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INTRODUCTION 
 

Diabetic kidney disease (DKD) is the most common 

cause of end stage renal disease (ESRD), affecting  

20–30% of diabetic patients globally [1]. Standard 

biomarkers including urinary albumin-to-creatinine 

ratio (UACR) and estimated glomerular filtration rate 
(eGFR) are the clinical parameters commonly used to 

evaluate renal function in clinical practice. However, 

due to the level of urinary output and serum creatinine 
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ABSTRACT 
 

Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease (ESRD) worldwide. Early detection is 
critical for the risk stratification and early intervention of progressive DKD. Serum creatinine (sCr) and urine 
output are used to assess kidney function, but these markers are limited by their delayed changes following 
kidney pathology, and lacking of both sensitivity and accuracy. Hence, it is essential to illustrate potential 
diagnostic indicators to enhance the precise prediction of early DKD. A total of 194 Chinese individuals include 
30 healthy participants (Stage 0) and 164 incidents with type 2 diabetes (T2D) spanning from DKD’s Stage 1a to 
4 were recruited and their serums were subjected for untargeted metabolomic analysis. Random forest (RF), a 
machine learning approach, together with univariate linear regression (ULR) and multivariate linear regression 
(MvLR) analysis were applied to characterize the features of untargeted metabolites of DKD patients and to 
identify candidate DKD biomarkers. Our results indicate that 2-(α-D-mannopyranosyl)-L-tryptophan (ADT), 
succinyladenosine (SAdo), pseudouridine and N,N,N-trimethyl-L-alanyl-L-proline betaine (L-L-TMAP) were 
associated with the development of DKD, in particular, the latter three that were significantly elevated in Stage 
2-4 T2D incidents. Each of the four metabolites in combination with sCr achieves better performance than sCr 
alone with area under the receiver operating characteristic curve (AUC) of 0.81-0.91 in predicting DKD stages. 
An average of 3.9 years follow-up study of another cohort including 106 Stage 2-3 patients suggested that 
“urinary albumin-to-creatinine ratio (UACR) + ADT + SAdo” can be utilized for better prognosis evaluation of 
early DKD (average AUC = 0.9502) than UACR without sexual difference. 
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(sCr) can be influenced by many factors, these  

measures are restricted as they may lack of sensitivity 

and accuracy [2]. Therefore, there is an urgent need  

to identify novel biomarkers for the diagnosis and 

management of DKD. 

 

Metabolomics is a promising tool for detailed 

characterization of dynamic molecular changes  

in the intra- and inter-cellular process. It has been 

applied in multiple fields such as metabolism of  

drugs or environmental toxicants, screening for new 

therapeutic targets, discovery and validation of disease 

biomarkers [3]. Increasing evidence has revealed  

the association among metabolites, diabetes mellitus 

(DM) and diabetic complications [4]. Serum metabolic 

analysis of Korean T2D patients suggested that alanine, 

arginine, isoleucine, proline, tyrosine, valine, hexose 

and five phosphatidylcholine diacyls were positively 

associated with T2D risk [5]. For DKD prediction, 

Huang et al. utilized targeted metabolomics profiles  

to evaluate prospective metabolite predictors in the 

German diabetic individuals of the Region of Augsburg 

(KORA) cohort, and identified sphingomyelin (SM) 

C18:1 and phosphatidylcholine diacyl (PC aa) C38:0  

as the potential metabolite biomarkers. [6]. In addition 

to metabolites, elements such as neutrophil gelatinase-

associated lipocalin (NGAL), fatty acid-binding protein 

[7] and cystatin C [8] have been proposed to be 

correlated with the development of DKD. However, 

studies exploring the associations between metabolites 

and the DKD disease development in Chinese are very 

limited. 

 

In this study, we performed untargeted metabolomics of 

194 serum samples collected from 164 Chinese incidents 

of type 2 diabetes (T2D) and 30 healthy participants 

(non-T2D and non-diabetes). The metabolites identified 

were validated by an extra follow up cohort of 106 

subjects with a mean follow-up time of 3.9 years. By 

assessing the predictive power of metabolites via a 

stringent workflow, we finally identified pseudouridine, 

L-L-TMAP, ADT and SAdo as the candidate predictors 

for early DKD. 
 

RESULTS 
 

Baseline characteristics of study participants 

 

An overview of this study design was shown in Figure 1. 

For the 164 diabetic patients in the discovery and 

validation cohort, their median diabetic duration was 8 

years, median eGFR was 76 (43–104) mL/min/1.73 m2, 

and median UACR was 80 (ranges from 10 to 842) 

mg/g Cr. Approximately 67% of them had a history  

of ≥ one diabetic microvascular or macrovascular 

complication (Supplementary Table 1). The median 

eGFR and UACR of 30 healthy participants were 99 

(95–112) mL/min/1.73 m2 and 2.7 (2.3–3.9) mg/g Cr., 

 

 
 

Figure 1. The pipeline of this study. Three independent cohorts were recruited to perform the metabolite biomarker in discovery, 

validation and follow-up groups, respectively. 
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respectively. The baseline characteristics of the two 

cohorts were compared, the patients group showed 

lower eGFR and an increase of UACR, RRI, systolic 

blood pressure (SBP), serum creatinine, urea, uric 

acid, cystatin C and urinary β2-microglobulin (β2-

MG) concentrations along with DKD severity 

(Supplementary Table 2). We noticed that Stage 1a 

patients showed an enlargement of kidney size in 

compare with healthy participants by renal ultrasound 

images and testing body surface-area (BSA) related 

renal volumes (Supplementary Figure 1); however, for 

patients at Stage 2–4, their BSA related renal volumes 

were gradually decreased with DKD progressed 

(Supplementary Figure 1), which is consistent with 

previous findings that kidneys tended to be smaller  

in the most advanced stages of CKD [9]. Our results 

suggested that patients were likely to have abnormal 

kidney hypertrophy and enlargement at Stage 1a, 

followed by gradual renal atrophy and volume depletion 

at later stages. 

 

Characterization of metabolites in study participants 

 

A total of 7480 compounds were detected and we  

found that the trend of MS-detected sCr among  

all the participants showed remarkable consistency  

with clinically measured sCr (Supplementary Figure 2), 

suggesting that UPLC-Orbitrap-MS is accurate and 

efficient for high-throughout metabolites detection. Step-

wise filtering was performed based on two criteria: 

removing metabolites with unstable signals and only 

retaining metabolites with significant different concen-

tration levels between healthy control and patients, 80 

candidates (72 metabolites and 8 ratios) were screened 

out for a next-step analysis (Supplementary Tables 3 

and 4, Supplementary Figure 3). The distribution plot of 

preprocessed data was shown as Supplementary Figure 

4. The fold changes of these metabolites among different 

stages were calculated and shown in Supplementary 

Tables 5 and 6. 

 

The 72 metabolites are classified to 7  

categories: sulfate metabolites, amino acids, organic 

acids, acylcarnitine, purine derivatives, steroids and 

monosaccharides. Metabolomic network based on the 

72 metabolites in the discovery set from Stage 0–4  

was shown in Supplementary Figure 4. Comparing 

with healthy group (Stage 0), merely 3 down- and  

6 up- regulated metabolites were found in Stage  

1a; nevertheless, it increased to 7 down- and 40 up- 

regulated metabolites in Stage 4. The SAMs were 

enriched in Tryptophan metabolism (hsa00380) and 

Phenylalanine metabolism (hsa00360) pathways, 
indicating that amino acid metabolism disruption is a 

dominate signature of DKD (Figure 2). Among these 

significant altered metabolites (SAMs), 1,5-anhydro-

D-glucitol (1,5-AG) was remarkably reduced in stages 

1–4 compared to healthy group (fold change = −26.5 

to −2.60, Supplementary Table 5). As demonstrated by 

previous studies that 1,5-AG is a potential biomarker 

for monitoring the progression of diabetes [10, 11], we 

therefore separately tested the correlation of two 

clinical glycemic markers – fast blood glucose (FBG) 

and hemoglobin A1C (HbA1c) with 1,5-AG in our 

cohort. It showed that 1,5-AG has strong negative 

correlation with HbA1c and FBG in stage 1a-3 patients 

(r ranges were −0.95 to −0.64 and −0.87 to −0.42, 

respectively); however, abnormal correlation was 

observed between 1,5-AG and FBG in stage 4 

discovery sets, with r = 0.25 (Supplementary Figure 

5A, 5B). Correlation between 1,5-AG and HbA1c was 

stronger among stage 1a-3 patients than stage 0‒4 

(Supplementary Figure 5A, 5B), suggesting that 1,5-

AG may serve better as a potential glycemic marker in 

stage 1a-3 DKD patients than late stage. 

 

Given that DKD is one of the consequences induced 

by diabetes, we hypothesized that decreased levels  

of 1,5-AG may be relevant with DKD development. 

However, our results showed that 1,5-AG exhibited 

non-significant correlation with neither eGFR nor 

UACR (Supplementary Figure 5C), indicating that 

diabetic progression has limited contribution to DKD 

development (scatter plot of 1,5-AG levels among 

healthy controls and different stages of patients was 

shown in Supplementary Figure 5D). 

 

Identification of candidate DKD biomarkers (CDBs) 

 

Receiver Operating Characteristic (ROC) curve analysis 

and Spearman’s coefficient coexpression analysis were 
used to evaluate the power of each metabolite as  

well as the combinations of every 2‒9 compounds in 

DKD staging. The metabolites that closely associated 

(|r| ≥ 0.6) with eGFR in all participants were shown in 

Supplementary Figure 6. Strict rank coefficient cut-off 

values of 0.8 for Stage 0–4 (all participants) and Stage 

1–4 (all patients), and 0.7 for Stage 1 and 2 (early- 

stage patients) were applied to identify biomarkers  

that closely correlated with eGFR progressive, four 

metabolites were screened out consist of SAdo ((M-H)- 

= 382.1005 at 2.89 min), pseudouridne ((M-H)- = 

243.0622 at 0.93 min), ADT ((M-H)- = 367.1497 at 2.21 

min) and L,L-TMAP ((M+H)+ = 229.1546 at 1.06 min) 

(The regression plots among the four metabolites,  

eGFR and UACR see Figure 3). Since few studies  

have investigated the basic features of SAdo, the 

demonstration of its peak identification was plotted and 

calibrated (Supplementary Figures 7 and 8). To alleviate 
the bias induced by sex, age, SBP and UACR, partial 

correlation analysis (PCA) was performed among the 

four metabolites, serum cystatin C, MS-detected serum 
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creatinine (MS-sCr) and log(eGFR). The PCA showed 

that log(MS-sCr), log(pseudouridine) and log(L,L-

TMAP) were strikingly correlated with log(eGFR)  

(|r| > 0.9) in Stage 0–4 (Table 1). In addition, we 

evaluated the association between the four metabolites 

and kidney function related factors such as UACR, 

urinary β2- microglobulin, renal resistive index and  

the decrease of total BSA related renal volume, and 

found they were closely related as well (|r| > 0.5, see 

Table 1). The correlation among interested metabolites, 

total BSA-related renal volume and renal resistive  

index was calculated as well (Supplementary Table  

7). In conclusion, our results suggested that the four 

metabolites are possibly involved in DKD progression 

and have potential to be utilized as candidate DKD 

biomarkers (CDBs). 

 

Evaluation of CDB’s capacity in staging DKD by 

random forest (RF) 

 

To evaluate whether CDBs can be applied for staging 

DKD, RF was employed to assess the classification 

power of the four CDBs as RF is a powerful supervised 

classification technique for decision making via 

building large numbers of decision tree models and 

merging all predictions from these trees to get an 

accurate and unprogressed prediction [12]. It exhibited 

that CDBs can specifically differentiate Stage 1a 

 

 
 

Figure 2. KEGG pathway analysis of all SAMs. (A) An overview view of pathway analysis; (B) Table of the matched pathway with p-

values from pathway enrichment analysis and pathway impact values from the pathway topology analysis using MetaboAnalyst 4.0 and 
KEGG database (Hits ≥ 2); (C, D) Simplified pathways of tryptophan metabolism and phenylalanine metabolism with the change trends of 
metabolites and their ratios at Stage 4 compared with the normal group. 
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patients from Stage 1b-4, Stage 1a from Stages 1b-2, 

Stage 1b from Stage 2, and Stages 1a-1b from Stages 2-

4 (average AUC > 0.700, Table 2). Among them, 

pseudouridine and SAdo achieve better performance 

than MS-sCr in all the staging process (Supplementary 

Table 8). Multiple combinations of the 4 metabolites 

and MS-sCr were generated and used for assessing their 

ability for DKD stratification. Any one of the four 

candidate DKD biomarkers combined with MS-sCr can 

gain higher AUC than MS-sCr alone (Table 2). Among 

 

 
 

Figure 3. Linear regression analysis among CDBs, sCr, eGFR (A) and UACR (B) in all stages and T2D patients after log10 transformation, 

respectively. Four metabolites showed similar strong predictive power with MS-detected sCr as their R2 of the equations were all above 
0.85. R2 of UACR prediction model were close to 0.5. 
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Table 1. Spearman’s coefficient correlation r analysis among four metabolites, clinically measured sCr, cystatin 
C, eGFR and interested CKD risk factors in two cohorts. 

Stage ranges 

Stage 0–4 Stage 1–4 Stage 1 and 2 (eGFR ≥60) 

Discovery 
 (n = 128) 

Validation 
 (n = 66) 

Discovery 
 (n = 108) 

Validation 
 (n = 56) 

Discovery 
 (n = 69) 

Validation 
(n = 30) 

Spearman rank correlation with eGFR 

Pseudouridine −0.896 −0.939 −0.939 −0.953 −0.789 −0.792 

ADT −0.875 −0.928 −0.918 −0.935 −0.733 −0.847 

MS-detected creatinine −0.869 −0.912 −0.900 −0.916 −0.712 −0.739 

L,L-TMAP −0.866 −0.901 −0.921 −0.922 −0.734 −0.739 

Succinyladenosine −0.855 −0.926 −0.899 −0.932 −0.706 −0.818 

Serum cystatin C − −0.913 − −0.940 − −0.802 

Partial correlation of metabolites with log (eGFR) after controlling sex, age, SBP and log (UACR) 

log (MS-detected 
creatinine) 

−0.957 −0.975 −0.962 −0.976 −0.850 −0.847 

log (Pseudouridine) −0.941 −0.949 −0.947 −0.952 −0.739 −0.709 

log (L,L-TMAP) −0.924 −0.950 −0.930 −0.953 −0.685 −0.698 

log (Succinyladenosine) −0.867 −0.898 −0.874 −0.898 −0.533 −0.571 

log (2-(α-D-
Mannopyranosyl)-L-
tryptophan) 

−0.823 −0.956 −0.844 −0.958 −0.701 −0.755 

log (Serum cystatin C) − −0.949 − −0.953 − −0.831 

CKD risk factors (Stage 
1–4) 

UACR 
Urinary β2-

microglobulin 
Total BSV-related 

renal volume 
Renal resistive 

index 

Discovery  
(n = 108) 

Validation 
 (n = 56) 

Discovery 
 (n = 108) 

Validation 
 (n = 54) 

Validation 
(n = 48) 

Validation  
(n = 48) 

2-(α-D-
Mannopyranosyl)-L-
tryptophan 

0.801 0.746 0.664 0.731 −0.604 0.586 

Succinyladenosine 0.795 0.690 0.635 0.780 −0.615 0.556 

Pseudouridine 0.794 0.741 0.690 0.793 −0.599 0.588 

L,L-TMAP 0.743 0.676 0.670 0.681 −0.596 0.517 

MS-detected creatinine 0.681 0.657 0.667 0.685 −0.473 0.459 

Serum cystatin C (mg/L) − 0.676 − 0.675 −0.614 0.544 

 

 

Table 2. List of mean AUC values for evaluating the predictive power of MS-detected sCr and multiple-
metabolite models for differentiating DKD stages in T2D patients using random forest classification in two 
cohorts. 

Classification Cohort 
Serum 

creatinine 
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

eGFR ≥ 119 vs. 

eGFR < 119 

Dis 0.85 ± 0.05 0.93 ± 0.03 0.91 ± 0.03 0.92 ± 0.05 0.94 ± 0.02 0.93 ± 0.02 0.94 ± 0.02 0.95 ± 0.02 

Val 0.88 ± 0.08 0.93 ± 0.03 0.94 ± 0.04 0.94 ± 0.03 0.92 ± 0.03 0.92 ± 0.03 0.94 ± 0.03 0.93 ± 0.03 

eGFR ≥ 119 vs. 

eGFR = 60–118 

Dis 0.75 ± 0.08 0.87 ± 0.05 0.84 ± 0.06 0.88 ± 0.07 0.91 ± 0.04 0.89 ± 0.04 0.89 ± 0.05 0.91 ± 0.04 

Val 0.76 ± 0.10 0.85 ± 0.06 0.87 ± 0.07 0.87 ± 0.07 0.83 ± 0.09 0.81 ± 0.09 0.85 ± 0.07 0.89 ± 0.06 

eGFR = 90–118 

vs. eGFR = 60–89 

Dis 0.68 ± 0.09 0.81 ± 0.06 0.79 ± 0.07 0.80 ± 0.07 0.77 ± 0.06 0.83 ± 0.05 0.82 ± 0.06 0.81 ± 0.06 

Val 0.60 ± 0.17 0.97 ± 0.06 0.86 ± 0.08 0.99 ± 0.03 0.97 ± 0.06 0.96 ± 0.05 0.98 ± 0.03 0.95 ± 0.07 

eGFR ≥ 90 vs. 

eGFR < 90 

Dis 0.92 ± 0.03 0.96 ± 0.02 0.93 ± 0.02 0.94 ± 0.02 0.94 ± 0.02 0.96 ± 0.02 0.96 ± 0.02 0.95 ± 0.02 

Val 0.93 ± 0.05 0.99 ± <0.01 0.98 ± 0.02 0.97 ± 0.02 1.00 ± <0.01 1.00 ± 0.01 1.00 ± <0.01 0.99 ± 0.01 

eGFR ≥ 60 vs. 

eGFR < 60 

Dis 0.95 ± 0.03 0.99 ± 0.01 0.97 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 

Val 0.931± 0.04 0.96 ± 0.03 0.96 ± 0.03 0.94 ± 0.03 0.96 ± 0.03 0.96 ± 0.03 0.96 ± 0.03 0.97 ± 0.02 
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eGFR ≥ 30 vs. 

eGFR < 30 

Dis 0.99 ± <0.01 0.99 ± 0.01 1.00 ± <0.01 1.00 ± <0.01 1.00 ± 0.01 1.00 ± <0.01 1.00 ± <0.01 1.00 ± <0.01 

Val 0.97 ± 0.08 0.99 ± 0.04 1.00 ± 0.02 0.99 ± 0.03 0.99 ± 0.04 0.99 ± 0.04 0.99 ± 0.03 0.98 ± 0.06 

Data were expressed as mean ± SD. Abbreviations: Dis: discovery cohort; Val: validation cohort. Model 1: MS-detected sCr + pseudouridine; Model 2: MS-
detected sCr + Sado; Model 3: pseudouridine + SAdo; Model 4: pseudouridine + L,L-TMAP; Model 5: Model 1 + ADT; Model 6: Model 1 + Sado; Model 7: 
Model 1 + L,L-TMAP. 

 

these models, the No. 7 model (MS-sCr + pseudouridine 

+ L,L-TMAP) ranks the best in phasing Stage 1a from 

the rest with average AUC > 0.9 (Table 2). 

 

Comparison of CDBs between male and female 

patients 

 

Increasing evidence suggested that sexual difference is 

a significant factor related with DKD progression, 

which leads to a complex personalized approach  

for DKD diagnosis and treatment in clinical practice 

[13, 14]. To investigate the association between the 

four CDBs and sexual difference, we compared their 

levels between male and female patients. For SAdo, 

pseudouridine and ADT at early and later stages, no 

significant differences was observed (Figure 4). 

Multiple linear regression analysis which included sex 

as a covariate showed that CDBs show insignificant 

sex dependence with eGFR, suggesting that CDBs  

can be utilized in both male and female patients 

(Supplementary Table 9). 

 

Predict eGFR using CDBs signatures 

 

We hypothesized that the use of a combinations  

of multiple biomarkers may be more sensitive and 

specific than sCr in evaluating the kidney function  

of diabetic patients. To test the potential of CDBs  

in predicting DKD, non-parametric methods include 

univariate linear regression (ULR) and multivariate 

linear regression (MvLR) were applied to calculate the 

association among eGFR, UACR, creatinine and four 

CDBs. The ULR analysis using Stage 0–4 data found  

a high linear relationship between each CDB and 

log(eGFR) (training R2 = 0.87–0.95, root mean square 

errors (RMSEs) = 0.08–0.13; predictive R2 = 0.91–0.95) 

which was very close to MS-detected sCr (training  

R2 = 0.95, RMSE = 0.11; predictive R2 = 0.95) (Figure 

5), suggested that CDBs are good covariates to be 

applied for eGFR prediction. A stepwise MvLR analysis 

was performed to test the effects of four CDBs and 

covariates (sex, age, SBP and UACR) in calculating 

CDB-predicted eGFR (BeGFR) using data from Stage 

0–4 and Stage 0–2, respectively. Among all the 

individuals (Stage 0–4), MS-sCr, pseudouridine, L,L-

TMAP and sex are the most significant variables, and 

were therefore considered as confounding covariants  
for BeGFR estimation. The predictive outcome R2 was 

optimized from 0.971 (log(MS-detected sCr) and sex  

as covariates) to 0.987 (Table 3). 

Renal function of early-stage DKD (Stage 1 and 2) is 

reversible and manageable [15, 16]; however, most 

DKD patients are asymptomatic and indolent [17, 18]. 

Considered that early detection is of great vital for 

lifetime benefits for DKD patients, we specifically 

tested the predictive potency of CDBs and eGFR  

in early-stage participants. Surprisingly, pseudouridine 

and L,L-TMAP can enhance the predictive power of 

MS-detected sCr at early stages’ patients and healthy 

participants (Stage 0–2), predictive R2 in the validation 

datasets was significantly improved from 0.70 (log(MS-

detected creatinine) and sex as covariates) to 0.82 

(Table 3), demonstrating that the two CDBs are 

potential biomarkers for the early detection of DKD. 

The best model for BeGFR estimation at the early  

stage (training R2 = 0.7733, RMSEs = 0.0513) is: 

log(BeGFR) = −0.675 log(MS-detected sCr) −0.467 

log(pseudourdine) + 0.101 (if male) + 1.559. Our results 

indicated that the combination of multiple biomarkers 

achieves better performance than standard sCr. 

 

Follow-up study and prognostic assessment 

 

Due to the limitations for purchasing the commercial 

standards of L-L-TMAP, only three CDBs include 

ADT, SAdo and pseudouridine and some clinical 

indexes were measured in the follow-up cohort. The 

association were assessed between 7 variates (sex, age, 

eGFR, sCr, ADT, SAdo and pseudouridine) as well as 

their combinations with DKD progression. The first-

time collected serum samples from 106 subjects of 

Stage 2 and 3 DKD patients were examined to 

determine the concentration of the metabolites. In  

Stage 2 unprogressed and Stage 2 progressed groups, 

for each single variate, ADT ranks the top prognostic 

power (average AUC = 0.9184) than sCr alone (average 

AUC = 0.9133). Surprisingly, the combinations of 

“UACR + ADT + sCr” and “UACR + ADT + age + 

sex” were extremely associated with the future 

progression of DKD (AUC ranges from 0.9592 to 1) 

(Figure 6A, Supplementary Table 10). The same 

method was applied in Stage 3 unprogressed and  

Stage 3 progressed patients. Three single variates, 

including UACR, pseudouridine and ADT, gained  

the top 3 strongest association with DKD progression 

(average AUC values = 0.8889, 0.8302 and 0.8117, 

respectively). For the Stage 3 patients, either of the four 
metabolites (ADT, sCr, SAdo and pseudouridine) 

combined with UACR can optimize average AUC  

value ≥ 0.9012; among the combinations, “UACR + 
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ADT + pseudouridine + SAdo + Sex” and “UACR + 

pseudouridine + sCr” achieve the best performance with 

an average AUC = 0.929 (Figure 6A, Supplementary 

Table 11). Ignoring the initial DKD phasing status, 

“UACR + ADT + SAdo” is the best combination for 

DKD prognostic assessment (average AUC = 0.9502).  

In general clinical practice, eGFR was employed as a 

popular reporter for grading diseases as its levels reflect 

the status of renal function decline; while UACR  

was mostly used as the predictive biomarker for 

disease’s progression [7]. Hence, we only compared the 

changes of UACR and CDBs between progressed and 

 

 
 

Figure 4. The MS-detected CDBs. (A–D) and sCr (E) were evaluated and compared between male and female participants at the early 

and later stages’ patients. Unlike with sCr, three of the four CDBs include SAdo, pseudouridine and ADT displayed non-significant 
differences between male and female patients at early or later stages. F, women; M, men. p value was calculated by Student’s t-test and 
Mann-Whitney U according to the data normality. *p < 0.05, **p < 0.01, ***p < 0.001, respectively. Horizontal and error bars in the scatter 
plots represent mean ± SEM. 
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unprogressed groups in all follow-up individuals,  

it showed that the levels of ADT, pseudouridine  

and AUCR were significant different between the  

two categories while SAdo showed slightly but non-

significant differences (Figure 6B). Among stage 2 

incidents, concentrations of ADT, pseudouridine, Sado 

and AUCR were remarkably different in progressed 

patients comparing with the unprogressed (Figure 6C). 

Further logistic regression analysis indicated that  

ADT and pseudouridine are risk factors for DKD 

development (Figure 6D). With every single increase  

of standard deviation (SD) of ADT, the risk of  

DKD progression is enhanced for 2.151 folds; for 

pseudouridine, the risk scores are 1.741 folds (Figure 

6D). To better evaluate the associations between the 

levels of risk factors and the DKD progressing, we  

used the duration of time for progressing to later stage 

in follow-up individuals for survival curve analysis.  

It showed that patients with higher levels of either 

pseudouridine or ADT had significant less survival 

 

 
 

Figure 5. Univariate linear regression plots of BeGFR against MDRD eGFR using the four CDBs. (A–D) and MS-detected sCr (E) 

for all participants at Stages 0–4 after log10 transformation. Univariate linear regression analysis of each selected metabolites with all 
participants’ log(MDRD eGFR) resulted in a high linear relationship (training R2 = 0.85–0.94, root mean square errors (RMSEs) = 0.08–0.13; 
predictive R2 = 0.91–0.95), which was similar with that of MS-detected sCr (training R2 = 0.95, RMSE = 0.11; predictive R2 = 0.95). ***p < 
0.001 β, unstandardized coefficient of linear regression. *R2 was calculated based on the log(BeGFR) against log (eGFR) using the equation 
of the model and data of the discovery cohort. †R2 was measured based on that using the equation of the model of the discovery cohort 
and data of the validation cohort. 
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Table 3. Multivariate linear regression analyses of biomarkers with log (eGFR) trained with discovery set and 
tested with validation set among all participants. 

Prediction of log 
(BeGFR) 

Stages 0–4 Stages 0-2 

Discovery (training) 
Validation 

(testing) 
Discovery (training) 

Validation 
(testing) 

R2* RMSE R2† R2* RMSE R2† 

0.9562 0.0740 0.9714 0.6802 0.0606 0.7050 

β (95% CI) p value  β (95% CI) p value  

log (MS-detected 
creatinine) 

–1.23 (–1.28 to –1.19) ***  –0.93 (–1.06 to –0.79) ***  

sex 0.15 (0.13 to 0.18) ***  0.12 (0.09 to 0.16) ***  

All biomarkers and 
common covariates 

R2* RMSE R2† R2* RMSE R2† 

0.9403 0.0514 0.9855 0.7949 0.0503 0.8348 

β (95% CI) p value  β (95% CI) p value  

log (MS-detected 
creatinine) 

–0.71 (–0.86 to –0.56) ***  –0.71 (–0.87 to –0.54) ***  

log (pseudouridine) –0.35 (–0.58 to –0.13) **  –0.23 (–0.50 to 0.07) ns  

log (L,L-TMAP) –0.14 (–0.28 to –0.01) *  –0.06 (–0.22 to 0.10) ns  

log (succinyladenosine) –0.01 (–0.11 to 0.09) ns  0.01 (–0.13 to 0.14) ns  

log (2-(α-D-
mannopyranosyl)-L-
tryptophan) 

–0.02 (–0.09 to 0.04) ns  –0.07 (–0.15 to 0.003) ns  

sex 0.11 (0.08 to 0.13) ***  0.10 (0.07 to 0.13) ***  

age –0.0009 (–0.003 to 0.001) Ns  –0.0005 (–0.003 to 0.002) ns  

SBP 0.0003 (–0.0003 to 0.0009) ns  0.0003 (–0.0003 to 0.0009) ns  

BMI 0.002 (–0.001 to 0.006) ns  0.0026 (–0.001 to 0.01) ns  

log (UACR) 0.006 (–0.009 to 0.02) ns  0.0049 (–0.01 to 0.02) ns  

The best model by 
stepwise method using 
variables with p < 0.05  

R2* RMSE R2† R2* RMSE R2† 

0.9754 0.0514 0.9870 0.7733 0.0513 0.8200 

β (95% CI) p value  β (95% CI) p value  

log (MS-detected 
creatinine) 

–0.64 (–0.77 to –0.51) ***  –0.68 (–0.82 to –0.53) ***  

log (L,L-TMAP) –0.13 (–0.25 to –0.01) *  N/A N/A  

log (pseudouridine) –0.44 (–0.59 to –0.30) ***  –0.46 (–0.62 to −0.31) ***  

sex 0.10 (0.08 to 0.12) ***  0.10 (0.07 to 0.13) ***  

β, unstandardized coefficient of linear regression. Sex, female = 1 and male = 2. RMSE, root mean square error. *R2 was based 
on the predicted log (eGFR) against actual log (eGFR) using the equation of the model and data of discovery set. †R2 was 
based on that using the equation of the model of discovery set and data of validation set. *p < 0.05, **p < 0.01, ***p < 0.001, 
Abbreviation: ns: indicates no significance. 

 
probabilities (p < 0.05), which is similar to UACR 

(Supplementary Figure 9). Taken together, our cross-

sectional study indicated that abnormal metabolism  

is involved in DKD progression and our follow-up 

study validated the predictive power of CDBs in DKD 

development. 
 

DISCUSSION 
 

A precise assessment of renal function in the clinical 

settings, would be instructive for management of 

DKD, such as for the prediction and intervention of 

the disease progression, CKD staging, for assessing 

the need for dialysis therapy, and adjustment of 

nephrotoxic agents dosage for patients [19]. In the past 

decades, eGFR has been applied as the best overall 

measurement of kidney function in medical practice; 

however, it also has some limits on accuracy and 

reliability [20, 21]. To overcome the limitations, over 

70 equations have been developed for estimating 

eGFR. We applied Modification of Diet in Renal 

Disease (MDRD) formula to calculate eGFR for DKD 

classification; nevertheless, other methods include 

(CKD-EPI)creatinine [22], CKD-EPIcystatin C [23] and 
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CKD-EPIcreatinine–cystatin C [23] equations were calculated 

as well. CKD-EPIcreatinine eGFR was strongly correlated 

with MDRD eGFR (Pearson’s r = 0.9523 and 0.9729 

in discovery and validation sets, respectively). CKD-

EPIcystatin C and CKD-EPIcreatinine–cystatin C eGFR also 

show high correlation with MDRD eGFR with 

 

 
 

Figure 6. Evaluation of the prognostic performance of CDBs in follow-up cohort. (A) The distribution of AUC values using single 

and combinations of variate(s) in follow-up patients. With stratified random sampling and random forest, AUC of distinction between and 
progressed patients were calculated 100 times with single and multiple variables. Results of AUC average and standard deviation indicated 
that ADT_SAdo_UACR (AUC average: 0.9502; CI: 0.9062–0.9805) manifested the best prediction, followed with UACR_ADT_SAdo_sCr (AUC 
average: 0.9482; CI:0.9248-0.9805) and ADT_UACR (AUC average: 0.9443; CI: 0.9141–0.9727). (B) Comparisons of the three CDB levels and 
UACR between “progressed” and “unprogressed” groups in all the follow-up individuals. (C) In stage 2 patients, levels of three CDBs and 
UCAR were remarkably different in “progressed” vs. “unprogressed”, **p < 0.01 and ***p < 0.001, respectively. (D) Risk sores of three CDBs 
and UCAR in DKD progression by logistic regression analysis. 
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Pearson’s r = 0.9468 in discovery sets and 0.9681 in 

validation sets (Supplementary Table 12). 

 

Machine learning approaches such as RF, decision tree, 

logistic regression and XG Boost have greatly advanced 

the development of biomedical science especially for 

the prognostic prediction of human diseases. RF was 

applied to assess the covariates associated with DKD 

development as it is one of the most efficient and 

widely used algorithms that leverages a collection of 

decision trees for making decisions; on the other hand, 

we used logistic regression to the estimates the risk 

probability of DKD progression using CDB levels 

considering this algorithm is useful to obtain odds  

ratio in the presence of more than one explanatory 

variable [12]. Metabolomics analysis can be classified 

into two categories, namely the non-targeted and  

the targeted approach. Considering that the first one is 

an unbiased metabolomic analysis that can discover 

new biomarkers [24], the non-targeted approach has 

been adopted to gain a more comprehensively and 

systematically knowledge of the progressive DKD. All 

the DKD patients suffer from dysregulated metabolic 

milieu including hyperglycemia and insulin resistance 

that lead to renal functions being impaired. In the design 

of this study, subjects with various degree of renal 

function impairments are recruited and these would  

be one of the major variations among the subjects. 

However, it is unavoidable that these subjects would 

also have different status of hyperglycemia and insulin 

resistance although most of them have a longer history 

of diabetes. Thus, although this cohort may not be  

a good one for metabolomics study of diabetes, but 

metabolties related to the progression of diabetes may 

also revealed in this study. The endogenous metabolite, 

1,5-anhydro-D-glucitol (1,5-AG), is an example of 

these which correlate with eGFR, but show a stronger 

correlation with serum hemoglobin A1c (HbA1c)  

and fasting blood-glucose (FBG) which are important 

clinical markers for hyperglycemia. Apart from that, 

Liu et al. found the catabolism of amino acids in plasma 

of individuals of DKD with T2D was accelerated [25]. 

The targeted metabolic nuclear magnetic resonance 

(NMR) spectroscopy of European T2D patients revealed 

that the amino acids glycine, phenylalanine, the energy 

metabolites citrate and glycerol were negatively asso-

ciated with eGFR, while alanine, valine and pyruvate 

depicted opposite association in diabetics (positive) and 

non-diabetics (negative) [26]. Accumulating evidence 

suggested that aromatic amino acids (phenylalanine) 

and branched-chain amino acids (BCAAs) such as 

leucine and valine were associated with an increased 

risk of developing T2D [27, 28]. Our results showed 
consistent findings that amino acids were significantly 

changed among different stages, especially leucine, 

valine and phenylalanine (Supplementary Tables 5  

and 6). Although the markers correlated with the 

progression of diabetes is not the focus of this study,  

but our data clearly supported they are being affected 

during the development of diabetes. Metabolites related 

to both hyperglycemia and renal functions are being 

identified in the analysis also demonstrated the non-

targeted metabolomics analysis performed in this study 

is of very good quality and the data is capable of 

revealing various differences in the host metabolism. 

 

Since DKD is asymptomatic until later stages, its  

early detection is of great significance to provide an 

opportunity for preventing or delaying its progress- 

sion and decreasing morbidity and mortality. Small 

molecules are extensively metabolized by kidney and 

the impaired renal function can lead to the changes of 

serum metabolites, hence, they may be used to estimate 

filtration (e.g., the established marker creatinine) or 

precede and potentially contribute to the development 

of kidney diseases [29]. In this study, pseudouridine,  

L-L-TMAP, ADT and SAdo were identified as the 

candidate biomarkers for optimizing DKD stratification 

and eGFR prediction. Pseudouridine has been identified 

as a non-traditional kidney function marker in previous 

study as it shows significant correlation with eGFR in 

general population [30] while TMAP has shown better 

performance than creatinine in accurately identifying 

patients with a single kidney [31]. Yonemura et al. 

revealed that the concentration of serum ADT is a more 

reliable diagnostic marker than that of serum creatinine 

as a measure of normal renal function [32]. Our study 

reconfirmed the potential of pseudouridine, L-TMAP, 

ADT in measuring renal function; in addition, to the 

best of our knowledge, we reported that SAdo is a  

new candidate biomarker and can be utilized to predict 

the progression of early stages’ DKD for the first  

time. Interestingly, the concentration of the four  

serum biomarkers were not only strongly correlated 

with eGFR but also associated with non-GFR renal 

injury indicators (nGRI) including UACR, urinary  

β2-microglobulin, RRI and kidney sizes. These four 

nGRI were usually served as indicators of albuminuria 

[19, 33], renal proximal tubular reabsorption dysfunction 

[34], renal arterial damage and resistance [35],  

and kidney hyperfiltration and degeneration [36], 

respectively. Our results suggested the four metabolites 

are indicators of glomerular filtration dysfunction and 

kidney pathophysiology damages as well. In contrast 

with serum creatinine that can be easily affected by sex 

and muscle metabolism, we found SAdo, ADT and 

pseudouridine are sexual independent. 

 

Prognostic markers play important role in DKD patients 
stratification, treatment choice and future outcome 

assessment. Our follow-up results of Stage-2 and Stage 

3 patients offered further evidence to the hypothesis that 
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the four biomarkers are prognostic markers for disease 

progression (both renal function decline and UACR 

increment) in patients with early DKD. Similar results 

about pseudouridine and ADT in disease progression 

were acquired in our study, comparing with other DKD 

follow up cohort [37]. For the first time, our follow- 

up study gave a clinical evidence-based proof for 

succinyladenosine as a DKD prognostic marker and 

turned out to have good prognostic value, especially  

at early stage. These markers would facilitate both 

doctors and patients on their treatment selection and  

aid in clinical practice. 

 

CONCLUSION 
 

For the first time, we demonstrated that SAdo is  

a new potential biomarker for eGFR estimation and 

DKD prognostic assessment. Consistent with previous 

studies, the predictive potential of pseudouridine,  

L-TMAP, ADT in measuring renal function was 

further confirmed in our cohorts. These four serum 

biomarkers were not only strongly correlated with 

eGFR but also closely associated with non-GFR  

renal injury indicators. Unlike serum creatinine  

with noticeable sexual difference, SAdo, ADT and 

pseudouridine are sexual independent. Our follow- 

up study validated the prognostic power of the  

above biomarkers for both renal function decline and 

UACR increment in early DKD patients. This study 

provided comprehensive insights into the signatures 

of metabolites in Chinese DKD patients and identified 

four candidate biomarkers for better monitoring of 

DKD. 

 

MATERIALS AND METHODS 
 

Study design and participants 

 

The 194 serum samples were collected spanning  

five DKD stages. As these two groups of samples  

were subjected to untargeted metabolites analysis  

at different times, we analyzed them separately to 

remove batch effect and separately referred them  

as the discovery and validation sets (Figure 1). 

Participants were required to cease taking unnecessary 

medications and fasted for 8 hours before serum 

collection. We examined all participants’ clinical 

parameters, reviewed and recorded their medical 

history, medical complications and dietary habits (see 

Supplementary Table 1). Based on the ADA and 

KDIGO criteria [33, 38] for diagnosis of diabetes, 

participants were firstly classified into healthy group 

(stage 0) and diabetic group. The healthy and diabetic 
groups are age and sex matched (Supplementary  

Table 2). We followed the MDRD formula: “eGFR 

(mL/min/1.73 m2) = 186 × (serum creatinine)−1.154  

× (age in years)−0.203 × 0.742 (if female) × 1.210  

(if African American)” to calculate the eGFR  

values [39]. According to the eGFR levels, diabetic 

individuals were further stratified to five types,  

which are stage 1a-b and stage 2 to 4 (criteria see 

Supplementary Materials and Methods); the healthy 

group participants were regarded as stage 0. The renal 

resistive index (RRI) was calculated as (peak systolic 

velocity - end diastolic velocity)/peak systolic velocity 

derived from the kidney doppler ultrasonography. 

Additional methods for measuring eGFR values  

were shown in Supplementary Table 12 [22]. All the 

DKD-related clinical parameters were measured in 

The Fourth Clinical Medical College of Guangzhou 

University of Chinese Medicine (Shenzhen Traditional 

Chinese Medicine Hospital) followed by the standard 

procedures. 

 
Measurements of serum untargeted metabolites 

 
Serum samples and an equal volume of quality  

control (QC) samples (Supplementary Table 3) were 

deproteinated with cold methanol that contains internal 

standards. Ultra-Performance Liquid Chromatography-

Orbitrap-Mass Spectrometry (UPLC-Orbitrap-MS) 

analysis was conducted on a Waters ACQUITY UPLC 

system coupled to a Thermo Scientific Orbitrap Fusion 

Lumos Tribrid mass spectrometer for mass spectro-

metry (MS) analysis. For detailed steps of UPLC-

Orbitrap-MS, please see the Supplementary Materials 

and Methods. 

 
Untargeted metabolites analysis 

 
UPLC-Orbitrap-MS data from the discovery and 

validation cohorts were analyzed separately. Data  

were firstly processed by Progenesis QI 2.3 software 

(Nonlinear Dynamics, Waters, Milford, MA, USA) for 

peak detection and alignment, and then subjected to 

Matlab (MathWorks, Natick, MA, USA) for exclusion 

of unreliable features with missing rates >40% and 

missing value imputation [40, 41]. We performed 

baseline correction via cubic spline interpolation to 

align the baseline levels of data obtained at different 

times [42] (Supplementary Figures 10–84). Unstable 

signals with a coefficient of variation (CV%) >30% 

across the QC samples were filtered out. Compounds 

were identified upon matching their mass to charge 

ratio (m/z) and mass fragmentation patterns against 

available reference standards and Human Metabolome 

Database (hmdb.ca) (Supplementary Table 13) [43]. 

To gain a unique view of DKD, only metabolites that 

repeat the same mass fragmentation pattern, retention 
time and show the same trend of significant statistical 

differences in both discovery and validation sets were 

kept for further investigation. 
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Evaluation of CDBs’ performance on DKD disease 

stage classification using random forest 

 

Random forest (RF) algorithm is applicable for 

evaluating the performance of metabolites on 

differentiating disease stages [44]. We used the RF 

package scikit-learn [45] that was implemented by 

Python (version 3.8) to evaluate the classification  

power of candidate DKD biomarkers (n_estimators = 

10–100). Area under curve (AUC) using 1–9 metabolite 

models was determined by RF, respectively. To avoid 

overfitting, samples in each cohort were randomly and 

evenly divided into training and testing sets for the 

establishment and performance evaluation of the models. 

This step was repeated 100 times to obtain the mean 

AUC values using the testing set of the two cohorts. 

 

Significant altered metabolites analysis 

 

One-way ANOVA followed by Fisher’s LSD post-hoc 

test was used to identify significant altered metabolites 

(SAMs). Metabolites with p-value < 0.05 and false 

discovery rate (FDR) < 0.1 among any two of the stages 

were regarded as SAMs.  

 

Metabonomic networks analysis 

 

Networks of metabolites (Pubmed ID listed in 

Supplementary Table 13) were generated through 

MetaMapp [46] with default parameters. CytoScape 

[47] was used to visualize the networks. Their 

metabolic pathway output was generated on the basis 

of their KEGG reaction pairs while their chemical and 

structural relationships were constructed by their 

Tanimoto similarity. 

 
Linear regression of CDBs for log(eGRF) estimation 

 
Using CDBs and covariates such as sex, age, SBP  

and UACR, univariate linear regression (ULR) and 

multivariate linear regression (MvLR) were utilized to 

determine log(eGFR). Discovery group was used as the 

training set. The unstandardized regression coefficients 

(β) of the training set’s model were applied to generate 

equations for log(eGFR) prediction in testing set -- the 

validation cohort. Variables that contributed to the model 

with p < 0.05 were selected by stepwise linear regression 

analysis for the best model in favor of a simpler model. 

 
Follow-up study and targeted metabolites prognostic 

assessment 

 
To identify the progression of DKD, we recruited an 
extra cohort of 106 patients at stage 2 and 3 for an 

average 3.9 years of follow-up study. Patients’ serums 

were collected since the starting point and the sCr, Bun 

and eGFR were measured every 3 months. The serum 

samples collected at the first time were subjected to 

targeted metabolomic analysis for the quantification  

of ADT, SAdo and pseudouridine by an ultra-high 

performance liquid chromatography (Shimadzu, Kyoto, 

Japan) coupled with the AB SCIEX Q-Trap 5500 triple 

quadrupole mass spectrometer (AB SCIEX, Toronto, 

Canada). During the follow-up period, patients who 

remained at their original stage were regarded as the 

“unprogressed” group; those who progressed to later 

stages accompanying with a 25% drop in eGFR [48] 

were “progressed” group. Random forest algorithm [20] 

were used to evaluate covariates that associated with 

DKD progression. The prognostic power of biomarkers 

during DKD stage progression was assessed via 

performing 100 iterations for each variate. Logistic 

regression analysis was used to evaluate the risk scores 

of interested metabolites by SPSS. The average AUC 

values were calculated and compared among all the 

variates. Detailed methods of targeted metabolite 

analysis with UPLC-QQQ-MS/MS and random forest 

analysis can be found in the Supplementary Materials 

and Methods (Supplementary Tables 14–16). 

 

Data availability 

 

The raw data were submitted to National Genomics Data 

Center database under the bioproject PRJCA013833 

(https://ngdc.cncb.ac.cn/bioproject/browse/PRJCA0138

33). All the data analyzed during the current study are 

available from the corresponding author on reasonable 

request. 
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SUPPLEMENTARY MATERIALS 
 

Sample preparation and UPLC-Orbitrap-MS 

conditions 
 

Recruitment of participants 
 

At study enrollment stage, a designed baseline  

clinical examination of each participant and structured 

interview were performed by trained recruiters. The 

exclusion criteria were acute renal failure, rapidly 

increasing proteinuria or nephrotic syndrome, refractory 

hypertension, serious infections, signs or symptoms of 

other systemic disease, known renal tubular acidosis, 

pregnancy, type 1 diabetes, gestational diabetes, chronic 

liver disease, serious cardiovascular diseases, alcoholics 

or malignancy. For healthy control, they had not 

received any treatment like antibiotics, probiotics and 

hormone therapy in the past two months, did not have 

proteinuria or history of kidney disease and their oral 

glucose tolerance test and other related clinical test  

are in normal levels. All baseline clinical information is 

shown in Supplementary Tables 1 and 2. 
 

Criteria of stages’ classification for participants 
 

Based on the MDRD eGFR values, participants  

were classified into five stages by following criteria: 

Stage 1 (eGFR ≥ 90 ml/min/1.73 m2) which consists  

of Stage 1a (eGFR ≥ 120 mL/min/1.73 m2) and Stage 

1b (eGFR within 90–120 mL/min/1.73 m2); Stage 2, 

60–89 mL/min/1.73 m2; Stage 3, 30–59 mL/min/1.73 

m2; Stage 4, < 30 mL/min/1.73 m2 [1, 2]. 
 

Serum preparation 
 

60 µL serum was deproteinated with 240 µL cold 

methanol containing 0.5 ppm L-tryptophan (indole- 

D5, 98%, Cambridge Isotope Laboratories, Tewksbury, 

MA, USA) and 0.5 ppm cholic acid-2,2,4,4-D4 and 50 

ppm C19:1n9c. They were vortexed for 1 min and stood 

at −20°C overnight for complete deproteination. Then, 

they were centrifuged at 18700 × g for 20 min. 250 µL 

supernatant was collected and dried under nitrogen  

gas and stored at −80°C. The dried supernatant was 

reconstituted with initial UPLC gradient (5% acetonitrile 

in water), vortexed for 30 s and was centrifuged at 

18700 × g for 20 min. The supernatant was transferred 

to a glass insert in an amber HPLC vial prior to UPLC-

Orbitrap-MS analysis or UPLC-QQQ-MS/MS analysis. 
 

Standard solution and quality control sample 

preparation 
 

For targeted metabolites quantitation, standards of 

selected metabolites were purchased from Toronto 

Research Chemicals (North York, Toronto, Canada) and 

Sigma-Aldrich (St. Louis, MO, USA), which were used 

for preparation of standard solutions. Standard solutions 

were gradient diluted into ten levels, respectively 

(Supplementary Table 14). The gradient diluted standard 

solutions were mixed and then dried by TurboVap® 

blowdown evaporator (Biotage Sweden AB, Ystrad 

Mynach, United Kingdom) for later use. 20 µL aliquots 

from each sample of all groups were mixed and aliquoted 

as QC samples. QC samples were injected between every 

six-sample injections to monitor the stability of the 

instruments throughout the UPLC-Orbitrap-MS signal 

acquisition. The order of injection for all samples was 

randomized. Recovery rate of detected metabolites was 

calculated through parallel serum samples spiked with a 

known amount of each metabolite standard at three 

concentration levels. Recovery rate equation: ((Detected 

concentration − endogenous blank sample concentration) 

× 100%)∕spiked concentration. (Supplementary Table 15). 

 

UPLC condition 

 

UPLC-Orbitrap-MS analysis 

3 µL aliquot was injected into a Waters ACQUITY UPLC 

system. UPLC separation was performed on a Waters 

ACQUITY UPLC HSS T3 column (2.1 mm × 100 mm, 

1.8 µm) with HSS T3 guard column (2.1 mm × 5 mm, 1.8 

µm, Waters Corporation, Milford, MA, USA). The mobile 

phase consisted of combinations of A (0.1% formic acid in 

water, v/v) and B (0.1% formic acid in acetonitrile, v/v) at 

a flow rate of 0.3 mL/min with elution gradient as follows: 

0–1.5 min, 5% B; 2 min, 35% B; 4 min, 50% B; 8 min, 

55% B; 11–14 min, 95% B. A 3-min post-run time was set 

to fully equilibrate the column. Column and sample 

chamber temperature were 40°C and 4°C respectively. 

 

UPLC-QQQ-MS/MS analysis 

2 µL aliquot was injected into a SHIMADZU  

A30 UPLC system. Chromatographic separation was 

performed on the Luna Omega 1.6 μm Polar C18 

reversed-phase column (Phenomenex, Torrance, CA, 

USA) with Polar C18 security guard column (2.1 mm, 

Phenomenex, Torrance, CA, USA). The mobile phase A 

(0.1% formic acid in ultrapure water, v/v) and mobile 

phase B (100% acetonitrile) were delivered at 0.3 

ml/min. Gradient elution was as follows: 2–60% B  

at 0–3.2 min, 60% maintained at 3.21–3.5 min, 2% B  

at 3.51–5 min to equilibrate the column before a new 

injection. Column and sample chamber temperature 

were 40°C and 4°C respectively. 

 

Mass spectrometry condition 

 

UPLC-Orbitrap-MS analysis 

Mass spectrometry analysis was conducted by a  

Thermo Scientific Orbitrap Fusion Lumos Tribrid  
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mass spectrometer equipped with a heated  

electrospray ionization (H-ESI) interface (Thermo Fisher  

Scientific, Waltham, MA, USA). The mass-spectrometric 

parameters were set as follows: spray voltage, 2300 V 

and 3500 V in ESI negative and positive ionization 

modes respectively; ion transfer tube and vaporizer 

temperature, 300°C. Nitrogen gas was used as the sheath 

gas and the aux gas with a flow rate of 25 and 10 L/min, 

respectively. The analyzer was operated in a data-

dependent acquisition mode, with full MS scans of mass 

range at 90–1000 m/z with detection in the Orbitrap 

(120000 resolution) and with auto gain control targeted at 

20000 count and a maximum injection time at 100 ms. 
 

UPLC-QQQ-MS/MS analysis 

Selected metabolites were detected under positive  

ion multiple reaction monitoring (MRM) mode. Turbo 

ion spray source was set at a source temperature of 

500°C. Ion spray voltage was 5500 V, Ion Source  

Gas1 (GS1) and Ion Source Gas2 (GS2) had a flow of 

50 psi, the curtain gas had a flow of 25 psi, the CAD 

gas setting was ‘medium’, and the declustering potential 

was optimized one by one according to the metabolite. 

Q1/Q3 mass and MRM conditions for each metabolite 

were listed in Supplementary Table 16. 
 

Baseline correction 
 

Batch correction was then performed by smoothing 

through QC samples in sequential injections using cubic 

splines, a very flexible smoother that can catch the 

variations of ion abundances caused by the systematic 

bias in instrumental responses, with a very wide range 

of curve shapes (e.g., linear, nonlinear) (van der Kloet 

et al. 2009) to ([3–5]). The penalty for smoothing spline 

was set to 0.01, which was found to be fitted well to  

the variations (Supplementary Figures 10–84). The ion 

abundance for metabolite i at kth injection after batch 

correction (x′k,i) then becomes 

 ,

, , , ,

,

, , where
k i

k i QC i k i k i

k i

x
x C r r

f
 = =  

 

where CQC,i was the true concentration of metabolite i in 

QC samples, which served as a scaling factor to map the 

corrected ion abundance rk,i to the corrected raw ion 

abundance (x′k,i). However, it is impossible to obtain the 

true concentration of any metabolite, thus median ion 

abundance of the metabolite in QC samples could be 

used as an estimation of CQC,i. xk,i and fk,i are observed 

and fitted raw ion abundance in sample at kth injection. 

Since results obtained from statistical analysis (e.g., 

Pearson correlation, Student’s t-test) using x′k,I will be 

the same with those using rk,i as the two kinds of ion 

abundance only differ in a constant multiplier CQC,i, rk,i 

was used in subsequent statistical analysis instead of the 

raw ion abundance. 

Random forest of metabolite prediction on DKD 

stage progression in follow up cohort 

 
AUC of variate(s) on prediction DKD stage progression 

were calculated by random forest (RF). Stratified 

random sampling was used between progressed and 

unprogressed group in follow up cohort. Samples were 

split into a training set (70% of sample size) for 

modelling and a testing set (the rest 30% samples) for 

prediction. To avoid overfitting, this stratified random 

sampling procedure was repeated 100 times and the 

AUC of testing set was calculated 100 times. Finally, 

the AUC average and standard deviation were executed 

to exhibit the performance prediction of metabolites on 

DKD stage progression. 
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Supplementary Figures 
 

 
 

Supplementary Figure 1. (A) Images of ultrasonic scanning of the left kidneys in healthy subjects and diabetic patients in different stages 
and (B–D) the comparison of BSA-related renal volumes of both kidneys between stages in the validation cohort (significance level for 
superscript case letters: a,b,c,d,e,f represent comparison with Stages 0, 1a, 1b, 2, 3 and 4, respectively): Student’s t-test, p ≤ 0.05. Horizontal 
bars in the scatter plots represent mean ± SEM. n = 10 per stage. 

 

3440



www.aging-us.com 22 AGING 

 
 

Supplementary Figure 2. Linear relationship of UPLC-Orbitrap-MS detected (A) serum D-glucose, (B) serum uric acid and (C) MS-detected 

serum creatinine against clinically measured FBG, serum uric acid, serum creatinine, respectively. Trendlines were formed with both cohorts. 
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Supplementary Figure 3. Pipeline of screening of potential candidates. 
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Supplementary Figure 4. Metabolomic network diagrams of SAMs. Metabolites of nucleoside, amino acid, glucose and short-
medium-long chain carnitine were accumulated gradually with the progressed DKD. These metabolites were categorized into six classes: 
sulfate metabolites, amino acids and organic acids, acylcarnitine, purine derivatives, steroids, monosaccharides and their derivatives. 
Succinyladenosine and pseudouridine, originated from posttranslational modifications of nucleosides, increased significantly in DKD stage 4 
patients. Uremic retention solutes like indoxyl sulfate and p-cresyl sulfate, which are products of dietary tryptophan and tyrosine 
respectively, are significantly elevated at DKD Stage 4. Tryptophan, tyrosine, phenylalanine, glutamine and citrulline are the significantly 
altered amino acid. Several metabolites decreased along with the declined eGFR, which were typtophan, tyrosine, glutamine, 1,5-anhydro-
D-glucitol, carnitine, bilirubin and betaine. Red circle: upregulated metabolites; green circle: downregulated metabolites; grey circle 
denotes metabolites without significant or consistent changes in both cohorts. Circle sizes were proportional to the absolute value of fold 
change with respect to the normal group (p ≤ 0.05). 
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Supplementary Figure 5. Linear regression of UPLC-Orbitrap-MS detected log(1,5-anhydro-D-glucitol) against hemoglobin A1c in (A) 

Stages 0–4 and (B) Stages 1a-3 of DKD. (C) Correlation between 1,5-anhydro-D-glucitol, hemoglobin A1c, FBG, MS-detected D-glucose, 
MDRD GFR and UACR in each stage. (D) The scatter plots of 1,5-anhydro-D-glucitol among different stages. Abbreviations: Dis: discovery 
set; Val: validation set; ns: no statistical significance (p > 0.05). HbA1c: hemoglobin A1c. -, not available. 
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Supplementary Figure 6. List of metabolites that correlated (|r| ≥ 0.6) with eGFR at (A) Stages 1–4 and (B) early stages (GFR ≥ 60 

mL/min/1.73 m2) patients. Metabolites showed strong correlation with eGFR, especially in early diabetic patients. 
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Supplementary Figure 7. Demonstration of peak identification of the adduct (M-H)- of succinyladenosine compared with 
its reference standard. 
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Supplementary Figure 8. Calibration curves of selected metabolites. 
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Supplementary Figure 9. Survival curve of follow-up cohort using the baseline levels of three CDBs and UACR. (A) ADT; (B) 

SAdo; (C) pseudouridine; (D) UACR. 
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Supplementary Figure 10. The quantile-quantile (Q-Q) plot of normalized anhydroDglucitol which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
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Supplementary Figure 11. The quantile-quantile (Q-Q) plot of normalized sulfooxyphenylaceticacid which demonstrated 
the consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values 
from expected normal value (lower panel). 
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Supplementary Figure 12. The quantile-quantile (Q-Q) plot of normalized Hydroxybutyricacid which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
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Supplementary Figure 13. The quantile-quantile (Q-Q) plot of normalized Hydroxyethanesulfonate which demonstrated 
the consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values 
from expected normal value (lower panel). 
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Supplementary Figure 14. The quantile-quantile (Q-Q) plot of normalized Octenoylcarnitine which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
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Supplementary Figure 15. The quantile-quantile (Q-Q) plot of normalized tetradecadiencarnitine which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
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Supplementary Figure 16. The quantile-quantile (Q-Q) plot of normalized hydroxydecanoylcarnitine which demonstrated 
the consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values 
from expected normal value (lower panel). 
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Supplementary Figure 17. The quantile-quantile (Q-Q) plot of normalized Acetamidobutanoicacid which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
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Supplementary Figure 18. The quantile-quantile (Q-Q) plot of normalized MethylthioDribose which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
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Supplementary Figure 19. The quantile-quantile (Q-Q) plot of normalized Decenoylcarnitine which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
 

3458



www.aging-us.com 40 AGING 

 
 

Supplementary Figure 20. The quantile-quantile (Q-Q) plot of normalized alphaNPhenylacetylLglutamine which 
demonstrated the consistency of normalized value with expected normal value (upper panel) and the deviation of 
normalized values from expected normal value (lower panel). 
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Supplementary Figure 21. The quantile-quantile (Q-Q) plot of normalized Arabinoseisomer which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
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Supplementary Figure 22. The quantile-quantile (Q-Q) plot of normalized Betaine which demonstrated the consistency of 
normalized value with expected normal value (upper panel) and the deviation of normalized values from expected normal 
value (lower panel). 
 

3461



www.aging-us.com 43 AGING 

 
 

Supplementary Figure 23. The quantile-quantile (Q-Q) plot of normalized Butyrylcarnitine which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
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Supplementary Figure 24. The quantile-quantile (Q-Q) plot of normalized Choline which demonstrated the consistency of 
normalized value with expected normal value (upper panel) and the deviation of normalized values from expected normal 
value (lower panel). 
 

3463



www.aging-us.com 45 AGING 

 
 

Supplementary Figure 25. The quantile-quantile (Q-Q) plot of normalized cis5Tetradecenoylcarnitine which demonstrated 
the consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values 
from expected normal value (lower panel). 
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Supplementary Figure 26. The quantile-quantile (Q-Q) plot of normalized Citricacid which demonstrated the consistency of 
normalized value with expected normal value (upper panel) and the deviation of normalized values from expected normal 
value (lower panel). 
 

3465



www.aging-us.com 47 AGING 

 
 

Supplementary Figure 27. The quantile-quantile (Q-Q) plot of normalized Citrulline which demonstrated the consistency of 
normalized value with expected normal value (upper panel) and the deviation of normalized values from expected normal 
value (lower panel). 
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Supplementary Figure 28. The quantile-quantile (Q-Q) plot of normalized Cortisol which demonstrated the consistency of 
normalized value with expected normal value (upper panel) and the deviation of normalized values from expected normal 
value (lower panel). 
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Supplementary Figure 29. The quantile-quantile (Q-Q) plot of normalized Creatinine which demonstrated the consistency 
of normalized value with expected normal value (upper panel) and the deviation of normalized values from expected 
normal value (lower panel). 
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Supplementary Figure 30. The quantile-quantile (Q-Q) plot of normalized Decanoylcarnitine which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
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Supplementary Figure 31. The quantile-quantile (Q-Q) plot of normalized Dehydroepiandrosteronesulfate which 
demonstrated the consistency of normalized value with expected normal value (upper panel) and the deviation of 
normalized values from expected normal value (lower panel). 
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Supplementary Figure 32. The quantile-quantile (Q-Q) plot of normalized Dglucose which demonstrated the consistency of 
normalized value with expected normal value (upper panel) and the deviation of normalized values from expected normal 
value (lower panel). 
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Supplementary Figure 33. The quantile-quantile (Q-Q) plot of normalized Dodecanoylcarnitine which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
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Supplementary Figure 34. The quantile-quantile (Q-Q) plot of normalized GammerButyrobetaine which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
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Supplementary Figure 35. The quantile-quantile (Q-Q) plot of normalized Hexanoylcarnitine which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
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Supplementary Figure 36. The quantile-quantile (Q-Q) plot of normalized Hippuricacid which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
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Supplementary Figure 37. The quantile-quantile (Q-Q) plot of normalized Homovanillicacidsulfate which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
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Supplementary Figure 38. The quantile-quantile (Q-Q) plot of normalized Hydroxybutyrylcarnitine which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
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Supplementary Figure 39. The quantile-quantile (Q-Q) plot of normalized Indoleaceticacid which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
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Supplementary Figure 40. The quantile-quantile (Q-Q) plot of normalized Indolelacticacid which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
 

3479



www.aging-us.com 61 AGING 

 
 

Supplementary Figure 41. The quantile-quantile (Q-Q) plot of normalized Indoxylsulfate which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
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Supplementary Figure 42. The quantile-quantile (Q-Q) plot of normalized Inosine which demonstrated the consistency of 
normalized value with expected normal value (upper panel) and the deviation of normalized values from expected normal 
value (lower panel). 
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Supplementary Figure 43. The quantile-quantile (Q-Q) plot of normalized Kynurenicacid which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
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Supplementary Figure 44. The quantile-quantile (Q-Q) plot of normalized Acetylcarnitine which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
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Supplementary Figure 45. The quantile-quantile (Q-Q) plot of normalized Arginine which demonstrated the consistency of 
normalized value with expected normal value (upper panel) and the deviation of normalized values from expected normal 
value (lower panel). 
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Supplementary Figure 46. The quantile-quantile (Q-Q) plot of normalized betaaspartyleucine which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
 

3485



www.aging-us.com 67 AGING 

 
 

Supplementary Figure 47. The quantile-quantile (Q-Q) plot of normalized Carnitine which demonstrated the consistency of 
normalized value with expected normal value (upper panel) and the deviation of normalized values from expected normal 
value (lower panel). 
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Supplementary Figure 48. The quantile-quantile (Q-Q) plot of normalized Glutamicacid which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
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Supplementary Figure 49. The quantile-quantile (Q-Q) plot of normalized Glutamine which demonstrated the consistency 
of normalized value with expected normal value (upper panel) and the deviation of normalized values from expected 
normal value (lower panel). 
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Supplementary Figure 50. The quantile-quantile (Q-Q) plot of normalized Histidine which demonstrated the consistency of 
normalized value with expected normal value (upper panel) and the deviation of normalized values from expected normal 
value (lower panel). 
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Supplementary Figure 51. The quantile-quantile (Q-Q) plot of normalized Linoleylcarnitine which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
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Supplementary Figure 52. The quantile-quantile (Q-Q) plot of normalized Kynurenine which demonstrated the consistency 
of normalized value with expected normal value (upper panel) and the deviation of normalized values from expected 
normal value (lower panel). 
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Supplementary Figure 53. The quantile-quantile (Q-Q) plot of normalized Leucine which demonstrated the consistency of 
normalized value with expected normal value (upper panel) and the deviation of normalized values from expected normal 
value (lower panel). 
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Supplementary Figure 54. The quantile-quantile (Q-Q) plot of normalized Methionine which demonstrated the consistency 
of normalized value with expected normal value (upper panel) and the deviation of normalized values from expected 
normal value (lower panel). 
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Supplementary Figure 55. The quantile-quantile (Q-Q) plot of normalized Octanoylcarnitine which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
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Supplementary Figure 56. The quantile-quantile (Q-Q) plot of normalized Phenylalanine which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
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Supplementary Figure 57. The quantile-quantile (Q-Q) plot of normalized Proline which demonstrated the consistency of 
normalized value with expected normal value (upper panel) and the deviation of normalized values from expected normal 
value (lower panel). 
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Supplementary Figure 58. The quantile-quantile (Q-Q) plot of normalized serine which demonstrated the consistency of 
normalized value with expected normal value (upper panel) and the deviation of normalized values from expected normal 
value (lower panel). 
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Supplementary Figure 59. The quantile-quantile (Q-Q) plot of normalized Threonine which demonstrated the consistency 
of normalized value with expected normal value (upper panel) and the deviation of normalized values from expected 
normal value (lower panel). 
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Supplementary Figure 60. The quantile-quantile (Q-Q) plot of normalized Tryptophan which demonstrated the consistency 
of normalized value with expected normal value (upper panel) and the deviation of normalized values from expected 
normal value (lower panel). 
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Supplementary Figure 61. The quantile-quantile (Q-Q) plot of normalized Tyrosine which demonstrated the consistency of 
normalized value with expected normal value (upper panel) and the deviation of normalized values from expected normal 
value (lower panel). 
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Supplementary Figure 62. The quantile-quantile (Q-Q) plot of normalized Valine which demonstrated the consistency of 
normalized value with expected normal value (upper panel) and the deviation of normalized values from expected normal 
value (lower panel). 
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Supplementary Figure 63. The quantile-quantile (Q-Q) plot of normalized LysoPE which demonstrated the consistency of 
normalized value with expected normal value (upper panel) and the deviation of normalized values from expected normal 
value (lower panel). 
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Supplementary Figure 64. The quantile-quantile (Q-Q) plot of normalized MannosylLtryptophan which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
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Supplementary Figure 65. The quantile-quantile (Q-Q) plot of normalized Acetylcarnosine which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
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Supplementary Figure 66. The quantile-quantile (Q-Q) plot of normalized Adipoylcarnitine which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
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Supplementary Figure 67. The quantile-quantile (Q-Q) plot of normalized Oleoylcarnitine which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
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Supplementary Figure 68. The quantile-quantile (Q-Q) plot of normalized Ornithine which demonstrated the consistency of 
normalized value with expected normal value (upper panel) and the deviation of normalized values from expected normal 
value (lower panel). 
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Supplementary Figure 69. The quantile-quantile (Q-Q) plot of normalized Palmitoylcarnitine which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
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Supplementary Figure 70. The quantile-quantile (Q-Q) plot of normalized pCresolglucuronide which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
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Supplementary Figure 71. The quantile-quantile (Q-Q) plot of normalized pCresolsulfate which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
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Supplementary Figure 72. The quantile-quantile (Q-Q) plot of normalized Phenolsulfate which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
 

3511



www.aging-us.com 93 AGING 

 
 

Supplementary Figure 73. The quantile-quantile (Q-Q) plot of normalized Propionylcarnitine which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
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Supplementary Figure 74. The quantile-quantile (Q-Q) plot of normalized Pseudouridine which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
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Supplementary Figure 75. The quantile-quantile (Q-Q) plot of normalized Stearoylcarnitine which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
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Supplementary Figure 76. The quantile-quantile (Q-Q) plot of normalized Succinicacid which demonstrated the consistency 
of normalized value with expected normal value (upper panel) and the deviation of normalized values from expected 
normal value (lower panel). 
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Supplementary Figure 77. The quantile-quantile (Q-Q) plot of normalized Succinyladenosine which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
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Supplementary Figure 78. The quantile-quantile (Q-Q) plot of normalized Succinylcarnitine which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
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Supplementary Figure 79. The quantile-quantile (Q-Q) plot of normalized Sulfotyrosine which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
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Supplementary Figure 80. The quantile-quantile (Q-Q) plot of normalized Uracil which demonstrated the consistency of 
normalized value with expected normal value (upper panel) and the deviation of normalized values from expected normal 
value (lower panel). 
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Supplementary Figure 81. The quantile-quantile (Q-Q) plot of normalized Uricacid which demonstrated the consistency of 
normalized value with expected normal value (upper panel) and the deviation of normalized values from expected normal 
value (lower panel). 
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Supplementary Figure 82. The quantile-quantile (Q-Q) plot of normalized Uridine which demonstrated the consistency of 
normalized value with expected normal value (upper panel) and the deviation of normalized values from expected normal 
value (lower panel). 
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Supplementary Figure 83. The quantile-quantile (Q-Q) plot of normalized Valerylcarnitine which demonstrated the 
consistency of normalized value with expected normal value (upper panel) and the deviation of normalized values from 
expected normal value (lower panel). 
 

3522



www.aging-us.com 104 AGING 

 
 
Supplementary Figure 84. Comparison of raw and relative ion abundances of L-tyrosine and L-phenylalanine in the study 
samples and QC samples before and after signal correction of data acquired by UPLC-Orbitrap-MS. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 2, 5, 6, 10 and 13. 

 

Supplementary Table 1. Prevalence of microvascular and macrovascular complications in the patients with type 
2 diabetes (n = 164) in each cohort. 

 
Diabetic 

retinopathy 
Diabetic peripheral 

neuropathy 
Macrovascular 
complication 

At least one 
complication 

Discovery Cohort (%) 21 38 43 58 

Validation Cohort (%) 54 63 54 84 

Overall (%) 32 46 46 67 

 

Supplementary Table 2. Clinical features of participants in the discovery and validation cohorts. 

 

Supplementary Table 3. The stability of relative ion abundance of internal standards in serum of subject 
samples and QC samples and overall features in QC samples. 

Internal standards in serum of subject samples and QC samples 

Internal standards Dataset Adduct 
Retention 

time 
(min) 

Detected m/z Theoretical m/z 
CV (%) of 

subject samples 

CV (%) of 
quality control 

samples 

L-Tryptophan-
(indole-D5) 

Discovery set  
(M-H)− 

2.95 208.1137 208.1140 18.04 2.16 

Validation set  2.96 208.1142 208.1140 27.08 1.61 

Discovery set  
(M+H)+ 

2.95 210.1285 210.1285 4.24 2.43 

Validation set  2.96 210.1279 210.1285 12.14 4.28 

Cholic acid D4 

Discovery set  
(M-H)− 5.73 411.3054 411.3054 3.31 2.74 

(M+H-3H2O)+ 5.74 359.2878 359.2882 4.10 1.99 

Validation set  
(M-H)− 5.72 411.3059 411.3054 3.44 1.31 

(M+H-3H2O)+ 5.73 359.2870 359.2882 9.82 2.84 

cis-10-

nonadecenoic acid 

Discovery set  (M-H)− 13.68 295.2642 295.2643 29.61 15.28 

Validation set  (M-H)− 13.85 295.2647 295.2643 25.67 11.37 

Overall features in QC samples 

Dataset ESI mode QC samples (n) 
Total 

features 

Number of 
features with 

RSD ≤ 30% in 

QC samples  

Number of 
features with 

RSD ≤ 20% in 

QC samples 

Percentage in all 

features (RSD  
≤ 30%) 

Percentage in 

all features 
(RSD ≤ 20%) 

Discovery set  
− 22 5234 4316 3596 82.46 68.70 

+ 25 4701 3164 2368 67.30 50.37 

Validation set  
− 12 8302 7249 6255 87.32 75.34 

+ 12 12802 10279 8125 80.29 63.47 

 

Supplementary Table 4. Identification details and stability of metabolites in QC samples using UPLC-Orbitrap-
MS. 

Identified metabolites 
Retention 

time (min) 

Detected 

m/z 

Theoretica

l m/z 

Mass 

error 

(ppm) 

Adduct 
Molecular 

formula 

Confirmation/ 

Supplier* 

CV of QC (%) 

Discovery 

set 

Validation 

set 

L-Arginine 0.67 173.1042 173.1044 0.6 (M-H)− C6H14N4O2 Sigma Aldrich 10.17 8.58 

L-Ornithine 0.67 131.0823 131.0826 0 (M-H)− C5H12N2O2 Sigma Aldrich 11.08 5.23 

Choline 0.78 104.1071 104.1070 −2.9 (M)+ C5H14NO Acros Organics 4.67 5.48 

L-Glutamine 0.79 145.0616 145.0619 0.0 (M-H)− C5H10N2O3 Sigma Aldrich 1.08 1.25 

L-Citrulline 0.80 174.0882 174.0884 0.6 (M-H)− C6H13N3O3 Sigma Aldrich 2.26 3.29 

D-Glucose 0.80 215.0328 215.0328 1.4 (M+Cl)− C6H12O6 International 1.14 0.68 
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laboratory 

L-Carnitine 0.80 162.1125 162.1125 −3.1 (M+H)+ C7H15NO3 CIL 1.50 3.63 

L−Glutamic acid 0.80 148.0604 148.0604 −2.7 (M+H)+ C5H9NO4 Sigma Aldrich 3.80 4.09 

L−Threonine 0.80 120.0655 120.0655 −2.5 (M+H)+ C4H9NO3 Sigma Aldrich 6.47 5.57 

Arabinose isomer 0.80 195.0513 195.0510 1.5 
(M+FA−H)

− 
C5H10O5 Santa Cruz 1.46 1.88 

Betaine 0.81 118.0863 118.0863 −3.4 (M+H)+ C5H11NO2 Sigma Aldrich 1.70 3.06 

Creatinine 0.81 114.0662 114.0662 −2.6 (M+H)+ C4H7N3O Acros Organics 2.24 3.93 

2−Hydroxyethanesulfonate 0.82 124.9911 124.9914 0.0 (M−H)− C2H6O4S Sigma Aldrich 3.78 8.46 

γ−Butyrobetaine 0.83 146.1175 146.1176 −3.4 (M+H)+ C7H15NO2 TRC 3.76 2.37 

L−Proline 0.83 116.0707 116.0706 −2.6 (M+H)+ C5H9NO2 Sigma Aldrich 1.56 3.69 

1,5−Anhydro−D−glucitol 0.85 199.0376 199.0379 1.0 (M+Cl)− C6H12O5 TRC 2.09 1.82 

N−Acetylcarnosine 0.89 269.1243 269.1243 −2.6 (M+H)+ C11H16N4O4 Santa Cruz 5.91 7.34 

5−Methylthio−D−ribose 0.93 181.0529 181.0529 −2.8 (M+H)+ C6H12O4S 
Online database 

(HMDB) 
6.12 8.15 

Pseudouridine 0.93 243.0622 243.0623 1.2 (M−H)− C9H12N2O6 Supelco 1.78 3.65 

L−Valine 0.94 118.0863 118.0863 −3.4 (M+H)+ C5H11NO2 Sigma Aldrich 1.89 4.29 

L−Acetylcarnitine 0.95 204.1230 204.1230 −2.9 (M+H)+ C9H17NO4 CIL 2.35 6.67 

L,L−TMAP isomer 0.96 229.1546 229.1547 −3.5 (M+H)+ C11H20N2O3  ChemPartner 3 4.05 6.07 

Uric acid 1.00 169.0356 169.0356 −3.0 (M+H)+ C5H4N4O3 Sigma Aldrich 1.78 4.69 

L,L−TMAP 1.06 229.1546 229.1547 −3.5 (M+H)+ C11H20N2O3 ChemPartner 3 2.31 5.44 

L−Methionine 1.07 148.0435 148.0438 1.8 (M−H)− C5H11NO2S Sigma Aldrich 5.03 7.31 

Citric acid 1.09 191.0195 191.0197 1.0 (M−H)− C6H8O7 Sigma Aldrich 3.55 3.64 

Hydroxybutyrylcarnitine 1.09 248.1491 248.1492 −3.6 (M+H)+ C11H21NO5 Online databases 11.84 8.58 

Succinylcarnitine 1.09 262.1284 262.1285 −3.8 (M+H)+ C11H19NO6 Supelco 5.29 11.02 

Uracil 1.09 113.0346 113.0346 −2.7 (M+H)+ C4H4N2O2 Wako 5.11 6.35 

Uridine 1.09 243.0622 243.0623 1.2 (M−H)− C9H12N2O6 Wako 1.69 1.14 

L−Tyrosine 1.33 180.0664 180.0666 0.6 (M−H)− C9H11NO3 Sigma Aldrich 2.11 1.06 

Sulfotyrosine 1.46 260.0234 260.0234 1.9 (M−H)− C9H11NO6S Ref 4 1.79 0.88 

Inosine 1.50 267.0735 267.0735 1.9 (M−H)− C10H12N4O5 Acros Organics 2.30 1.17 

L−Leucine 1.56 132.1019 132.1019 −3.0 (M+H)+ C6H13NO2 Sigma Aldrich 1.81 6.27 

4−Acetamidobutanoic acid 1.59 144.0664 144.0666 0.7 (M−H)− C6H11NO3 Matrix Scientific 1.62 1.44 

Propionylcarnitine 1.67 218.1387 218.1387 −3.2 (M+H)+ C10H19NO4 CIL 2.61 6.39 

2−Hydroxybutyric acid 1.90 103.0398 103.0401 −1.0 (M−H)− C4H8O3 Sigma Aldrich 1.85 1.35 

2−(α−D−Mannopyranosyl)

−L−tryptophan 
2.21 367.1497 367.1500 −3.8 (M+H)+ C17H22N2O7 TRC 2.16 6.02 

L−Kynurenine 2.42 209.0921 209.0921 −3.3 (M+H)+ C10H12N2O3 Sigma Aldrich 3.00 8.09 

L−Phenylalanine 2.48 164.0714 164.0717 0.6 (M−H)− C9H11NO2 Sigma Aldrich 2.02 2.36 

Succinyladenosine 2.89 382.1005 382.1004 1.6 (M−H)− C14H17N5O8 TRC 3.06 3.07 

O−Adipoylcarnitine 2.90 290.1597 290.1598 −3.8 (M+H)+ C13H23NO6 Supelco 3.39 5.11 

Butyrylcarnitine 2.92 232.1543 232.1543 −3.4 (M+H)+ C11H21NO4 CIL 2.62 5.65 

L−β−aspartyl−L−leucine 2.93 247.1287 247.1288 −3.2 (M+H)+ C10H18N2O5 
Online database 

(HMDB) 
6.71 4.89 

L−Tryptophan 2.95 203.0824 203.0826 1.0 (M−H)− C11H12N2O2 Sigma Aldrich 2.21 1.26 

Homovanillic acid sulfate 2.97 261.0073 261.0074 1.9 (M−H)− C9H10O7S Cayman Chemical 12.40 2.42 

Kynurenic acid 2.99 190.0499 190.0499 −3.2 (M+H)+ C10H7NO3 Sigma Aldrich 14.71 4.95 

2−(3−(sulfooxy)phenyl)acet

ic acid 
3.00 230.9967 230.9969 1.3 (M−H)− C8H8O6S 

Online database 

(HMDB) 
2.64 4.81 

Valerylcarnitine 3.00 246.1699 246.1700 −3.7 (M+H)+ C12H23NO4 Cayman Chemical 5.96 7.49 

Pyrocatechol sulfate 3.07 188.9865 188.9863 1.1 (M−H)− C6H6O5S 
Online database 

(HMDB) 
2.82 1.57 

α−N−Phenylacetyl−L−glut 3.07 263.1037 263.1037 1.9 (M−H)− C13H16N2O4 Santa Cruz 1.87 1.41 
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amine 

Phenol sulfate 3.10 172.9912 172.9914 1.2 (M−H)− C6H6O4S Online databases 2.32 0.99 

Hexanoylcarnitine 3.11 260.1855 260.1856 −3.5 (M+H)+ C13H25NO4 Santa Cruz 28.21 8.88 

Hippuric acid 3.14 178.0508 178.0510 0.6 (M−H)− C9H9NO3 Acros Organics 2.03 0.91 

Indoxyl sulfate 3.15 212.0022 212.0023 1.4 (M−H)− C8H7NO4S Sigma Aldrich 2.82 1.43 

p−Cresol glucuronide 3.17 283.0823 283.0823 1.8 (M−H)− C13H16O7 TRC 2.09 1.42 

2−Octenoylcarnitine 3.32 286.2011 286.2013 −3.8 (M+H)+ C15H27NO4 Online databases 3.15 6.83 

p−Cresol sulfate 3.36 187.0070 187.0071 1.1 (M−H)− C7H8O4S CIL 1.82 1.00 

Indole−3−lactic acid 3.44 204.0664 204.0666 1.0 (M−H)− C11H11NO3 Santa Cruz 2.25 1.28 

3−Hydroxydecanoyl 

carnitine 
3.62 332.2429 332.2431 −3.6 (M+H)+ C17H33NO5 Online databases 5.28 5.99 

L−Octanoylcarnitine 3.65 288.2167 288.2169 −3.5 (M+H)+ C15H29NO4 CIL 2.63 5.72 

3−Indoleacetic acid 3.78 176.0706 176.0706 −2.8 (M+H)+ C10H9NO2 Sigma Aldrich 3.54 5.14 

Cortisol 4.03 363.2163 363.2166 −3.6 (M+H)+ C21H30O5 Sigma Aldrich 3.00 3.57 

9−Decenoylcarnitine 4.13 314.2324 314.2326 −3.8 (M+H)+ C17H31NO4 Online databases 2.18 6.51 

Bilirubin 4.30 585.2706 585.2708 −2.7 (M+H)+ C33H36N4O6 Acros Organics 4.95 5.13 

Decanoylcarnitine 4.51 316.2480 316.2482 −3.8 (M+H)+ C17H33NO4 Sigma Aldrich 2.80 2.82 

Dehydroepiandrosterone 

sulfate 
4.73 367.1584 367.1585 1.1 (M−H)− C19H28O5S Cayman Chemical 3.63 1.64 

3,5−Tetradecadiencarnitin

e 
5.49 368.2793 368.2795 −3.5 (M+H)+ C21H37NO4 Online databases 5.88 6.73 

Dodecanoylcarnitine 5.57 344.2793 344.2795 −3.5 (M+H)+ C19H37NO4 CIL 9.44 4.34 

cis−5−Tetradecenoylcarniti

ne 
6.39 370.2949 370.2952 −3.5 (M+H)+ C21H39NO4 Online databases 12.23 9.59 

LysoPE(18:1(11Z)/0:0) 10.46 480.3083 480.3085 −2.9 (M+H)+ C23H46NO7P Online databases 14.54 9.97 

Stearoylcarnitine 10.52 428.3732 428.3734 −3.3 (M+H)+ C25H49NO4 CIL 16.91 8.10 

*Acros Organics, NJ, USA. Cayman Chemical, Ann Arbor, MI, USA. Abbreviation: CIL: Cambridge Isotope Laboratories, Tewksbury MA, USA. 
ChemPartner, Shanghai ChemPartner Co., Ltd., China. International Laboratory, San Francisco, CA, USA. Sigma Aldrich and Supelco, St. 
Louis, MO, USA. Matrix Scientific, Elgin, SC, USA. Santa Cruz, Dallas, TX, USA. TRC, Toronto Research Chemicals, Canada. Wako, Wako Pure 
Chemical Industries, Osaka, Japan. N, N, N−trimethyl−L−alanyl−Lproline betaine (L,L−TMAP). 

 

Supplementary Table 5. Metabolites that had significant fold changes at different stages with respect to the 
healthy subjects in both discovery and validation sets. 

 

Supplementary Table 6. Metabolites that had significant fold changes at different stages with respect to their 
later stage in both discovery and validation sets. 

 

Supplementary Table 7. Spearman rank correlation of metabolites with total BSA-related renal volume and 
renal resistive index in validation set (absolute Spearman R > 0.40). 

Metabolites  
Total BSA-related renal volume Renal resistive index 

Validation (Stage 0–4) 
(n = 58) 

Validation (Stage 1–4) 
(n = 48) 

Validation (Stage 1–4) 
(n = 48) 

MDRD eGFR 0.542 0.638 −0.525 

Bilirubin 0.539 0.553 −0.423 

Stearoylcarnitine 0.430 0.469 −0.148 

Ratio of tyrosine to phenylalanine 0.387 0.425 −0.468 

L−Tryptophan 0.319 0.375 −0.569 

L−Tyrosine 0.309 0.326 −0.434 

SBP(mmHg) −0.082 −0.129 0.596 

N−Acetylcarnosine −0.137 −0.228 0.434 

Succinylcarnitine −0.206 −0.359 0.401 
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Ratio of kynurenic acid to kynurenine −0.234 −0.309 0.499 

Citric acid −0.245 −0.322 0.484 

Phenol sulfate −0.248 −0.318 0.451 

Arabinose isomer −0.264 −0.402 0.607 

Indolelactic acid −0.307 −0.409 0.448 

3−hydroxydecanoyl carnitine −0.310 −0.489 0.384 

Indoleacetic acid −0.320 −0.444 0.196 

2−Octenoylcarnitine −0.342 −0.486 0.239 

MS−detected creatinine −0.352 −0.473 0.459 

Ratio of pseudouridine to uridine −0.369 −0.528 0.544 

L,L−TMAP isomer −0.376 −0.560 0.495 

O−Adipoylcarnitine −0.390 −0.578 0.356 

Urea (mmol/L) −0.391 −0.535 0.554 

Renal resistive index  −0.392 −0.392 − 

2−(3−(sulfooxy)phenyl)acetic acid −0.401 −0.516 0.407 

2−Hydroxyethanesulfonate −0.429 −0.488 0.503 

Kynurenic acid −0.432 −0.537 0.567 

Homovanillic acid sulfate −0.436 −0.547 0.455 

4−Acetamidobutanoic acid −0.440 −0.557 0.494 

Sulfotyrosine −0.441 −0.572 0.535 

Serum Creatinine (mg/dL) −0.443 −0.571 0.446 

L,L−TMAP −0.449 −0.596 0.517 

Butyrylcarnitine −0.457 −0.617 0.369 

Pseudouridine −0.466 −0.599 0.588 

5−Methylthio−D−ribose −0.475 −0.618 0.466 

2−(α−D−Mannopyranosyl)−L−tryptophan −0.480 −0.604 0.586 

L−β−aspartyl−L−leucine −0.487 −0.589 0.578 

Serum cystatin C (mg/L) −0.503 −0.614 0.544 

Succinyladenosine −0.543 −0.615 0.556 

L−Kynurenine −0.562 −0.683 0.472 

Ratio of kynurenine to tryptophan −0.563 −0.640 0.613 

 

Supplementary Table 8. Average AUC of single biomarkers for differentiation between stages in diabetic 
patients using RF classification in both discovery and validation sets. 

Classification Dataset RF 
MS-detected 

serum 
creatinine  

Pseudouridine L,L-TMAP 
2-(α-D-

Mannopyranosyl)-
L-tryptophan 

Succinyladenosine 

Stage 1a vs. Stage 1b-4 

Dis 

AUC 0.849 ± 0.051 0.915 ± 0.054 0.898 ± 0.046 0.888 ± 0.066 0.888 ± 0.058 

Sens 0.721 ± 0.118 0.933 ± 0.053 0.810 ± 0.066 0.832 ± 0.120 0.832 ± 0.059 

Spec 0.876 ± 0.120 0.688 ± 0.148 0.902 ± 0.132 0.753 ± 0.156 0.791 ± 0.158 

Val 

AUC 0.879 ± 0.078 0.915 ± 0.054 0.810 ± 0.066 0.893 ± 0.065 0.923 ± 0.050 

Sens 0.920 ± 0.100 0.933 ± 0.053 0.902 ± 0.132 0.852 ± 0.074 0.866 ± 0.067 

Spec 0.674 ± 0.183 0.688 ± 0.148 0.939 ± 0.022 0.806 ± 0.252 0.824 ± 0.179 

Stage 1a vs. Stage 1b-2 

Dis 

AUC 0.754 ± 0.080 0.867 ± 0.072 0.848 ± 0.057 0.811 ± 0.074 0.816± 0.065 

Sens 0.643 ± 0.102 0.881 ± 0.089 0.751 ± 0.078 0.840 ± 0.093 0.688 ± 0.122 

Spec 0.805 ± 0.162 0.696 ± 0.138 0.812 ± 0.176 0.704 ± 0.145 0.807 ± 0.167 

Val 

AUC 0.763 ± 0.109 0.757 ± 0.078 0.774 ± 0.115 0.780 ± 0.099 0.857 ± 0.066 

Sens 0.909 ± 0.115 0.651 ± 0.142 0.864 ± 0.121 0.672 ± 0.141 0.819 ± 0.143 

Spec 0.636 ± 0.209 0.760 ± 0.243 0.494 ± 0.209 0.794 ± 0.234 0.730 ± 0.173 
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Stage 1b vs. Stage 2 

Dis 

AUC 0.681 ± 0.094 0.741 ± 0.079 0.680 ± 0.078 0.707 ± 0.097 0.777 ± 0.069 

Sens 0.785 ± 0.177 0.679 ± 0.108 0.518 ± 0.127 0.687 ± 0.180 0.556 ± 0.121 

Spec 0.447 ± 0.187 0.772 ± 0.153 0.760 ± 0.185 0.598 ± 0.190 0.816 ± 0.170 

Val 

AUC 0.600 ± 0.170 0.982 ± 0.031 0.668 ± 0.156 0.870 ± 0.092 0.889 ± 0.078 

Sens 0.480 ± 0.238 0.900 ± 0.100 0.478 ± 0.245 0.842 ± 0.258 0.766 ± 0.221 

Spec 0.684 ± 0.266 0.916 ± 0.150 0.778 ± 0.257 0.792 ± 0.152 0.802 ± 0.189 

Stage 1 vs. Stage 2-4 

Dis 

AUC 0.918 ± 0.028 0.935 ± 0.035 0.906 ± 0.038 0.935 ± 0.026 0.899 ± 0.038 

Sens 0.724 ± 0.071 0.874 ± 0.058 0.782 ± 0.057 0.778 ± 0.064 0.787 ± 0.059 

Spec 0.907 ± 0.095 0.905 ± 0.083 0.939 ± 0.081 0.920 ± 0.098 0.902 ± 0.092 

Val 

AUC 0.927 ± 0.048 0.994 ± 0.010 0.928 ± 0.046 0.954 ± 0.034 0.971 ± 0.031 

Sens 0.811 ± 0.081 0.966 ± 0.036 0.784 ± 0.085 0.939 ± 0.094 0.931 ± 0.079 

Spec 0.910 ± 0.145 0.976 ± 0.063 0.929 ± 0.141 0.857 ± 0.083 0.925 ± 0.106 

Stage 1-2 vs. Stage 3-4 

Dis 

AUC 0.950 ± 0.025 0.982 ± 0.021 0.969 ± 0.020 0.974 ± 0.021 0.958 ± 0.028 

Sens 0.919 ± 0.079 0.904 ± 0.076 0.949 ± 0.057 0.923 ± 0.065 0.912 ± 0.075 

Spec 0.880 ± 0.080 0.949 ± 0.044 0.851 ± 0.074 0.898 ± 0.055 0.841 ± 0.077 

Val 

AUC 0.931 ± 0.039 0.951 ± 0.034 0.915 ± 0.046 0.939 ± 0.039 0.912 ± 0.044 

Sens 0.932 ± 0.066 0.905 ± 0.096 0.845 ± 0.111 0.786 ± 0.133 0.899 ± 0.086 

Spec 0.817 ± 0.109 0.883 ± 0.090 0.858 ± 0.088 0.863 ± 0.136 0.843 ± 0.100 

Stage 1-3 vs. Stage 4 

Dis 

AUC 0.989 ± 0.009 0.992 ± 0.020 0.982 ± 0.034 0.988 ± 0.024 0.993 ± 0.018 

Sens 0.967 ± 0.074 0.914 ± 0.096 0.934 ± 0.114 0.926 ± 0.098 0.942 ± 0.093 

Spec 0.975 ± 0.015 0.973 ± 0.027 0.950 ± 0.028 0.973 ± 0.028 0.983 ± 0.015 

Val 

AUC 0.976 ± 0.081 0.968 ± 0.061 0.984 ± 0.054 0.953 ± 0.055 0.955 ± 0.051 

Sens 0.952 ± 0.163 0.882 ± 0.168 0.938 ± 0.135 0.906 ± 0.111 0.886 ± 0.124 

Spec 1.000 ± <0.001 0.983 ± 0.022 1.000 ± <0.001 0.995 ± 0.020 0.987 ± 0.039 

Data were expressed as mean ± SD. Abbreviations: Dis: discovery; Val: validation; RF: random forest; Sens: sensitivity; Spec: specificity. 

 

Supplementary Table 9. Multivariate linear regression analyses among biomarkers, sex and log (MDRD eGFR) 
trained with discovery set and tested with validation set among diabetic patients. 

log (MDRD GFR) 
Discovery set Validation set 

β p-value R2* RMSE R2† 

Model 1   0.9583 0.0765 0.9709 

log (MS-detected creatinine) −1.25 (−1.30 to −1.20) p < 0.0001    

sex 0.16 (0.13 to 0.19) 9.76E-18    

Model 2   0.9531 0.0812 0.9528 

log (pseudouridine) −1.22 (−1.27 to −1.17) p < 0.0001    

sex 0.02 (−0.02 to 0.05) 0.3352    

Model 3   0.9375 0.0938 0.9569 

log (L,L-TMAP) −0.95 (−1.00 to −0.91) p < 0.0001    

sex 0.06 (0.03 to 0.10) 0.0009    

Model 4   0.8908 0.1240 0.9116 

log (succinyladenosine) −0.94 (−1.01 to −0.88) p < 0.0001    

Sex 0.01 (−0.03 to 0.06) 0.5662    

Model 5   0.8690 0.1358 0.9499 

log (2-(α-D-mannopyranosyl)-
L-tryptophan) 

−0.67 (−0.72 to 0.62) p < 0.0001    

sex 0.01 (−0.04 to 0.06) 0.6834    

β, unstandardized coefficient of linear regression. sex, female = 1 and male = 2. Discovery set, n = 106; validation set, n =56. 
RMSE, root mean square error. *R2 was based on the predicted log (MDRD eGFR) against actual log (MDRD eGFR) using the 
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equation of the model and data of discovery set. †R2 was based on the predicted log (MDRD eGFR) against actual log (MDRD 
eGFR) using the equation of the model of discovery set and data of validation set. 

 

 

Supplementary Table 10. Description of 106 follow-up information. 

 

 

Supplementary Table 11. Analysis of 106 follow-up patients by random forest. 

ABCD group AB group CD group 

Index 
Mean AUC and Quartile 

of 100 Iterations  
Index 

Mean AUC and Quartile 
of 100 Iterations  

Index 
Mean AUC and Quartile 

of 100 Iterations  

Sex 0.5625 (0.5234–0.625) Sex 0.6429 (0.5–0.7143) Sex 0.5556 (0.5–0.6667) 

Age 0.7031 (0.6445–0.7822) Age 0.7245 (0.6327–0.8367) Age 0.7407 (0.6327–0.8302) 

eGFR 0.7822 (0.7031–0.8359) eGFR 0.8367 (0.6939–0.9184) SAdo 0.7809 (0.6975–0.858) 

Pseu 0.8125 (0.7397–0.8867) SAdo 0.7296 (0.6607–0.8393) eGFR 0.7963 (0.6914–0.8704) 

SAdo 0.8174 (0.748–0.8716) Pseu 0.8622 (0.7245–0.9388) Cr 0.8086 (0.7207–0.8781) 

Cr 0.8438 (0.7925–0.8926) UACR 0.898 (0.8367–0.9796) ADT 0.8117 (0.713–0.9012) 

ADT 0.8691 (0.8179–0.918) Cr 0.9133 (0.8265–0.9796) Pseu 0.8302 (0.7346–0.909) 

UACR 0.8887 (0.8262–0.9185) ADT 0.9184 (0.8673–0.9923) UACR 0.8889 (0.7901–0.9213) 

ADT+UACR 0.9443 (0.9141–0.9727) ADT+UACR 0.9796 (0.9388–1) SAdo+UACR 0.9012 (0.8194–0.9506) 

UACR+ADT
+SAdo+Cr 

0.9482 (0.9248–0.9805) 
ADT+SAdo+UA

CR 
0.9796 (0.9388–1) ADT+UACR 0.9136 (0.8395–0.963) 

ADT+SAdo+
UACR 

0.9502 (0.9062–0.9805) UACR+ADT+Cr 1 (0.9592–1) 
UACR+Pseu+

Cr 
0.929 (0.8765–0.9753) 

  
UACR+ADT+Ag

e+Sex 
1 (0.9592–1) UACR+Pseu 0.9352 (0.8765–0.9753) 

Pseu:pseudouridine. 

 

 

Supplementary Table 12. Pearson correlation of MDRD GFR with three another GFRs that were calculated by 
the three newly reported equations. 

GFR calculation 
methods 

Equations 
Pearson correlation 

coefficients with 
MDRD GFR 

MDRD Study 
equation1 

Estimated GFR = 186 × (serum creatinine)−1.154 × (age in years)−0.203 × 0.742 (if 
female) × 1.210 (if African American) 

− 

CKD-EPI creatinine 
equation2 

Estimated GFR = 141 × min (serum creatinine/κ, 1)α × max (serum creatinine/κ, 
1)−1.209 × 0.993Age in year × 1.018 (if female) × 1.159 (if black), where κ is 0.7 for 
females and 0.9 for males, α is −0.329 for females and −0.411 for males. min 

indicates the minimum of ratio of serum creatinine to κ or 1, and max indicates the 
maximum of ratio of serum creatinine to κ or 1.  

Discovery (n = 128): 
0.9523 Validation (n = 

66): 0.9729 

CKD-EPI cystatin C 
equation2 

Estimated GFR = 133 × min(serum cystatin C/0.8, 1)−0.499 × max(serum cystatin 
C/0.8, 1)−1.328 × 0.996Age × 0.932 (if female), where min indicates the minimum of 
ratio of serum cystatin C to 0.8 or 1, and max indicates the maximum of ratio of 

serum cystatin C to 0.8 or 1. 

Validation (n = 58): 
0.9468 

CKD-EPI creatinine–

cystatin C equation2 

Estimated GFR = 135 × min (serum creatinine/κ, 1)α × max (serum creatinine/κ, 
1)−0.601 × min (serum cystatin C/0.8, 1)−0.375 × max(serum cystatin C/0.8, 1)−0.711 × 

0.995Age × 0.969 (if female) × 1.08 (if black), where κ is 0.7 for females and 0.9 for 
males, and α is −0.207 for males and −0.248 for females. 

Validation (n = 58): 
0.9681 

 

 

Supplementary Table 13. List of ID in online database for networking and pathway analysis. 
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Supplementary Table 14. Gradient diluted and corresponding concentrations of standards. 

 
100% 
(ng/ml) 

90% 
(ng/ml) 

80% 
(ng/ml) 

60% 
(ng/ml) 

50% 
(ng/ml) 

40% 
(ng/ml) 

20% 
(ng/ml) 

10% 
(ng/ml) 

8% 
(ng/ml) 

6% 
(ng/ml) 

2-(A-D-Mannopyranosyl-) 
L-Tryptophan 

50.00 45.00 40.00 30.00 25.00 20.00 10.00 5.00 4.00 3.00 

Succinyladenosine 58.00 52.20 46.40 34.80 29.00 23.20 11.60 5.80 4.64 3.48 

pseudouridine 160.00 144.00 128.00 96.00 80.00 64.00 32.00 16.00 12.80 9.60 

 

 

Supplementary Table 15. Recovery rate and precision of selected metabolites. 

Metabolite Recovery rate 

2-(A-D-Mannopyranosyl-)L-Tryptophan 83% 

Succinyladenosine 95% 

pseudouridine 94% 

Tryptophan-D5 95% 

 

 

Supplementary Table 16. Q1/Q3 mass and MRM conditions for the selected metabolites. 

Metabolite 
Q1 mass 

(Da) 
Q3 mass 

(Da) 
Dwelling time 

(msec) 
Declustering 

Potential (volts) 
Collision energy 

(volts) 
2-(A-D-Mannopyranosyl-) 
L-Tryptophan 

367.1 247.1 100 152.15 19.3 

Succinyladenosine 384.1 252 100 122.58 27.09 

pseudouridine 245.1 191 100 108.61 19.97 

Tryptophan-D5 210 192 100 61.85 16.69 
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