene collection enrichment in the 

transcriptome. By comprehensively scoring the gene set 

of interest, GSVA can determine the biological function 

of the sample, turning the gene level change into a 

pathway level change. The study utilized the Molecular 

Signatures Database (v7.0) (http://software.broad-

institute.org/gsea/msigdb) to obtain the gene set, which 

was then scored using the GSVA algorithm to evaluate 

potential biological functional changes across various 

samples. 

 

For the calculation of the TME score, there were 

currently methods of mean-weighted coefficient GSEA 

and principal component analysis (PCA). In order to 

provide a comprehensive assessment of the various 

scores, we integrated the three most commonly used 

methods for single-sample gene collection enrichment 

analysis: GSEA, principal component analysis PCA, 

and T-distributed stochastic neighbor embedding (t-

SNE). Additionally, the K-M method was used to plot 

the survival curves of each group. 

 

The ‘ConsensusClusterPlus’ package was used to 

perform the K-Medoid with cluster values ranging  

from 2 to 9, and the k value with higher cluster stability 

was selected based on the clustering effect [24]. The 

Genomics of Drug Sensitivity in Cancer (GDSC) used 

the half-maximal inhibitory concentration (IC50) to 

detect drug reactions. Tumor typing was performed 

using immunoassays, and drug sensitivity testing was 

conducted using the ‘ggpubr’ package in R software. 

 

Cell lines and culture 

 

The human GC cell lines SGC-7901, MGC-803, and 

MKN-45, as well as the human normal gastric epithelial 

cell line GES-1, were obtained from the Institute of 

Biochemistry and Cell Biology of the Chinese Academy 

of Sciences in Shanghai, People’s Republic of China. 
They were cultured in Roswell Park Memorial Institute 

(RPMI) 1640 supplemented with 10% heat-inactivated 

fetal bovine serum (FBS), 100 U/mL of penicillin, and 

100μg/mL streptomycin sulfate, in a humidified 

atmosphere containing 5% CO2 at 37° C. 

 

RNA preparation and quantitative real-time PCR 

 

Total RNA was extracted from tissues or cultured  

cells using TRIzol reagent (Invitrogen, Carlsbad,  

CA, USA). For qRT-PCR, 1 µg RNA was reverse 

transcribed into cDNA with Reverse Transcription  

Kit (Takara, Dalian, China). Real-time PCR was 

performed with SYBR Premix ExTaq II Kit (Takara, 

Dalian China). The sequence of primers used in the 

detection is shown in Supplementary Table 2. The 

qRT-PCR assays and data collection were performed 

on ABI 7500, and relative expression was assessed by 

the 2−∆Ct method, and converted to fold changes using 

the 2−ΔΔCt method.  

 

Statistical analysis 

 

R 3.6.2 Software was used for statistical analysis. The 

survival receiver operating characteristic (ROC) area 

under the curve (AUC) was calculated through the R 

software package, and clinical parameter differences 

were examined using an independent t-test. Qualitative 

data were compared using the Kruskal-Wallis H test. 

Differences in the proportion of infiltrated immune 

cells in the samples were analyzed using the log-rank 

test. The Pearson analyzed the correlation between the 

degrees of infiltration of various immune cells. P < 

0.05 was statistically significant. 

 

Availability of data and materials 

 

All data generated or analyzed during this study are 

included in this published article. 

 

RESULTS 
 

Necroptosis-related lncRNAs in STAD 
 

The study process is shown in Figure 1. Gene 

expression data from 375 tumour samples and 32 

normal samples of STAD patients were obtained from 

TCGA. In Figure 2A, all lncRNAs with differential 

expressions associated with necroptosis in STAD  

are displayed. A total of 472 abnormally expressed 

lncRNAs were analysed based on the expression levels 

of 67 necroptosis-related genes, of which 379 lncRNAs 

were up-regulated and 93 lncRNAs were down-

regulated. In Figure 2B, an analytical relationship 

network diagram is displayed between necroptosis-

related genes and lncRNA. The heat maps were plotted 
based on the differential gene expression of the first 50 

lncRNAs with the most significant upregulation and 

downregulation (Figure 2C). 

6101

http://software.broad-institute.org/gsea/msigdb
http://software.broad-institute.org/gsea/msigdb


www.aging-us.com 5 AGING 

Construct the risk prognostic model 

 

Based on the expression of lncRNAs, we constructed a 

patient risk model, namely the train group and the test 

group. Univariate Cox regression analysis identified 

21 lncRNAs associated with necroptosis that had a 

significant OS correlation (P<0.05). The results were 

presented in forest maps and heat maps (Figure 3A, 

3B). LASSO regression was performed on two groups  

of patients, and 9 lncRNAs associated with necroptosis 

in STAD were obtained after selecting the lambda (λ) 

values with the smallest cross-validation error (Figure 

3C, 3D). The Sankey diagram illustrates that 19 

lncRNAs had a positive correlation with necroptosis, 

 

 
 

Figure 1. The flowchart of this study. 
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while 2 had a negative correlation (Figure 3E). Based 

on the median risk score (Supplementary Figure 1), 

patients were categorized into high-risk and low-risk 

groups. The survival curve demonstrates that low-risk 

patients have a better prognosis (Figure 3F–3H). 

Assessment of the risk prognostic model associated 

with necroptosis-lncRNAs 

 

Univariate and multifactorial Cox regression analyses 

were performed on necrotizing necroptosis-related 

 

 
 

Figure 2. Necroptosis-related lncRNAs in STAD. (A) The volcano plot of all lncRNAs differential expressions associated with necroptosis 
in STAD. The red represents the expression of upregulation, the green represents the expression of downregulation, and the black represents 
that the expression has not changed. (B) The analytical relationship network diagram between necroptosis-related genes and lncRNA. (C) The 
heat maps were plotted based on the differential gene expression of the first 50 lncRNAs with the most significant upregulation and 
downregulation. FC, fold change; NRG, necroptosis gene. 
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lncRNAs and OS, based on patient clinical 

characteristics and risk levels. The results showed  

that age, stage, and risk score were identified as 

independent prognostic parameters (Figure 4A, 4B). 

These findings suggest that the constructed riseScore 

could be considered a reliable prognostic model for 

STAD patients. The study analysed the sensitivity and 

specificity of the prognostic model in predicting 

patient survival time and prognosis-related parameters 

using the ROC curve (Figure 4C, 4D). The results 

showed that the constructed model had a high accuracy 

in predicting patient survival at 1, 3, and 5 years, with 

AUC values greater than 0.7. The risk score of the 

patient’s prognosis-related parameters had the maximum 

 

 
 

Figure 3. Construct the risk prognostic model. (A) The heat maps of expression profiles of 21 prognostic lncRNAs. (B) The forest maps of 

expression profiles of 21 prognostic lncRNAs by univariate Cox regression analysis. (C) The LASSO coefficient profile of 21 necroptosis-related 
lncRNAs. (D) The 10-fold cross-validation for variable selection in the LASSO model. (E) The Sankey diagram of 21 prognostic lncRNAs and 
necroptosis genes. (F) The survival analysis of all patients. (G) The survival analysis of patients in the test group. (H) The survival analysis of 
patients in the train group. NRG, necroptosis gene. * P < 0.05; ** P < 0.01; *** P < 0.001. 
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AUC value. According to the study, the risk score 

appears to be a more precise predictor of patient 

prognosis than other clinical features. The patients 

were categorized into early stages (I and II) and 

advanced stages (III and IV) based on their 

pathological stage. The model validation for clinical 

groupings indicated that risk scores could be utilized 

for STAD patients with varying tumor stages (refer  

to Figure 4E, 4F). A nomogram was constructed  

based on independent prognostic factors, including 

age, gender, risk score, and TNM staging. The patient 

in question, who is female, has stage I, T2N0M0, G3, 

and low-risk. The nomogram predicted a score of  

424, indicating a probability of survival greater than  

1 year of 0.89 (Figure 4G). The calibration curve 

demonstrates the high accuracy of the nomogram in 

predicting patient survival time (Figure 4H). 

 

Immune-related analysis of risk score of necroptosis-

related lncRNAs 

 

The Gene Set Enrichment Analysis (GSEA) was 

utilized to examine the KEGG pathway in both  

the high-risk and low-risk groups, with the aim of 

 

 
 

Figure 4. Assessment of the risk prognostic model associated with necroptosis-lncRNAs. (A) The uni-Cox analyses of clinical 
factors and risk score with OS. (B) The multi-Cox analyses of clinical factors and risk score with OS. (C) The 1-, 3-, and 5-year ROC curves.  
(D) The ROC curves of prognosis-related parameters. (E) The survival analysis of patients in the early stages (stages I, II). (F) The survival 
analysis of patients in the advanced stages (stage III, IV). (G) The nomogram of age, gender, risk score, and TNM staging. (H) The calibration 
curves for 1-, 3-, and 5-year OS. ROC, receiver operating characteristic; AUC, area under the curve; T, tumor; N, node; M, metastasis; OS, 
overall survival. * P < 0.05; ** P < 0.01; *** P < 0.001. 
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identifying differences in biological function. As 

depicted in Figure 5A, five pathways were found  

to be associated with the high-risk group, while five 

pathways were associated with the low-risk group.  

It is worth noting that the majority of the enriched 

pathways were significantly correlated with tumour 

invasion and immunity. The bubble plots analyzed  

on different software platforms suggest a positive 

correlation between most immune cells and the high-

risk group (Figure 5B). The single sample GSEA 

(ssGSEA) difference analysis revealed differences in 

most immune cells between the high-risk and low- 

risk groups, with higher immune infiltration in patients 

in the high-risk group (Figure 5C). Similar results 

were observed in immune-related functions (Figure 

5D). Upon analysis of the TME differences, it was 

found that the StromalScore, ImmuneScore, and 

ESTIMATEScore were higher in the high-risk group 

compared to the low-risk group (please refer to  

Figure 5E–5G). The differential analysis of immune 

checkpoint inhibitors revealed that immune-related 

genes were expressed more in the high-risk group  

than in the low-risk group (please refer to Figure  

5H). According to the study, the lncRNA-related  

risk prognostic model may be helpful in selecting 

appropriate immune checkpoint inhibitors for STAD 

patients, which could lead to improved therapeutic 

efficacy. Additionally, drug sensitivity analysis was 

conducted on a total of 25 drugs related to STAD 

treatment (p<0.005, Supplementary Figure 2). 

 
The role of tumor clusters of necroptosis-related 

lncRNAs in immunotherapy 

 
According to the consensus clustering analysis, the 

necroptosis-related lncRNAs were divided into three 

subtypes: cluster-C1 (C1), cluster-C2 (C2), and 

cluster-C3 (C3) (Figure 6A). Through K-M analysis, it 

was found that there was a difference in survival 

between the clusters, where C2 had an optimal survival 

time (Figure 6B). To explore the correspondence 

between STAD clusters and risk scores, we use the 

Sandel diagram for demonstration. The results showed 

that most of the C2 were low-risk patients (Figure  

6C). Through PCA analysis, the results showed that 

patients in the high-risk and low-risk groups and 

different tumor clusters could be distinguished based 

on the expression of model lncRNAs (Figure 6D,  

6E). The results of the t-SNE analysis also provided 

good validation of tumor clusters (Figure 6F, 6G). 

TME analysis showed differences between tumor 

clusters between StromalScore, ImmuneScore, and 

ESTIMATEScore (Figure 6H–6J). Among them, the 

C3 had the highest score in the analysis of the three 

TMEs. Figure 6K showed a heat map of immune cells 

with tumor clusters by different analytical methods. 

Through the differential analysis of immune 

checkpoints, it was found that almost all immune 

checkpoint-related genes were expressed differently  

in various tumor clusters (Figure 6L). Among them, 

CD44 expression was the highest. By comparing all 

drug sensitivities, we screened out 29 drugs with 

differences in drug sensitivity across different clusters 

(p<0.005, Supplementary Figure 3). 

 

Exploring the expression pattern of the identified 

necroptosis-related lncRNAs in the risk model 

 

To further validate the prognostic significance of  

the identified necroptosis-related lncRNAs in the risk 

model, we examined the expression of 9 lncRNAs in a 

panel of gastric cancer cell lines (SGC-7901, MGC-803, 

and MKN-45) and the human normal gastric epithelial 

cell line GES-1 by RT-PCR. The results showed that  

the expression of LASTR, AL139147.1, AC129507.1, 

NR2F1−AS1, AL121748.1 and LINC01579 was 

increased in gastric cancer cell lines relative to GES- 

1, and AL355574.1, AC020913.1, CDC42−IT1 was 

decreased in gastric cancer cell lines (Figure 7). 

 

DISCUSSION 
 

Necroptosis is a mode of regulated cell death that has 

been recently discovered and is known to play a crucial 

role in maintaining a stable environment and embryonic 

development in the body. It has also been found to be  

a determinant of the pathological etiology of various 

human diseases [25]. However, the regulatory mechanism 

of necroptosis and its correlation with tumor pathological 

mechanisms are still areas that require further research. 

Additionally, it can remove tumor cells directly and 

release damage-associated molecular patterns (DAMPs) 

to recruit immune cells, creating a tumor micro-

environment immune signaling system that can indirectly 

clear tumor cells [26]. Under different conditions, 

necroptosis can play a dual role in the development  

of tumorigenesis and anti-tumor therapy. It is important 

to acknowledge the potential benefits and drawbacks  

of necroptosis in the context of tumorigenesis and anti-

tumor therapy. Further exploration of the key molecules 

of necroptosis and their molecular mechanisms of 

interaction with other genes may be necessary. Recent 

studies on long non-coding RNAs (lncRNAs) have 

shown their potential as important biomarkers for early 

diagnosis and as targets for STAD prevention. Therefore, 

it may be important to investigate the role of necroptosis-

related lncRNAs in STAD and their impact on the anti-

tumor immune response to potentially maximize the anti-

tumor effect of necroptosis. 

 

Necroptosis of tumor cells may promote tumorigenesis 

and metastasis by modulating the TME. In pancreatic 
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ductal carcinoma, there have been observations of 

elevated expressions of RIPK1 and RIPK3. It was  

found that in vivo experiments involving the deletion  

of RIPK3 or inhibition of RIPK1 resulted in a delay  

in the progression of pancreatic ductal carcinoma in 

mice. An enhanced antitumor immune response was 

associated with this phenomenon, as evidenced by 

increased lymphocyte infiltration and decreased immuno-

suppressive medullary cell infiltration in RIPK3-

deficient pancreatic ductal carcinoma [6]. A recent 

study used phosphorylated MLKL-specific antibodies to 

detect necrotizing apoptosis of tumor cells occurring in 

mouse models of breast cancer MMVT-PyMT [27]. 

According to these studies, it has been observed that 

tumor necroptosis took place in vivo and had a pro-tumor 

effect by stimulating the immune microenvironment, 

which in turn promoted tumor progression. It is also 

suggested that the necroptosis of non-tumor cells  

may contribute to the pro-tumor effects. For instance, 

necroptosis of intestinal epithelial cells has been reported 

to promote cancer by inducing colonic inflammation. 

Moreover, it has been observed that the use of 

necroptosis drug inhibitors, such as necrostatin-1 (Nec-

1), in a dextran sulfate sodium-induced model of acute 

 

 
 

Figure 5. Immune-related analysis of risk score of necroptosis-related lncRNAs. (A) The GSEA analysis of the top 10 pathways 
significantly enriched the high-risk group and the low-risk group. (B) The immune cell bubble of risk groups. (C) The ssGSEA analysis of 
immune cells in risk groups. (D) The ssGSEA analysis of immune-related functions in risk groups. (E–G) The comparison of immune-related 
scores in risk groups. (H) The difference of 17 checkpoints expression in risk groups. KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, 
gene set enrichment analysis; ssGSEA, single sample GSEA; * P < 0.05; ** P < 0.01; *** P < 0.001. 
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Figure 6. The role of tumor clusters of necroptosis-related lncRNAs in immunotherapy. (A) The necroptosis-related lncRNAs were 
divided into three subtypes according to the consensus clustering analysis. (B) The Kaplan–Meier analyzed the difference in the clusters.  
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(C) The Sandel diagram of risk groups and the clusters. (D, E) The PCA of risk groups and clusters. (F, G) The t-SNE analysis of risk groups and 
clusters. (H–J) The comparison of immune-related scores in risk groups. (K) The heat map of immune cells with tumor clusters by different 
analytical methods. (L) The difference of 28 checkpoints expression in clusters. PC, principal component; tSNE, T-distributed stochastic 
neighbor embedding. * P < 0.05; ** P < 0.01; *** P < 0.001. 

colitis significantly inhibits the occurrence of associated 

tumors due to colitis in mice [28]. Our study analysed 

the expression of 67 necroptosis-related genes in STAD 

and found evidence of necroptosis in STAD. Therefore, 

the induction of necroptosis in tumour cells could be 

considered as a promising therapeutic strategy for 

STAD treatment. 

 

LncRNA HOTAIR, one of the earliest representative 

LncRNAs, has shown that the higher the expression 

level of HOTAIR, the greater the risk of STAD and  

the worse the prognosis. Li et al. demonstrated that 

BRD4 acts as a transcriptional regulator of MAGI2-

AS3, promoting the epithelial-mesenchymal transition 

(EMT) of MAGI2-AS3, which in turn promotes the 

invasion and metastasis of STAD [29]. Several studies 

have confirmed that lncRNAs have been identified as 

reliable molecular markers for STAD-related tumors. 

LncRNAs have been found to be present in various 

bodily fluids, including peripheral plasma/blood, 

saliva, gastric juice, and urine. They have been shown 

to be stable and easy to detect. In a study conducted  

by Zhao et al, serum lncRNA HOTTIP was detected  

in 126 STAD patients and 120 healthy individuals 

(control group) [30]. After evaluating and comparing 

the diagnostic capacity of HOTTIP with other serum 

biomarkers, it was found that HOTTIP’s ability to 

diagnose STAD was significantly superior to that of 

carcinoembryonic antigen (CEA), CA19-9, and CA72- 

4, as indicated by its higher AUC. These findings  

suggest that HOTTIP and SPRY4-IT1 may be valuable 

diagnostic tools for STAD, and further research in  

this area is warranted. Additionally, Cao et al. (2018) 

reported that serum lncRNA SPRY4-IT1 was highly 

enriched in patients with STAD compared to normal 

individuals [31]. It has been observed that a high 

expression of SPRY4-IT1 is more commonly found  

in patients with large tumor volume, deep invasion 

depth, positive lymph node metastasis, and advanced 

gastric cancer. This observation suggests that SPRY4-

IT1 can potentially serve as an early diagnostic marker 

and clinical staging indicator of STAD. In recent  

years, several studies have shown a close relationship 

between lncRNA and the prognosis of STAD patients, 

and its mechanism has gradually been confirmed. In 

their study, He et al. (2019) examined the expression of 

lncRNA UCA1 in 60 cases of STAD tissue and normal 

tissues. The results showed that the median survival of 

the low-expression group of UCA1 was significantly 

longer than that of the high-expression group of UCA1 

[32]. This indicated that UCA1 overexpression predicts 

poor prognosis in patients with STAD. Chen et al. 

detected the expression levels of lncRNA VPS9D1-

AS1 in 126 cases of STAD and normal tissues, and the 

results showed that their expression in tumor tissues 

was significantly downregulated [33]. The univariate 

 

 
 

Figure 7. The results of risk score gene expression identification. qRT-PCR to evaluate the expression of necroptosis-related lncRNAs in 

GC cell lines and GES-1. GC, gastric cancer; qRT-PCR, quantitative real-time polymerase chain reaction. * P < 0.05; ** P < 0.01; *** P < 0.001. 
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and multifactor survival analysis showed that 

VPS9D1-AS1 expression was an independent 

prognostic indicator in patients with STAD. In our 

study, a total of 472 necroptotic-related lncRNAs were 

found. Through co-expression analysis, 21 lncRNAs 

associated with necroptosis have significant OS 

correlations. We believe that with the extensive and in-

depth development of research, the biological effects 

and molecular mechanisms of necroptosis-related 

lncRNAs will be further elucidated, and provide new 

ideas and targets for the diagnosis and treatment of 

STAD. 

 

In our study, a risk prognostic model consisting of  

21 necroptosis-related lncRNAs was constructed to 

better assess the prognosis of STAD patients. Previous 

studies have demonstrated the crucial role of lncRNAs 

in regulating the immune response, gene activation,  

and immunophenotyping [34, 35]. Considering the 

promising results of immunotherapy in cancer treatment, 

immune-related lncRNAs have become a new area of 

interest. Necroptosis has been identified as a prognostic 

factor for various types of tumours, including pancreatic 

cancer [36], malignant glioma [37], and breast cancer 

[38]. As tumour prognosis is influenced by multiple 

factors, we combined other clinical features and con-

structed a nomogram to predict the individual survival 

rate of STAD patients. This approach provides a basis 

for clinical decision-making in STAD. Additionally, 

studies in tumour immunology have shown that 

necroptosis has anti-tumour effects. According to recent 

studies, it has been suggested that necroptosis could 

play a significant role in stimulating immunogenicity 

and promoting anti-tumor immune surveillance [39]. It 

has been observed that tumor cells undergo necroptosis 

after releasing interleukin-1α (IL-1α) to activate 

dendritic cells (DCs). The activated DCs, in turn, induce 

an anti-tumor immune response by producing cytotoxic 

IL-12 or activating CD8+ T cells to eliminate tumor 

cells [10, 11]. It has been observed that the release  

of DAMPs by tumor cells undergoing necroptosis has 

the potential to stimulate tumor antigen presentation  

in CD8+ T cells [12]. Additionally, RIPK3-mediated 

anti-tumor immune responses have been reported to 

involve natural killer T (NKT) cells. It was found  

that the deletion of RIPK3 impaired the antitumor 

activity of NKT cells [40]. In our study, we found that 

CD44 expression was the highest among all clusters. 

CD44 is a well-known marker of tumour stem cells  

and a key regulator of the EMT, which is involved  

in tumorigenesis, progression, and metastasis. The 

screening of immunotherapy targets and sensitivity to 

chemotherapy-related drugs was based on necroptosis-
related lncRNAs. Hence, a better comprehension of the 

mechanism of necroptosis-related lncRNAs in STAD 

will contribute to a deeper understanding of how these 

lncRNAs boost the tumor immune response, which 

could be beneficial in investigating the mechanism of 

immunotherapy resistance in STAD. 

 
CONCLUSIONS 

 
In conclusion, this study presents a comprehensive 

depiction of the tumour microenvironment landscape 

of necroptosis-related lncRNAs in STAD using a large 

amount of biological omics data from STAD patients. 

The findings were repeatedly verified in multiple 

dimensions, revealing the existence of three stable 

tumour clusters in STAD. These clusters are not  

only associated with the prognosis of patients with 

STAD but also significantly related to the patient’s 

subsequent treatment response and molecular typing. 

The quantitative evaluation of tumor cluster risk scores 

may enhance the precision of STAD immunotherapy, 

whether as a single drug or combination therapy. This 

study proposes a novel concept and foundation for 

necrotizing apoptosis-related lncRNAs to achieve more 

effective clinical translation and to accurately guide 

immunotherapy in STAD patients. 
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Supplementary Figure 1. (A) The heat map of 9 lncRNAs expression in the test. (B) Exhibition of necroptosis-related lncRNAs model based 

on risk score of the test. (C) Survival time and survival status between low- and high-risk groups in the test. (D) The heat map of 9 lncRNAs 
expression in the train. (E) Exhibition of necroptosis-related lncRNAs model based on risk score of the train. (F) Survival time and survival 
status between low- and high-risk groups in the train. 
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Supplementary Figure 2. (1–25) 25 immunotherapeutic drugs showed a significant IC50 difference in different risk groups (all p<0.05). 

 

  

6115



www.aging-us.com 19 AGING 

 
 

Supplementary Figure 3. (1–29) 29 immunotherapeutic drugs showed a significant IC50 difference in different clusters (all p<0.05). 
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Supplementary Tables 
 

Supplementary Table 1. The 67 necroptosis-related genes. 

FADD TRAF2 SIRT2 CD40 MYC IPMK 

FAS PANX1 SIRT1 BCL2L11 BCL2 ID1 

FASLG OTULIN PLK1 EGFR HDAC9 IDH1 

MLKL CYLD MPG DDX58 SIRT3 TNFRSF1A 

RIPK1 USP22 BACH2 TARDBP HSPA4 MAPK8 

RIPK3 MAP3K7 GATA3 APP KLF9 AXL 

TLR3 SQSTM1 MYCN TNFRSF21 HSP90AA1 RNF31 

TNF STAT3 ALK TNFRSF1B ITPK1 LEF1 

TSC1 DIABLO ATRX HAT1 CDKN2A ZBP1 

TRIM11 DNMT1 TERT BNIP3 IDH2 BRAF 

CASP8 CFLAR SLC39A7 TNFSF10 STUB1 SPATA2 

FLT3      

 

Supplementary Table 2. The primers used in the study. 

Gene name Forward primer (5’→3’) Reverse primer (5’→3’) 

AL355574.1 GGAGGGCAGAGAGCAACGTA CGCCTCTACAGACAGCACTC 

AC020913.1 GAATGGCAAAGCACTTGGGG AGCTCTCCTTGCAGGTAGGT 

LASTR AGTGGGTGAAGTCCTGGTT GGCTGAAGGGTTTAGATG 

AL139147.1 CACAGCCAAAACCAAACTCCT TGGGTTGCCATTCACTGACT 

CDC42−IT1 GCCGGAGAACGAATGTGATG TCTTTTTGTTTACCGGAGTTCCA 

AC129507.1 GGACAGATGGTGGGAGAGGAA ATGCTGACGAGGTTTGGAGAATC 

NR2F1−AS1  GCCCATGATGAACCTGTTTT TTACATCACGGCATGGTAGC 

AL121748.1 AACAAGGCACAAAAGGGGAAAA AGCAAACGCAAGGCGAAGG 

LINC01579 TCCCAGTGAAGAGAGAGCGA CTAAGTTCCACGTCACGGCT 

GAPDH  AATGGGCAGCCGTTAGGAAA GCCCAATACGACCAAATCAGAG 
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