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INTRODUCTION 
 

Atherosclerosis is a chronic progressive inflammation-

related disease that occurs in the arteries and is 
characterized by the formation of plaques on damaged 

artery walls. It can occur in a variety of arteries 

throughout the body, most commonly the coronary, 

carotid, and peripheral arteries. In comparison to early 

plaques, advanced carotid atherosclerotic plaque has a 

higher propensity to rupture, resulting in transient 

ischemic attack or ischemic stroke, making it a 

significant contributor to global mortality. 

 

Various applications have utilized data mining, such as 

sequencing [1], analysis of gene expression using 

microarrays [2–4], detection of single-nucleotide 
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ABSTRACT 
 

Backgrounds: Carotid atherosclerosis is prone to rupture and cause ischemic stroke in advanced stages of 
development. Our research aims to provide markers for the progression of atherosclerosis and potential targets 
for its treatment. 
Methods: We performed a thorough analysis using various techniques including DEGs, GO/KEGG, xCell, 
WGCNA, GSEA, and other methods. The gene expression omnibus datasets GSE28829 and GSE43292 were 
utilized for this comprehensive analysis. The validation datasets employed in this study consisted of GSE41571 
and GSE120521 datasets. Finally, we validated PLEK by immunohistochemistry staining in clinical samples. 
Results: Using the WGCNA technique, we discovered 636 differentially expressed genes (DEGs) and obtained 12 
co-expression modules. Additionally, we discovered two modules that were specifically associated with 
atherosclerotic plaque. A total of 330 genes that were both present in DEGs and WGCNA results were used to 
create a protein-protein network in Cytoscape. We used four different algorithms to get the top 10 genes and 
finally got 6 overlapped genes (TYROBP, ITGB2, ITGAM, PLEK, LCP2, CD86), which are identified by GSE41571 
and GSE120521 datasets. Interestingly, the area under curves (AUC) of PLEK is 0.833. Besides, we found PLEK is 
strongly positively correlated with most lymphocytes and myeloid cells, especially monocytes and 
macrophages, and negatively correlated with most stromal cells (e.g, neurons, myocytes, and fibroblasts). The 
expression of PLEK were consistent with the immunohistochemistry results. 
Conclusions: Six genes (TYROBP, ITGB2, ITGAM, PLEK, LCP2, CD86) were found to be connected with carotid 
atherosclerotic plaques and PLEK may be an important biomarker and a potential therapeutic target. 
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polymorphisms [5, 6], and more. WGCNA, a robust 

technique, can be employed to detect gene co-

expression modules, investigate the relationship 

between the modules and phenotypes, and uncover 

pivotal genes that govern crucial biological mechanisms 

[7]. xCell is an innovative approach that utilizes gene 

signatures to detect 64 different types of immune and 

stromal cells through comprehensive in silico 

investigations [8]. This method allows accurate 

calculation of the relative proportions of immune and 

stromal cell composition in a lesion sample. 

 

Despite the fact that research has shown that persistent 

inflammation can contribute to the development of 

atherosclerosis, the precise mechanism behind 

atherosclerosis remains unknown. Moreover, there have 

been fewer investigations carried out to examine the 

association between genes and immune cells in big data 

related to atherosclerosis. 

 

To examine the immunocyte infiltration micro-

environment and determine the important genes linked 

to carotid atherosclerotic plaque, we employed 

GSE28829 and GSE43292 as the training datasets for 

this investigation. The validated hub genes were then 

further confirmed in GSE41571 and GSE120521, as 

well as through immunohistochemistry (IHC) analysis 

of clinical samples. 

 

MATERIALS AND METHODS 
 

Data source 

 

GSE28829 [9] and GSE43292 [10] were downloaded 

from the Gene Expression Omnibus (GEO) database 

[11] (https://www.ncbi.nlm.nih.gov/geo/). The 

GSE28829 profile includes 16 advanced athero-

sclerotic plaques and 13 early atherosclerotic plaques 

on the GPL570 [HG-U133_Plus_2] Affymetrix 

Human Genome U133 Plus 2.0 Array. The GSE43292 

dataset included 32 atheroma plaques and 32 

macroscopically intact tissues on the GPL6244 

platform, specifically using the HuGene-1_0-st 

Affymetrix Human Gene 1.0 ST Array in its transcript 

(gene) version. The training dataset was identified as 

GSE28829 and GSE43292. 

 

The Department of Pathology, People's Hospital of 

Wuhan University provided 23 carotid atherosclerotic 

plaques and 11 carotid intact tissues. These samples 

were collected between 2017 and 2022. 
 

Data preprocessing and DEG screening 
 

Screening and preprocessing of data for differential 

expression gene (DEG) analysis, the series matrix 

files of GES28829 and GSE43292 were annotated 

using data tables from GPL570 and GPL6244, 

respectively. This annotation involved replacing the 

probe name with the official gene symbol to obtain 

the gene expression matrix. Then, the gene expression 

matrix of GSE28829 and GSE43292 were combined 

in RStudio [12–14]. The “sva” R package was used to 

remove batch effects. Besides, the screening of 

differentially expressed genes (DEGs) was performed 

using “limma” R package. DEG screening was 

performed using thresholds of |Fc (Fold-change)|>1.5 

and adjusted P<0.05. Significantly regulated 

transcripts and genes were visualized in a volcano plot 

created using the ggplot2 package in the R software. 

With the “pheatmap” package, the top 50 upregulated 

and downregulated genes were visualized. 

 

Functional enrichment analysis 

 

The above up- and down-regulated genes were 

imported into the Database for Annotation, 

Visualization, and Integrated Discovery (DAVID, 

v6.8) [15], official gene symbols were selected as 

identifiers, and Homo sapiens was selected as a 

species. Finally, the role of genes and gene products 

in any organism was obtained from Gene Ontology 

(GO) [16] and metabolic pathways and gene signaling 

networks were obtained according to Kyoto 

Encyclopedia of Genes and Genomes (KEGG) [17]. 

This study shows the top five results sorted by  

P-value (P<0.05) from high to low. 

 

Gene set enrichment analysis 

 

GSEA analysis was performed on the above dataset 

using GSEA.4.2.3 [18] software. Input plaque grouping 

data and select c2.cp.kegg.v2023.1.Hs.symbols.gmt to 

assess the associated pathways and molecular 

mechanisms. The minimum gene set was set to be 5, the 

maximum gene set to be 5000, and 1000 were 

resampled. The screening criteria included a normalized 

enrichment score>1.5 and a false discovery rate 

(FDR)<0.01. 

 

Co-expression network construction by WGCNA 

 

We used Weighted Gene Co-Expression Network 

Analysis (WGCNA) built with the R package 

“WGCNA” [19] to identify co-expression networks. We 

used gene expression profiles to calculate the MAD 

(median absolute deviation) of each gene, removing the 

top 50% of genes with the smallest MAD. Outliers and 

samples were removed using the GoodSamplesGenes 
method in the R package WGCNA, and scale-free co-

expression networks were further constructed using 

WGCNA. 

https://www.ncbi.nlm.nih.gov/geo/
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The pickSoftThreshold function was used to choose 

the soft threshold power(β) based on the criterion  

of scale-free topology. Afterwards, the gene co-

expression modules were discovered utilizing the 

method of constructing networks in a single step. 

Every module contained at least 30 genes. By utilizing 

the dynamic cutting tree technique, the threshold was 

established at 0.25. 

 

Selecting important modules 

 

Module genes (ME) of every module were calculated 

using the R ggcorr software package and correlations 

within the ME between modules were shown. Based on 

the moduleTraitCor and moduleTraitPvalue algorithms, 

the two modules with significant correlation (P<0.05) 

with plaque features and the strongest positive and 

negative correlations were assumed to be the key modules 

for further analysis. Genes with module membership 

greater than 0.8 (MM, ME correlation with gene 

expression profile) were screened for further analysis. 

 

Functional enrichment analysis on selected modules 

 

After the aforementioned screening, the genes within 

each module were utilized for conducting BP and 

KEGG enrichment analyses. After adjusting the P-

value, the first 10 terms of BP enrichment analysis and 

the first 9 terms of KEGG enrichment analysis were 

visualized. 

 

PPI network construction and screening for key 

genes 

 

After intersecting the differentially expressed genes 

(DEGs), we proceeded to identify the genes within the 

modules. Next, the intersecting genes were submitted to 

the STRING [20] (version 11.5) platform to determine 

the protein-protein interactions, with a minimum 

interaction score of 0.6. Then, we imported the obtained 

network into Cytoscape software [21] for visualization. 

In addition, we applied the cytohubba plugin [22] to 

identify key genes by Degree algorithm. The top 10 

genes were filtered from the Degree algorithm. Then, 

we intersected the top 10 genes from 4 different 

algorithms and obtained 6 hub genes. 

 

Validation of hub genes 

 

Six genes were screened from the four algorithms. 

Then, GSE41571 and GSE120521 were combined to 

validate genes that may be involved in carotid 

atherosclerotic plaque progression. The diagnostic and 
discriminatory value of the six hub genes in the 

plaque and intact tissue groups was assessed using 

ROC curve [23].  

Immune cell infiltration analysis 

 

To understand the immune landscapes of the genetic 

profile of advanced atherosclerotic plaques, we used a 

new method based on genetic characterization, xCell, to 

identify 64 cell types by extensive in silico analysis. 

The 64 different cell types were classified into 

lymphoid, myeloid, stromal, stem cells, and additional 

categories. Significant immune cells were then 

identified between plaque and intact tissue samples 

using the Wilcoxon threshold test [24] at P < 0.05. 

 

Relevance analysis of genes and immune cells 

 

The relationship between the expression of the six 

pivotal genes and the relative proportion of immune 

cells in plaque and intact tissue samples was illustrated 

by Spearman's correlation test analysis, respectively. 

Correlation coefficient values between gene expression 

and relative proportion of immune cells can indicate 

strong, weak or no correlation. P < 0.05 was considered 

a statistically significant difference by unpaired t-test.  

 

Immunohistochemistry and immunofluorescence 

 

IHC [25] staining was performed with the antibody PLEK 

(Proteintech, 66431-1-lg, 1:500) and CD68(Abcam, 

ab955, 1:200) following the manufacturer’s protocol. 

 

Apply the IHC Profiler in ImageJ 1.54d [26] to 

calculate the percentage contribution of High Positive, 

Positive, Low Positive and Negative. The staining value 

of PLEK and CD86 was calculated as 1-Negative (%). 

Immunofluorescence [27] staining of human carotid 

atherosclerotic plaques and intima using CD68(Abcam, 

ab955, 1:500) and CD163 (Abcam, ab182422, 1:1000) 

antibodies to investigate macrophage infiltration in 

plaques. 

 

Statistical analysis 

 

Use unpaired t test to compare the Negative percentage 

contribution in GraphPad Prism 8. Other statistical 

analysis was performed using R 4.2.3. To compare the 

variations in expression between the groups, the Wilcox 

test was employed. The Spearman method was utilized 

to establish the connections between genes and immune 

cells. P<0.05 was considered as statistically significant 

difference. 

 

RESULTS 
 

Identify DEGs 
 

Using the gene expression matrix merged with 

GSE28829 and GSE43292 as the exploration dataset, 
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PCA analysis showed the samples before and after 

merging (Figure 1A). Using |Fc(Fold-change)|>1.5 as 

the dividing line, 385 up-regulated genes and 251 

down-regulated genes were shown by volcano plots 

(Figure 1B). The top 10 up-regulated and down-

regulated DEGs of |Fc(Fold-change)| are listed in 

Table 1. The top 100 DEGs are represented by 

heatmap (Figure 1C). 

 

Functional enrichment analysis 

 

Gene ontology including Biological Function (BP), 

Cell Component (CC), and Molecular Function (MF) 

was performed for both upregulated and down-

regulated genes. The GO terms that were significantly 

enriched after adjusting the P-value are displayed in 

Figure 2A–2C, 2E–2G. During the analysis of BP 

enrichment, the genes that were upregulated primarily 

participated in the inflammatory and immune 

responses, whereas the downregulated genes were 

associated with cell adhesion and homophilic cell 

adhesion through adhesion molecules on the plasma 

membrane. The CC term that showed the highest 

upregulation was 'extracellular region', whereas 'Z disc' 

exhibited the most significant downregulation. The 

molecular function terms indicated an increase in the 

activity of signaling receptors and chemokines. On the 

other hand, the molecule function showed a decrease 

in the expression of actin binding and structural 

constituent of muscle. 

 

Furthermore, we performed KEGG analysis to 

demonstrate the pathway of differentially expressed 

genes (Figure 2D). Significant enrichment was observed 

in the upregulated pathways, including the B cell 

receptor, chemokine, and NF-kappa B signaling 

pathway. Not surprisingly, the downregulated genes 

exhibited enrichment in the contraction of vascular 

smooth muscle, as well as the cGMP-PKG and cAMP 

signaling pathway (Figure 2H). 

 

Gene set enrichment analysis (GSEA) 

 

GSEA, a computational method, evaluates the statistical 

significance of a priori customized gene sets, in contrast 

to traditional enrichment analysis that only considers a 

single gene. The top five pathways up- and down-

regulated by GSEA are presented in Figure 3, respective-

ly. The results showed that lysosomal, cytokine-cytokine 

receptor interaction, and toll-like receptor signaling 

pathways were upregulated, whereas butanoate metabo-

lism and dilated cardiomyopathy were downregulated. 

 

 

 

Figure 1. Principle components analysis (PCA) and analysis of differentially expressed genes (DEGs) between carotid 
atherosclerotic plaque and intact tissue samples. (A) PCA; (B) volcano plot; (C) heatmap of top 100 DEGs. 
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Table 1. DEGs with top-10 |log2 (fold-change)| (carotid plaque/intact tissue). 

Gene symbol Official full name Log2 (fold-change) Adjusted P-value 

Up-regulated    

IGJ Immunoglobulin J Chain 2.13 7.23E-08 

MMP9 Matrix Metallopeptidase 9 1.86 3.60E-07 

MMP12 Matrix Metallopeptidase 12 1.84 5.26E-05 

FABP4 Fatty Acid Binding Protein 4  1.67 5.41E-06 

CHI3L1 Chitinase 3 Like 1 1.61 1.88E-06 

FABP5 Fatty Acid Binding Protein 5 1.55 3.48E-08 

CD36 CD36 Molecule 1.48 8.17E-06 

CCR1 C-C Motif Chemokine Receptor 1 1.43 1.03E-09 

MMP7 Matrix Metallopeptidase 7 1.43 3.72E-05 

CD52 CD52 Molecule 1.38 4.80E-09 

Down-regulated    

CASQ2 Calsequestrin 2 -1.50 1.90E-08 

CNTN4 Contactin 4 -1.44 6.55E-09 

MYOCD Myocardin -1.41 5.97E-08 

TPH1 Tryptophan Hydroxylase 1 -1.38 2.43E-06 

PLD5 Phospholipase D Family Member 5 -1.33 1.68E-08 

HAND2-AS1 HAND2 Antisense RNA 1 -1.30 4.50E-07 

ITLN1 Intelectin 1 -1.26 4.42E-04 

ACADL Acyl-CoA Dehydrogenase Long Chain -1.25 3.59E-09 

CNTN3 Contactin 3 -1.24 2.34E-07 

FHL5 Four And A Half LIM Domains 5 -1.23 1.90E-08 

 

Building a co-expression network 

 

Construct a co-expression network by enrolling the 

combined dataset into R. There were no anomalies 

identified during the process of hierarchical clustering. 

Figure 4A depicts the construction of a scale-free 

network through the utilization of soft-thresholds at 

β=14. Twelve relevant co-expression modules were 

obtained (Figure 4B). 

Selection and enrichment analysis of key modules 

 

In order to determine the main modules associated with 

sample characteristics, we developed a relationship 

between modules and traits (Figure 4C). We observed two 

co-expression modules of genes that are strongly 

associated with the atherosclerotic process. The darkgreen 

module, consisting of 2364 genes, was positively 

associated with sample traits in atherosclerotic 

 

 
 

Figure 2. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) of upregulated (A–D) and downregulated DEGs (E–H). 
(A, E) biological process (BP) analysis, (B, F) cellular components (CC) analysis, (C, G) molecular function (MF) analysis, (D, H) KEGG pathway 
analysis.  
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plaques. In contrast, the 1886 genes found in the green 

module were inversely associated with advanced 

atherosclerotic plaques. To explore the biological 

functions of the key modules associated with sample 

traits, we also performed GO and KEGG enrichments. 

For the darkgreen module, BP enrichment indicated that 

these genes mainly participated in immune system 

processes, immune responses, cell activation, and 

leukocyte activation. KEGG analysis suggested that 

lysosomes might be involved in these pathways (Figure 

5A, 5B). The results from GO and KEGG were highly 

similar to our previous enrichment analysis. The GO 

analysis of the green module indicated enrichment in 

system development, morphogenesis of anatomical 

structures, and development of the nervous system 

(Figure 5C). The KEGG findings indicated the 

involvement of the actin cytoskeleton, tight junctions, 

and regulation of vascular smooth muscle contraction, 

which was consistent with the results for down-

regulated DEGs (Figure 5D). 

 

Protein-protein interactions (PPI) and screening of 

potential genes 

 

Initially, we filtered out these genes from two 

modules with MM>0.8, indicating that these genes 

exhibit a greater level of connectivity within the 

modules. Next, we compared the DEGs with the 

highly connected genes. There was an overlap of 330 

genes (Figure 6A). We then imported these 330 genes 

into the STRING database and constructed a PPI 

network, ensuring a minimum required interaction 

score of 0.4 (Figure 6B). The results were visualized 

in Cytoscape and included 333 nodes and 1727 edges. 

The Degree algorithm utilizing the Cytoscape plugin 

cytohubba displays all PPI networks (Figure 6C) and 

the top 10 genes (Figure 6D). The top ten hub genes 

from the cytohubba plugin were obtained by four 

algorithms: MCC, MNC, Degree, and EPC. The 

overlapping hub genes in the four algorithms were 

verified by a Venn diagram (Figure 6E). 

 

Validation hub genes in public databases 

 

TYROBP (Transmembrane Immune Signaling 

Adaptor), ITGB2 (Integrin Subunit Beta 2), ITGAM 

(Integrin Subunit Alpha M), PLEK (Pleckstrin), LCP2 

(Lymphocyte Cytoplasmic Protein 2), and CD86 

(CD86 molecule) were the overlapping hub genes. 

After extracting the expression matrix profiles, the 

validation datasets used were GSE41571 and 

GSE120521. ROC analysis was conducted, revealing 

the potential diagnostic significance of all these 

essential genes. Figure 7 shows the ROC profiles and 

gene expression of TYROBP, ITGB2, ITGAM, 

PLEK, LCP2 and CD86. 

 

 

 

Figure 3. Gene set enrichment analysis (GSEA) of the top 5 upregulated and downregulated GSEA pathways. (A) lysosome;  
(B) cytokine-cytokine-receptor interaction; (C) NOD-like-receptor signaling pathway; (D) TOLL-like-receptor signaling pathway; (E) B-cell-
receptor signaling pathway; (F) butanoate metabolism; (G) dilated cardiomyopathy; (H) propanoate metabolism; (I) hypertrophic 
cardiomyopathy HCM; (J) tyrosine metabolism. 
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Figure 4. Construction of the co-expression network for carotid atherosclerotic plaque. (A) Identification of soft threshold power 

(β); (B) Clustering dendrogram to find co-expression modules; (C) The identification of key modules related to sample traits. 

 

 
 

Figure 5. The enrichment analysis of key modules. (A, B) BP and KEGG analysis of the darkgreen module; (C, D) BP and KEGG analysis of 
green module. 



www.aging-us.com 3887 AGING 

 
 

Figure 6. Screening out potential genes. (A) The overlapping of DEGs and key module genes from WGCNA; (B) Protein-protein 

interaction (PPI) networks; (C, D) All the genes and the top 10 genes calculated by the Degree algorithm of cytoHubba; (E) The overlapped 
hub genes from four different algorithms. 

 

 
 

Figure 7. ROC curves and statistic of expression for TYROBP, ITGB2, ITGAM, PLEK, LCP2 and CD86. (A) The AUC for TYROBP was 
0.933. (B) The AUC for ITGB2 was 0.900. (C) The AUC for ITGAM was 0.722. (D) The AUC for PLEK was 0.833. (E) The AUC for LCP2 was 0.844. 
(F) The AUC for CD86 was 0.900. 
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Immune cell infiltration analysis  

 

The xCell includes 64 immune cells and stromal cells 

for quantitative assessment of enrichment of these 

cells. Figure 8 displays the types of cells and their 

corresponding enrichment scores. In advanced athero-

sclerotic plaque, the xCell scores indicated an 

upregulation of immunity-related cells, particularly 

the macrophage cells, in both lymphoid and myeloid 

cells (Figure 8A, 8B). On the other hand, the stromal 

cells exhibited a decrease in expression levels (Figure 

8C). The difference in the total immune score and the 

microenvironmental score demonstrated immune 

infiltration in advanced atherosclerotic plaques 

(Figure 8D). 

 

Correlation analysis of hub genes and immune cells 

 

To demonstrate and exhibit the connection between hub 

genes and immune cells in advanced plaque and intact 

tissue samples (Figure 9), a Spearson test was 

conducted for correlation analysis. The results showed 

that CD86, ITGAM, ITGB2, LCP2, PLEK and 

TYROBP are strongly positively correlated with most 

lymphocytes and myeloid cells, especially monocytes 

and macrophages. In contrast, the six hub genes are 

negatively correlated with most stromal cells, such as 

neurons, myocytes, fibroblasts and chondrocytes. As 

shown, PLEK has a close correlation with macrophages 

(R=0.85, p<2.2e-16), macrophages M1(R=0.85, p<2.2e-

16), macrophages M2(R=0.73, p<2.2e-16).  

 

IHC validation of PLEK importance in carotid 

atherosclerotic plaque 

 

We then identified the PLEK and CD68 expression level 

in 34 samples, including 23 carotid atherosclerotic 

plaques and 11 intact tissue samples. IHC experiment 

validated that carotid plaque showed higher expression of 

PLEK and CD68 compared to intact tissue samples 

(Figure 10A, 10B). Besides, we validated that PLEK has a 

close correlation with CD68(R=0.66, p=2.3e-05) (Figure 

10C). Compared with intact tissue, Immunofluorescence 

staining showed increased infiltration of both CD68+ 

macrophages and CD163+ macrophages in carotid 

atherosclerotic plaques (Figure 10D). 

 

DISCUSSION 
 

By combining the datasets GSE28829 and GSE43292, 

we identified a total of 385 genes that were upregulated 

and 251 genes that were downregulated in plaque 

 

 
 

Figure 8. xCell analysis. (A) The enrichment scores of lymphoid cells; (B) Enrichment scores of myeloid cells; (C) Enrichment scores of 

stromal cells; (D) Total enrichment scores of the immune and stromal microenvironment. Significance level was denoted by *p-value<0.05, 
**p-value<0.01, ***p-value<0.001, ****p-value<0.0001. 
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samples during our study. DEGs screening in previous 

research has been conducted using either the microarray 

dataset GSE28829 or GSE43292. DEG results vary 

due to the use of various methods and criteria. Liu and 

his colleagues acquired a total of 758 genes that 

exhibited differential expression by utilizing 

GSE28829, meeting the criteria of FDR<0.05 and 

|log2FC|>0.58. The PPI network shows that ITGAM 

and ACTN2 have the greatest degree [28]. Guiming 

Wang et al. screened 513 upregulated genes and 373 

downregulated genes. The PPI network constructed 

with these DEGs included 35 key nodes with 

degrees≥20, among which SYK, LYN and PIK3CG 

were the three highest [29]. Julong Guo et al. 

analyzed GSE41571, GSE120521, E-MTAB-2055 and 

one non-coding RNA dataset (GSE111794) to 

discover genetic molecules linked to histologically 

unstable carotid atherosclerotic plaques and found 10 

hub genes. Among them, upregulated genes included 

HCK, C1QC, CD14, FCER1G, LCP1 and RAC2, 

while TPM1, MYH10, PLS3 and FMOD were found 

to be downregulated [30].  

 

Function analysis involved genes that were upregulated 

and downregulated, respectively. In the biological 

process of gene ontology, “inflammatory response” and 

“immune response” were found to be enriched with up-

regulated genes, while the “cell adhesion”, “homophilic 

cell adhesion via plasma membrane adhesion 

molecules” and “cell-matrix adhesion” were involved in 

down-regulation of genes. KEGG pathway analysis 

further indicated up-regulation of genes of immunity-

related pathways whereas “the vascular smooth muscle 

contraction” was downregulated. Extensive experiment-

tal and clinical data now confirm that atherosclerosis is 

a persistent inflammatory condition that typically 

remains stable until a disruption in the arterial surface's 

integrity takes place, like endothelial erosion and plaque 

rupture [31]. In addition, experience from genome-wide 

association studies, advanced in vivo imaging, trans-

genic lineage tracing mice, and clinical interventional 

studies suggests that both innate and adaptive immune 

mechanisms can accelerate or inhibit atherosclerosis 

[32]. The role of cell adhesion is crucial in the 

regulation of cell migration and proliferation, 

particularly for VSMC in atherosclerosis. Certain initial 

research has indicated that the attachment of cells 

played a role in maintaining the health of blood vessels 

and safeguarding them from intraplaque hemorrhaging 

[33]. Hence, the compromised attachment of 

 

 
 

Figure 9. Correlation between gene expressions and the relative percentages of 64 cell types. (A) The heatmap of correlation 

between six hub genes and lymphoid cells, myeloid cells and stomal cells. (B–E) Scatterplots illustrate the exact relationship between the 
PLEK expression and the relative proportion of macrophages M0(R=0.85, p<2.2e-16), macrophages M1(R=0.85, p<2.2e-16), macrophages 
M2(R=0.73, p<2.2e-16) and immuneScore (R=0.88, p<2.2e-16). 
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vascular smooth muscle cells could potentially 

contribute to the advancement of plaques. 

 

The results of GSEA analysis were the same as those 

of KEGG analysis. In our GSEA results, lysosomal 

processes were upregulated. It is indicated that 

advanced atherosclerotic plaques exhibit autophagy 

mediated by lysosomes [34]. Additionally, lysosomal 

enzymes played a role in the destabilization of 

atherosclerotic plaques, including cathepsin S [35]. 

Thus, upregulation of the lysosome pathway may be 

involved in plaque progression and lead to its eventual 

rupture. Interestingly, butanoate, propanoate, and 

tyrosine metabolism were enriched in the down-

regulated pathway. Short-chain fatty acids (propionate 

and butyrate) have been reported to be associated with 

energy metabolism. For example, propionate and 

butyrate, the major metabolites of dietary fiber, are 

major products of bacterial metabolism and important 

sources of energy [36]. It has been previously 

reported that acetate, butyrate, and propionate play an 

important role in atherosclerosis by modulating Treg 

cell production and inhibiting histone deacetylases 

(HDACs) [37, 38]. Adhesion molecules are known to 

promote adhesion between leukocytes and endothelial 

cells. Li et al. found that butyrate and propionate 

reduced the expression of vascular cell adhesion 

molecule-1(VCAM-1) [39]. Therefore, modulation of 

short-chain fatty acid metabolism could serve as an 

innovative approach to impede the formation of 

atherosclerotic plaques. 

 

We then constructed a WGCNA co-expression 

network to mine the set of co-expression genes 

associated with the sample trait “Plaque”. The results 

revealed that two modules (darkgreen and green) were 

strongly associated with advanced plaques. The 

biological roles and KEGG pathways of the modules 

aligned with the DEGs. The darkgreen module was 

also enriched for several other immune-related 

biological functions, such as “leukocyte activation”, 

“leukocyte mediated immunity” and KEGG pathways 

like “leukocyte transendothelial migration”. The 

process of leukocyte transendothelial migration 

(LTEM) plays a crucial role in initiating an inflam-

matory immune response and sustaining chronic 

inflammation. Atherosclerosis leads to unregulated 

movement of leukocyte and leakage of blood vessels 

due to the compromised protective function of the 

endothelium [40]. Various leukocytes, especially 

monocytes, transit through leaky vessels to the sub-

endothelium, polarize into macrophages, and 

contribute to the development of atherosclerosis. 

 

We used the overlapped genes between DEGs and 

WGCNA to establish a protein-protein interaction 

 

 
 

Figure 10. Validation of PLEK importance in carotid atherosclerotic plaque. (A) Staining images of PLEK protein expression in carotid 

atherosclerotic plaque and intact tissue samples. (B) Statistic of PLEK protein expression in carotid atherosclerotic plaque and intact tissue 
samples. (C) The scatterplot of correlation between PLEK and CD68. (D) Macrophage infiltration of plaque versus intact tissue by 
immunofluorescence. 
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network. We used four different algorithms to get the 

top 10 genes and finally got 6 overlapped genes. To 

validate the differential expression of these six genes, 

we collected two external datasets (GSE41571 and 

GSE120521) that included both stable and ruptured 

human atherosclerotic plaques. ROC curve analysis of 

the six genes, TYROBP, ITGB2, ITGAM, PLEK, 

LCP2, CD86 was performed. The AUC was 0.933 for 

TYROBP, 0.900 for ITGB2, 0.722 for ITGAM, 0.833 

for PLEK, 0.844 for LCP2, 0.900 for CD86. Analysis 

of tissue expression data on porcine atherosclerosis 

induced by high lipid factors indicates that TYROBP, 

ITGB2, and ITGAM are key genes influencing the 

progression of ankylosing spondylitis [41]. It has been 

shown that upregulation of ITGB2 synergistically 

affects leukocyte adhesion and migration to the 

vascular wall, thereby influencing the progression  

of ankylosing spondylitis [41]. Transcriptome 

sequencing analysis of ox-LDL-treated endothelial 

cells showed that ITGAM is a key gene that 

influences endothelial cell apoptosis and thus 

promotes atherosclerosis [42]. The PLEK gene 

encodes the pleckstrin protein, which serves as the 

primary substrate for platelets and leucocytes' protein 

kinase C [43]. It plays a crucial role in various 

processes, such as G protein-coupled receptor signal-

ing pathway, actin cytoskeleton organization, and 

promoting supramolecular fiber organization. The 

relationship between PLEK and atherosclerosis is not 

yet fully understood. However, there is evidence 

suggesting that PLEK might have a significant impact 

on chronic inflammatory conditions like CVD, 

rheumatoid arthritis (RA), and ulcerative colitis (UC) 

[44]. LCP2 (lymphocyte cytoplasmic protein 2) 

encodes an adaptor protein that is a substrate for the 

protein tyrosine kinase pathway activated by the T-

cell antigen receptor (TCR) and is thought to play a 

role in TCR-mediated intracellular signaling. CD86, 

also known as cluster of differentiation 86, is a 

protein produced by the CD86 gene. It is found on 

antigen-presenting cells (APCs) and plays a role in 

delivering costimulatory signals to T cells [45]. 

CD86, a biomarker of M1-type macrophages, is 

markedly expressed in vulnerable arterial plaques.M1-

type macrophages release ROS and pro-inflammatory 

cytokines, such as TNF-α, IL-1β, IL-6, and IL-12, 

which damage endothelial cells and blood vessels and 

promote atherosclerosis [46]. Additionally, CD86 was 

observed to be present on fully developed dendritic 

cells and certain T cells [47], but the exact mechanism 

remains uncertain. 

 

Given the significant importance of inflammation in 
carotid atherosclerotic plaques, we proceeded to 

perform an ssGSEA analysis utilizing 64 different 

immune cell types. Unsupervised hierarchical clustering 

revealed the immune difference between the carotid 

plaque and intact tissue groups. Therefore, we 

concluded that the presence of immune cells contributed 

to the advancement of carotid atherosclerotic lesions. 

According to the xCell results, there was a significant 

alteration in the ratio of various immune cells. The 

majority of immune cells, including B-cells, CD4+ 

memory T cells, DC, macrophages, and monocytes, 

exhibited upregulation. On the other hand, the stromal 

cells like chondrocytes, fibroblasts, osteoblasts, and 

smooth muscle cells exhibited a decrease in expression. 

During our analysis of immune infiltration, we observed 

a substantial prevalence of macrophages, which 

exhibited a notable rise during the progression of 

atherosclerosis. The classical model of macrophage 

polarization describes two opposing phenotypic states: 

the “classical” pro-inflammatory M1 macrophage and 

the “alternative” anti-inflammatory M2 macrophage. 

Nevertheless, advancements in the functional 

characterization demonstrate that macrophage pheno-

types are not confined to the M1 and M2 extremes. 

Instead, they encompass a continuous range of 

phenotypes linked to varying cytokine production and 

functional traits [48, 49]. In our research, the levels of 

both M1 macrophages and M2 macrophages were 

notably increased in the advanced plaques, and all six 

hub genes exhibit a strong correlation with these two 

types of macrophages. The true function of macro-

phages in carotid atherosclerosis remains unclear, and it 

is imperative to determine the future studies' 

examination of the correlation between these genes and 

macrophages. 
 

We conducted a comprehensive analysis and identified 

six hub genes involved in carotid atherosclerotic 

plaques. These six hub genes, TYROBP, ITGAM, 

ITGB2, CD86, PLEK, LCP2 may be important 

biomarkers for the progression of atherosclerosis and 

potential treatment targets. However, there still exist 

some inevitable difficulties in this study. For example, 

thanks to a lack of atherosclerosis-related datasets, we 

use ruptured plaque and stable plaque datasets to 

validate the hub genes we get from the advanced carotid 

plaque and early plaque samples. Besides, for financial 

reasons, we only verified PLEK expression in immune-

histochemistry. 
 

CONCLUSIONS 
 

Through bioinformatics analysis of the microarray 

datasets, we identified six hub genes (TYROBP, 

ITGAM, ITGB2, PLEK, LCP2, CD86) that may be 

involved in the progression of atherosclerosis correlated 
with immune cells, which provides clues for us to 

explore the pathogenesis and therapeutic approaches of 

cardiovascular diseases. 
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