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INTRODUCTION 
 

With over 1,600,000 newly diagnosed patients each 

year, lung cancer is an extraordinarily heterogeneous 

illness and the acknowledged leading cause of the 

majority of cancer-related mortalities globally [1]. Non-

small cell lung cancer (NSCLC), containing lung 

adenocarcinoma (LUAD) and lung squamous cell 

carcinoma (LUSC) [2], is the most common histological 

type of lung cancer, accounting for around 85% of all 

occurrences [3]. Despite tremendous advances in 

clinical screening and therapeutic therapies for NSCLC, 

the limited therapeutic benefit of first-line treatment 

resulted in a low overall cure and survival rate for 

NSCLC, particularly in metastatic disease. Despite 

tremendous advances in clinical screening and 
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ABSTRACT 
 

Non-small cell lung cancer (NSCLC) is the most common histological type of lung cancer. With the in-depth 
exploration of cell death manners, numerous studies found that anoikis is an important mechanism that 
associated with treatment. Therefore, we aimed to explore the prognostic value and treatment guidance of 
anoikis in NSCLC patients. In the current study, we first constructed a prognostic model based on the anoikis-
related genes based on bulk RNA-sequencing and single-cell RNA-sequencing (scRNA-seq) dataset. Then, 
immuno-correlations of anoikis-related risk scores (ARGRS) were analyzed. In addition, HMGA1, a risky gene in 
ARGRS, was further explored to define its expression and immuno-correlation. Results showed that patients 
with higher ARGRS had worse clinical outcomes. Moreover, the five genes in the prognostic model were all 
highly expressed on tumor cells. Moreover, further analysis found that the ARGRS was negatively correlated 
with ImmuneScore, but positively with tumor purity. Besides, patients in the ARGRS-high group had lower 
levels of immunological characteristics, such as the immune-related signaling pathways and subpopulations. 
Additionally, in the immunotherapy cohorts, patients with the ARGRS-high phenotype were more resistant to 
immunotherapy and tended to not achieve remission after treatment. Last, HMGA1 was chosen as the 
representative biomarker, and analysis of the in-house cohort showed that HMGA1 was highly expressed in 
tumor tissues and correlated with decreased T cell infiltration. To sum up, ARGRS was correlated with a desert 
tumor microenvironment and identified immune-cold tumors, which can be a novel biomarker for the 
recognition of immunological characteristics and an immunotherapeutic response in NSCLC. 
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therapeutic therapies for NSCLC, the limited 

therapeutic benefit of first-line treatment resulted in a 

low overall cure and survival rate for NSCLC, 

particularly in metastatic disease [4]. As a result, 

additional research is needed to uncover more relevant 

biomarkers in order to extend clinical advantages  

to a larger patient population and enhance NSCLC 

outcomes. 

 

Immunotherapy, which strengthens the patient’s immune 

system to fight malignancies, has received massive 

attention in recent years in the context of cancer 

treatment. Immunosurveillance, or the ability of immune 

cells in the tumor microenvironment (TME) to recognize 

and destroy cancer cells under normal conditions, is now 

widely acknowledged [5, 6]. Nevertheless, further 

investigation showed that cancer cells can control the 

host immune system to avoid immune monitoring by 

enlisting immunosuppressive cell populations and 

reducing the immunogenicity of tumors [7, 8]. In 

addition, tumors with different phenotype have distinct 

therapeutic responses. To be specific, hot tumors, 

featured by T-cell inflammation, showed a favorite 

therapeutic response to immunotherapy, while cold 

tumors are resistant to many treatments [9–12]. Thus, it is 

crucial to investigate the alteration of the TME to guide 

the personalized immunotherapy. 

 

In the recent years, with the intensive investigation of 

different manners of cell death, numerous researchers 

found that anoikis is an important mechanism that can 

be introduced to treatment. Anoikis is a type of 

programmed cell death that takes place when cells 

separate from the proper extracellular matrix. This 

mechanism is essential for maintaining plastic cell 

development and attachment [13]. Notably, cancer cells 

are resistant to anoikis because they do not depend on 

extracellular matrix adherence for survival and growth 

[14], indicating that malignancies are a better example 

of anoikis resistance. Therefore, understanding the 

NSCLC anoikis regulators helps researchers find new 

treatments, particularly for cancer metastasis [15, 16]. 

For instance, through altering the JAK2/STAT3 and 

SHP2/Grb2 signaling pathways, the TGF-1/SH2B3 axis 

can control lung cancer cells’ anoikis resistance and 

EMT [17]. In addition, the enhancement of anoikis 

sensitivity could enhance immune cell-mediated 

cytotoxicity [18]. However, the association between 

anoikis and TME features in NSCLC is still unclear.  

 

At present, several studies explored the correlation 

between the anoikis feature and immunological 

characteristics. Here, in this study, we first recognized 
the up-regulated anoikis-related genes (ARG) in 

NSCLC tumor tissues, and then construct a prognostic 

model based on these genes. Subsequently, we 

confirmed that the ARGs in the prognostic model were 

expressed on tumor cells at the single-cell level. Finally, 

further analysis was performed to explore the 

correlation between ARGs and immunological 

characteristics and the predictive value of ARGs model 

in immunotherapeutic response. Taken together, our 

study provided a new perspective to understand the 

clinical and immunological-related functions of ARGs, 

which contributes to the advancement of more precise 

and precise treatment strategies. 

 

MATERIALS AND METHODS 
 

Data collection and processing 

 

The gene expression matrices of NSCLC patients were 

downloaded from public online databases —the UCSC 

Xena website and the Gene Expression Omnibus (GEO) 

portal. The transcriptional omics and clinical 

annotations of tumors and paracancerous of NSCLC 

patients in the TCGA-LUAD and TCGA-LUSC cohorts 

were obtained from the UCSC Xena. In the GEO 

database, we identified three NSCLC cohorts 

(GSE30219 [19], GSE37745 [20], and GSE3141 [21]) 

with prognosis information. Besides, two clinical 

cohorts (GSE126044 [22] and GSE135222 [23]) of 

NSCLC patients received immunotherapy, were also 

obtained from the GEO database. Diagnostic patients 

with follow-up information, including survival out-

comes or therapeutic responses were chosen for further 

analysis.  

 

Establishment of the anoikis-related gene model 

 

To establish the anoikis-related gene (ARGs) model, we 

collected the ARGs from the the genecards website 

(https://www.genecards.org/, accessed on 12 October 

2022) [24] and the Harmonizome portals 

(https://maayanlab.cloud/Harmonizome/, accessed on 

12 October 2022) [25] firstly. Then, after performing 

differential expressions analysis by “limma” package, 

ARGs up-regulated in tumor samples (fold-change (FC) 

≥ 1.5 and adjusted P-values < 0.05) were selected. The 

univariable COX regression analysis was used to 

identify genes that were significantly (P-value < 0.05) 

linked to OS. Next, the least absolute shrinkage and 

selection operator (LASSO) regression algorithm was 

performed on these OS-related genes to further screen 

prognostic parameters and construct the model. The risk 

score of the prognostic model based on NSCLC-related 

ARGs (ARGRS) of patients was assess according to the 

linear combination of the expression values of NSCLC-

related ARGs multiplied by the relevant LASSO 

coefficients. To validate the risk score’s predictive 

power, the 50% ARGRS cutoff was used to divide the 

NSCLC patients into high- and ARGRS-low groups.  

https://www.genecards.org/
https://maayanlab.cloud/Harmonizome/
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Assessment of biological functions 

 

The R package “clusterProfiler” [26] was used to assess 

the biological functions of gene signatures in terms of 

Gene Ontology (GO) [27] and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) [28] pathways. The top 

ten enriched pathways with the most significantly P-

values were displayed. 

 

Single-cell RNA sequencing datasets analysis 

 

To further elaborate the tumor-specific of gene 

signatures in the prognostic model, single-cell RNA 

sequencing (scRNA-seq) datasets (GSE150660 [29] and 

GSE148071 [30]) were downloaded from the GEO 

protocol (All additional analyses were using the Seurat 

R toolkit [31].  

 

For each sample, we summarized the expressed 

percentage of mitochondrial genes (percent.mt). Cells 

with percent.mt < 10% and 200 < nFeature_RNA < 

5,000 were preserved. Then, for each dataset, the 

“RunHarmony” function [32] was applied to minimize 

the batch effects and integrate the transcriptional gene 

profiles from different patients. Principal component 

analysis (PCA) was performed based on the top 4,000 

genes with highest variability. Then, the high 

dimensionality of data was reduced based on the top 30 

PCs. The cells were unsupervised clustered via shared 

nearest neighbor (SNN) algorithm with one resolution. 

To annotate cell types, many well-known signatures 

were collected from previous studies [33, 34], such as 

EPCAM for tumor cells, CD3E for T cells, CD14 for 

macrophages, and CD1C for dendritic cells. 

 

Cell-cell communication analysis 

 

“CellPhoneDB” software [35] was utilized to deconstruct 

the cell-cell communications among cell types at the 

single cell level. To define the ARGRS+ and ARGRS- 

tumor cells, “AddModuleScore” function was applied to 

estimate the enrichment scores of the ARGRS based on 

the transcriptional level of the five genes in the model. 

Then, tumor cells with ARGRS > 0 were defined as 

ARGRS+ tumor cells, and other were ARGRS- tumor 

cells. The ligand-receptor pairs with P-value < 0.05 were 

included in further analysis. 

 

Immune infiltration analysis 

 

The gene signatures of immunomodulators, immune cell 

subpopulations and immunological signaling pathways 

were obtained from previous studies [36–38]. R package 
“estimate” was employed to examine the abundance of 

infiltrating immune cells (ImmuneScore) and tumor purity 

(TumorPurity). The R package “GSVA” (version 1.46.0) 

[39] was utilized to assess the enrichment scores of 

characteristics based on the gene signatures.  

 

Clinical samples, immunohistochemistry, and 

quantitative evaluation 

 

The NSCLC tissue microarray (TMA) section 

(HLugC120PT01) was obtained from Outdo Biotech 

(Shanghai, China). Ethical approval (YB-M-05-02) for 

the study of the TMA was granted by the Clinical 

Research Ethics Committee, Outdo Biotech (Shanghai, 

China). The TMA was used for immunohistochemistry 

(IHC) assay to measure the expression of HMGA1 protein 

in tumor and non-tumor breast tissues. IHC assay was 

performed on these sections according to the established 

steps. These sections were given three 5-minute xylene 

washes and rehydrated using a series of washes in ethanol 

grades of 70%, 90%, and 100%. For twenty minutes, 

endogenous peroxidase activity was inhibited using 

hydrogen peroxidase. The antigen retrieval solution is 

EDTA. The primary antibody utilized in the study was 

anti-HMGA1 (1:200 dilution, Cat. sc-393213, Santa Cruz) 

and anti-CD8A (ready-to-use, Cat. PA577, Abcarta). 

Antibody staining was visualized with DAB and 

hematoxylin counterstain. Using the immunoreactivity 

score standard, two senior pathologists assessed stained 

TMA to determine HMGA1 expression [40]. Two senior 

pathologists used The Cancer Genome Atlas Network’s 

criteria to determine the CD8 score for tumor-infiltrating 

CD8+ T cell assessment [41]. For every sample, a CD8 

score, which is the total of the density and distribution 

scores (0–6), was determined. Samples classified as 

immune-cold are those with a CD8 score ≤ 2 (0, 2) and 

immune-hot samples with a score ≥ 3 (3, 4, 5, 6). 

 

Statistical analysis 

 

R-4.2.2 was used to perform all statistical analyses. The 

chi-square test was used to compare categorical variables, 

while the Wilcoxon rank-sum test was for continuous 

variables between the two groups. The log-rank test was 

used to assess the prognostic values. A two-paired p-value 

of less than 0.05 was considered statistically significant 

for all analyses, and the results were categorized as 

follows: *p-value < 0.05, **p-value ≤ 0.01, ***p-value ≤ 

0.001, and ****p-value ≤ 0.0001. 

 

Availability of data and materials 

 

The TCGA data are openly available at 

https://portal.gdc.cancer.gov/, and the GEO data are 

openly available at https://www.ncbi.nlm.nih.gov/gds. 

 
Consent for publication 

 

All authors are consent for publication. 

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/gds
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RESULTS 
 

Identification of differentially expressed overlapping 

anoikis-related genes 

 

From the genecards websiteand the Harmonizome 

portals, a total of 244 anoikis-related genes (ARGs) 

were obtained. By performing PCA on the 

transcriptional matrix of anoikis-related genes, the 

normal samples and NSCLC patients clearly differed 

(Figure 1A). Therefore, a differential expression 

analysis was carried out to better identify NSCLC 

patients who had anoikis (Figure 1B). 33 anoikis-related 

genes were shown to be up-regulated in NSCLC 

patients, according to the results (Figure 1C–1E). 

Additionally, given the correlation between genomic 

variants and tumorigenesis, we summarized the 

mutation rate and copy number variation (CNV) of 

these genes. Results showed most of genes carried 

genomic mutations or amplifications in NSCLC patients 

(Figure 1F–1G), indicating the potential malignant 

functions of these in tumorigenesis. 

 

Establishment of a prognostic model of anoikis-

related genes in NSCLC 
 

By performing univariable COX regression analysis 

and LASSO analysis, five independent prognostic 

genes (HMGA1, PLK1, ETV4, PHLDA2, and ITGB4) 

were screened for establishing the prognostic model 

(Figure 2A–2B and Supplementary Figure 1). The risk 

scores based on the five anoikis-related genes 

(ARGRS) were calculated according to the 

combination of the expression levels of these genes 

multiplied by the corresponding coefficients. As 

shown in Figure 2C, the mortalities were centralized in 

the ARGRS-high group, while the living patients were 

enriched in the ARGRS-low group. Besides, in 

patients with higher ARGRS, signatures (HMGA1, 

PLK1, PHLDA2, and ITGB4) associated with poor OS 

were significantly highly expressed, while ETV4, 

correlated with favorable clinical outcomes showed the 

opposite (Figure 2C). Consistently, compared with the 

ARGRS-low group, patients with high ARGRS 

showed a worse prognosis (Figure 2D). In addition, 

further analysis showed that patients with higher 

pathological stages or grades had higher levels of 

signatures in the prognostic model and ARGRS 

(Figure 2E, 2F and Supplementary Figure 2), which 

further supported the finding that ARGRS was 

associated with worse clinical outcomes in NSCLC. 
 

In addition, due to the consequence of genomic 
alterations in diagnosis and therapeutic guidelines, we 

also compared the mutant frequencies of genes between 

the high and low ARGRS groups. Compared with the 

ARGRS-low group, the ARGRS-high group had more 

complex genomic mutations (Supplementary Figure 3). 

Some well-known mutations associated with 

tumorigenesis and progression, such as TP53 [42, 43] 

and PTEN [44], were enriched in the ARGRS-high 

group, further supporting the association between 

ARGRS and worse clinical outcomes in NSCLC. 

 

Validation of the prognostic model in NSCLC 

 

We further confirmed this finding in additional 

independent cohorts after discovering the prognostic 

predictive utility of ARGRS in the TCGA cohort. 

Patients in the GSE30219 cohort who had higher 

ARGRS had worse OS than those with lower ARGRS, 

which is consistent with the findings from the TCGA 

cohort (Figure 3A, 3B). ARGRS levels were also higher 

in patients with higher clinical stages and grades (Figure 

3C), indicating its role in the malignancy of NSCLC. 

Patients in the ARGRS-high group similarly exhibited 

inferior clinical outcomes in the GSE37745 and the 

GSE3141 cohorts (Figure 3D, 3E). Based on the 

findings from the TCGA and additional independent 

cohorts, the ARGRS was linked to a worse OS for 

NSCLC patients and may have contributed to tumor 

progression. 

 

The five anoikis-related genes in the model 

expressed specifically in tumor cells at the single-cell 

level 

 

To further clarify the tumor-specificity of signatures in 

the model, scRNA-seq datasets were include. A 

scRNA-seq dataset contained five NSCLC patients were 

collected and integrated firstly (Supplementary Figure 

4A, 4B). After quality control, integration and 

unsupervised clustering, the cells were divided into 19 

clusters (Supplementary Figure 4B). Then, based on the 

expression distribution of canonical signatures of 

different cell types, the cells were identified as tumor 

cells, T cells, macrophages and cDC (Figure 4A–4C). 

Then, we explored the distribution and expression levels 

of five crucial genes. Results showed that compared 

with non-tumor cells, tumor cells had higher levels of 

ARGRS (Figure 4D, 4E). Besides, the signatures in the 

model were specific highly expressed in the tumor cells 

(Figure 4F), suggesting the tumor-specificity of the five 

genes, and implying that the risk score can represent the 

status of tumor cells. 

 

Additionally, given of the heterogeneity among NSCLC 

patients, another scRNA-seq dataset was used to further 

confirm the results found in the GSE150660 dataset. 
After preprocessing, a total of 9,563 individual cells of 

the GSE148071 cohort were passed quality control. 

Subsequently, unsupervised clustering and cell 
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Figure 1. Identification of anoikis-related genes in NSCLC patients in the TCGA NSCLC cohort. (A) Principal component analysis of 

TCGA samples based on the expression matrix of anoikis-related genes obtained from the genecards website and the Harmonizome portals. 
(B) Volcano plot showing the differentially expressed genes (DEGs) for the NSCLC tissues and paracancerous in the TCGA-NSCLC cohort. (C) 33 
anoikis-related genes were up-regulated in NSCLC patients in the TCGA cohort. (D) Heatmap showing the expression values of anoikis-related 
between the NSCLC tissues and paracancerous in the TCGA-NSCLC cohort. (E) The specific location of anoikis-related genes on the human 
chromosomes. (F) Mutation frequency of 33 overlapping signature genes in the TCGA NSCLC cohort. Each column represented a single 
patient. The upper bar plot showed TMB. The number on the right indicates the mutation frequency of each regulatory gene. The right bar 
plot showed the proportion of each variant type. The stacked bar plot below showed a fraction of conversions in each sample. (G) CNV 
frequency of 33 overlapping genes in the TCGA NSCLC cohort. The height of the column represented the alteration frequency. Blue dot: the 
deletion frequency; Red dot: the amplification frequency. 
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Figure 2. Construction of prognostic model in the TCGA NSCLC cohort. (A) The LASSO coefficient profiles were constructed using the 
33 anoikis-related genes, and the tuning parameter (λ) was calculated based on the minimum criteria for OS with ten-fold cross validation. 
Five genes were selected according to the best fit profile. (B) Univariable analyses of the expression values of the five genes with overall 
survival in the TCGA NSCLC cohort. (C) Distributions of ARGRS, survival status of NSCLC patients, and expression profiles of the gene 
signatures. (D) Survival analysis showing the prognostic value of ARGRS in the TCGA NSCLC cohort. (E) Heatmap showing the distribution of 
clinicopathologic features between ARGRS-high and low groups. (F) Comparison of ARGRS among different clinicopathologic features.  
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annotation were performed, and these cells were 

classified into tumor cells, T/NK, macrophages, and 

fibroblasts (Supplementary Figure 5A–5D). 

Consistently, tumor cells had higher levels of ARGRS 

(Supplementary Figure 5E, 5F) and the genes in the 

prognostic model (Supplementary Figure 5G), further 

confirming the tumor cell-specificity of the five genes.  

 

Patients with higher ARGRS exhibit low immune 

infiltration 

 

Having observed the existence of many immune cells in 

the NCLSC patients at the high dimensional datasets, we 

next explored the correlation between ARGRS and the 

fraction of each cell type. Notably, the ARGRS was 

negatively correlated with the fraction of T cells at the 

single-cell level (R2 = -0.93, p = 0.02, Figure 5A). Also, in 

the TCGA cohort, patients with higher ARGRS had lower 

levels of ImmuneScore but higher levels of tumor purity 

(Figure 5B), consistent with the results found in the 

single-cell datasets. In addition, a functional analysis of 

up-regulated genes in ARGRS-low group was highly 

related to immunological processes, such as cytokine 

activity, chemokine receptor binding and activity, and 

cytokine-cytokine receptor interaction (Figure 5C). 

Meanwhile, compared with the ARGRS-high group, the 

ARGRS-low group expressed higher transcriptional levels 

of immunological signatures, such as the biomarkers of 

CD8+T cells and NK (Figure 5D and Supplementary 

Figure 6). Also, the ARGRS-low group had higher 

fraction of CD8+T cells, and enriched some immune 

activation characteristics, such as the molecules of HLA, 

MHC, and immunostimulatory (Figure 5E, 5F). To be 

sum up, combined with the results found at the single-cell 

and omics transcriptional datasets, we found that ARGRS 

was negatively correlation with the fraction of T cells, and 

patients with the ARGRS-high phenotype exhibited low 

immune infiltration.  

 

 
 

Figure 3. Validation of prognostic model in other independent cohorts. (A) Distributions of ARGRS, survival status of NSCLC patients, 
and expression profiles of the gene signatures in the GSE30219 cohort. (B) Survival analysis showing the prognostic value of ARGRS in the 
GSE30219 cohort. (C) Comparison of ARGRS among different clinicopathologic features. (D, E) Survival analysis showing the prognostic value 
of ARGRS in the (D) GSE37745 and (E) GSE3141 cohort. 
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In another independent cohort, we also found the 

similar results. ARGRS was negatively correlated with 

ImmuneScore (R2 = -0.32, p < 0.0001), but positively 

with tumor purity (R2 = 0.36, p < 0.0001, 

Supplementary Figure 7A–7C). Patients with the 

ARGRS-low phenotype had higher enrichment scores 

of immune-related characteristics, such as receptors  

and MHC molecules (Supplementary Figure 7D). 

Additionally, patients in the ARGRS- low groups also  

had higher levels of the immune-related signaling 

pathways and subpopulations (Supplementary Figure 7E), 

indicating activate immunological status of patients with

 

 
 

Figure 4. Transcriptomic clustering of NSCLC patients from GSE148071 dataset. (A) Marker-based cell type identification analysis 
allowed the prediction of four broad cell types across all profiled single cells. (B) Expression levels of cell type signatures overlaid on the t-SNE 
representation. EPCAM for tumor cells, CD3E for T cells, CD14 for macrophages and CD1C for cDC. (C) Gene expression heatmap of top-10 
cell type-specific marker genes as measured by Wilcoxon rank-sum test. (D) ARGRS overlaid on the t-SNE representation. (E) Boxplot showing 
the levels of ARGRS between tumor and non-tumor cells. Horizontal lines in the boxplots represent the median, the lower and upper hinges 
correspond to the first and third quartiles, and the whiskers extend from the hinge up to 1.5 times the interquartile range from the hinge. (F) 
Expression levels of the five genes in the prognostic model overlaid on the t-SNE representation. 
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Figure 5. Patients with higher ARGRS exhibit low immune infiltration. (A) The correlation between the fraction of T cells and ARGRS 

levels at the single-cell level. X-axis: the fraction of T cells of each NSCLC patient. Y-axis: the median levels of ARGRS of each NSCLC patient. 
(B) Boxplot showing the levels of ImmuneScore (left) and TumorPurity (right) between the ARGRS-high and low groups in the TCGA NSCLC 
cohort. (C) GO and KEGG analyses of genes up-regulated in the ARGRS-high and low groups in the TCGA NSCLC cohort. (D) Heatmap showing 
the levels of immunological markers between ARGRS-high and low groups in the TCGA NSCLC cohort. (E, F) Comparison of immunological 
signatures between ARGRS-high and low groups in the TCGA NSCLC cohort.  
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the ARGRS- low phenotype. To further investigate the 

potential factors mediating the formation of inflamed or 

dessert TME, we deconstructed the interactions among 

cell populations. Results showed that compared with 

ARGRS- tumor cells, ARGRS+ tumor cells presented 

significantly more specific interactions with immune 

subpopulations (Supplementary Figure 8A). ARGRS+ 

tumor cells can communicate with T cell via many ligand-

receptors (Supplementary Figure 8B), such as TIGIT-

NECTIN2 [45] and LGALS9-CD44 [46], which were 

involved in suppressing tumor T cell infiltration, and 

promoted the cell state transition of immune cells towards 

a more immunosuppressive and exhaustive status, 

indicating the potential mechanism in mediating the 

dessert TME in the ARGRS-high group. 

 

Patients with higher ARGRS were resistance to 

immunotherapy 

 

Previous studies reported that the reactivity of 

immunotherapy was affected by the immunological status 

of patients. To be specific, hot tumors, featured by T-cell 

inflammation, were more sensitive to immunotherapies, 

while cold tumors are resistant to many treatments [9, 10]. 

Combined with the distinct immunological status between 

the ARGRS-high and low groups, the two groups may 

have different response of immunotherapy. 

 

Here, to investigate the immunotherapeutic in the  

high- and ARGRS-low groups, we downloaded the 

expression matrix and clinical annotations of NSCLC 

patients in the cohorts received immunotherapy. In 

accordance with results above, ARGRS was negatively 

correlated with almost all immunological characteristics 

in the GSE126044 dataset (Figure 6A). Also, patients 

with the ARGRS-high phenotype had higher levels of 

ImmuneScore, but low tumor purity (Figure 6B, 6C). 

Besides, patients in the ARGRS-high group were 

centralized in the NR group (Figure 6D), indicating the 

immunotherapeutic resistance of them. Consistently, 

analysis of another immunotherapy cohort also showed 

the same results. Patients in the ARGRS-high group 

exhibit lower immune infiltration but higher tumor 

purity (Figure 6E–6G). Moreover, NSCLC patients in 

the ARGRS-high group were more likely to recurrence 

or progress after immunotherapy than the ARGRS-low 

group (Figure 6H), further supporting the immuno-

therapeutic resistance of them. 

 

HMGA1 was the representative biomarker for 

NSCLC 

 

Next, we chose a representative biomarker from the 
five genes in the model for further experiments. 

Firstly, we summarized the expressed fraction of these 

genes at the single-cell levels. Compared with other 

genes in the model, tumor cells had obviously 

transcriptional levels and the highest expressed 

fraction of HMGA1 (Figure 7A, 7B, and 

Supplementary Figure 9A, 9B). Besides, at the high-

resolution dataset, compared with other four genes, 

HMGA1 showed the most significant negative 

correlation with T cell inflamed and positive with 

tumor cells (Supplementary Figure 10). A 

Additionally, HMGA1 expressed was negatively 

correlated with ImmuneScore, but positively with 

tumor purity in multiple independent cohorts (Figure 

7C–7F), suggesting the guidance of HMGA1 in 

distinguishing the hot and cold NSCLC tumors. 

 

Next, we verified the expression pattern of HMGA1 in 

the in-house cohort. We found that HMGA1 expression 

was significantly higher in tumor tissues than in para-

tumor tissues (Figure 8A, 8B), and HMGA1 was 

specifically expressed in NSCLC (Figure 8C, 8D). We 

also classified NSCLC into immune-hot and cold 

tumors based on the CD8 scores. Besides, HMGA1 was 

significantly reduced in immune-hot tumors (Figure 8E, 

8F) and negatively correlated with CD8 scores (Figure 

8G). Overall, the negative correlation between HMGA1 

expression and T cell infiltration can be verified in the 

in-house cohort, which greatly improves the confidence 

of the public cohort results. 

 

DISCUSSION 
 

Nowadays, with the more profound of molecular and 

microenvironment characteristics of NSCLC, immuno-

therapy strategies, such as immune checkpoint 

inhibitors, has changed first-line treatment of advanced 

NSCLC, as we all know. Meanwhile, more than 10 

indications for immunotherapies in NSCLC clinical 

practice has been approved by Chinese official 

organization [47–49].  

 

Even while some patients have benefitted from this new 

therapy strategy in terms of survival, some individuals 

are still unable to get lasting relief. Tumor cell apoptosis 

can result in medication resistance, which in turn affects 

tumor cell survival in the bloodstream, which is 

essential for the development of metastasis. Jin et al. 

found that PLAG1 GDH1 axis promotes apoptotic 

resistance and tumor metastasis in LKB1-deficient 

malignancies via CamKK2 AMPK signaling pathway 

[50]. According to research, CPT1A-mediated fatty acid 

oxidation can encourage the spread of colorectal cancer 

cells by impairing the process of cell death [51]. 

Anoikis has been extensively investigated in relation to 

tumor growth and metastasis, but little is known about 

how it alters the tumor immune milieu and hence 

mediates tumor progression. We concentrate on the part 

anoikis play in the microenvironment of the tumor and 
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investigate if anoikis can mediate the regulation of 

immunization, altering the growth and metastasis of the 

tumor. 

 

We identified tumor-specific anoikis-related genes in 

NSCLC patients and used these genes to build a 

predictive model. Patients with higher ARGRS 

exhibited worse clinical outcomes, showing that 

ARGRS plays a role in the malignancy of NSCLC. 

Furthermore, using single-cell transcriptional datasets, 

we demonstrated that, when compared to non-tumor 

cells, tumor cells showed greater levels of ARGRS and 

signature expression in the prognostic model. Notably, 

ARGRS was negatively linked with the proportion of T 

cells at the single-cell level, meaning that ARGRS-high 

NSCLC patients were more likely to have the TME 

 

 
 

Figure 6. Patients with higher ARGRS were resistance to immunotherapy. (A) The correlation among 29 immune cell types and 

immune-related pathways and ARGRS in the GSE126044 cohort. (B) Left: Correlation between ARGRS and ImmuneScore in the GSE126044 
cohort. Right: Boxplot showing the levels of ImmuneScore between ARGRS-high and low groups. (C) Left: Correlation between ARGRS and 
TumorPurity in the GSE126044 cohort. Right: Boxplot showing the levels of TumorPurity between ARGRS-high and low groups. (D) Barplot 
showing the percentage of immunotherapy responsive and non-responsive NSCLC patients in ARGRS-high and low groups. (E) The correlation 
among 29 immune cell types and immune-related pathways and ARGRS in the GSE135222 cohort. (F) Left: Correlation between ARGRS and 
ImmuneScore in the GSE135222 cohort. Right: Boxplot showing the levels of ImmuneScore between ARGRS-high and low groups. (G) Left: 
Correlation between ARGRS and TumorPurity in the GSE135222 cohort. Right: Boxplot showing the levels of TumorPurity between ARGRS-
high and low groups. (H) Survival analysis showing the prognostic value of ARGRS in the GSE135222 cohort. 
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with minimal immune infiltration. Further investigation 

revealed that the results from the independent NSCLC 

cohorts were compatible with the findings at the high 

dimensionality datasets. Patients in the ARGRS-high 

group, in particular, showed lower levels of immune 

features but higher tumor purity.  

 

Given of the important role of immunological status of 

TME in immunotherapeutic response [9, 10, 52], we 

further investigated the responses of the ARGRS-high 

and low groups in immunotherapy cohorts. 

Approximately 87.5% of patients in the ARGRS-high 

group did not achieve remission after immunotherapy, 

and were more likely to recurrence or progress, 

suggesting the immunotherapeutic resistance of these 

patients. There is now evidence that NSCLC patients 

can benefit from immunotherapy. However, limited by 

the inadequate research of characteristics to distinguish 

 

 
 

Figure 7. HMGA1 was the representative biomarker. (A) Right: bar plot showing the expressed fraction of HMGA1 between the non-
tumor and tumor cells in the GSE150660 cohort. Left: comparison of the expression levels of HMGA1 between the non-tumor and tumor cells 
in the GSE150660 cohort. (B) Right: bar plot showing the expressed fraction of HMGA1 between the non-tumor and tumor cells in the 
GSE148071 cohort. Left: comparison of the expression levels of HMGA1 between the non-tumor and tumor cells in the GSE148071cohort. 
(C–F) Correlations between HMGA1 expression and ImmuneScore and tumor purity in (C) the TCGA, (D) the GSE3141, (E) the GSE126044, and 
(F) the GSE135222 cohorts. 
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the inflamed and desert TME, numerous patients 

received immunotherapy without obtaining effective 

results. Therefore, we performed a comprehensive 

study on explore the ARGs and delved into  

the prognosis and immune microenvironment 

characteristics of NSCLC. Additionally, given the 

regulating upstream feature of ARGRS, targeting it 

can activate the patient’s immune system coincident 

with tumor cell killing. 

 

In addition, we further validated the expression and 

immuno-correlations of HMGA1 in NSCLC in  

the in-house cohort. We found that HMGA1 was 

highly expressed in tumor tissues and enriched in 

immuno-cold tumors, indicating that HMGA1 could 

shape immuno-cold TME and promote immuno-

suppression. In fact, reversal of HMGA1-mediated 

immunosuppression could improve hepatocellular 

carcinoma therapy [53]. In the term of molecular 

mechanisms, HMGA1 acted as a crucial regulator  

of tumor-promoting macrophage recruitment by 

activating NF-κB-CCL2 signaling and also regulated 

PD-L1 expression to promote immunosuppression 

[54, 55].  

CONCLUSIONS 
 

In this study, we investigated NSCLC-specific anoikis-

related genes and constructed a prognostic model. 

Patients with higher ARGRS had worse clinical 

outcomes. Besides, we proved that the ARGRS and 

signatures in the models were highly expressed on 

tumor cells, compared with the non-tumor cells at the 

single-cell level. Notably, we found that the ARGRS 

was negatively correlated with the fraction of T cells. 

And other independent cohorts also showed the same 

results. To be specific, the ARGRS-high group had low 

immune infiltration, while the ARGRS-low group 

showed more active immunological status. Furthermore, 

in the immunotherapy cohort, patients who did not 

achieve remission or had tumor progression after 

immunotherapy were enriched in the ARGRS-high 

group, suggesting that patients with the ARGRS-high 

phenotype were more likely to be resistant to 

immunotherapy. To sum up, we constructed an anoikis-

related gene model, and explained the relationship 

between ARGRS and immunological status, which can 

help to develop more personalized and precise treatment 

strategies in clinical practice. 

 

 

 

Figure 8. Validation of CTNND1 expression and its correlations with the TME features in the in-house cohort.  
(A, B) Representative images uncovering the expression of HMGA1 in para-tumor and tumor tissues and quantitative analysis.  
(C, D) Representative images uncovering the expression of HMGA1 in NSCLC and SCLC tumor tissues and quantitative analysis.  
(E, F) Representative images uncovering the expression of HMGA1 in immuno-cold and immuno-hot tumor tissues and quantitative 
analysis. (G) Correlation between HMGA1 expression and CD8 score. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Survival analysis showing the prognostic value of the five genes in the prognostic model in the 
TCGA cohort. 
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Supplementary Figure 2. Comparing the gene expression of signatures in the prognostic model among patients with 
different pathological characteristics. (A–E) Boxplot showing the expression levels of HMGA1 (A), PLK1 (B), ETV4 (C), PHLDA1 (D), and 

ITGB4 (E) among patients with different pathological characteristics. 
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Supplementary Figure 3. Comparison of mutant alterations between the high- and low-ARGRS groups. Genes with p-value < 
0.01 were displayed. 
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Supplementary Figure 4. Unsupervised clustering of five NSCLC patients from the GSE150660 dataset at the single-cell level. 
(A) The distribution of NSCLC patients across all profiled single cells. (B) Unsupervised clustering of all profiled single cells.  
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Supplementary Figure 5. Transcriptomic clustering of NSCLC patients in the GSE148071 cohort. (A)Unsupervised clustering of 

9,563 cells. (B) The distribution of NSCLC patients across all profiled single cells. (C) Marker-based cell type identification analysis allowed the 
prediction of four broad cell types across all profiled single cells. (D) Expression levels of cell type signatures overlaid on the t-SNE 
representation. EPCAM and KRT8 for tumor cells, CD3E and CD3G for T cells, CD86, LYZ, CD163 and CD14 for macrophages, COL1A1 and DCN 
for fibroblasts. (E) ARGRS overlaid on the t-SNE representation. (F) Boxplot showing the levels of ARGRS between tumor and non-tumor cells. 
Horizontal lines in the boxplots represent the median, the lower and upper hinges correspond to the first and third quartiles, and the 
whiskers extend from the hinge up to 1.5 times the interquartile range from the hinge. (G) Expression levels of the five genes in the 
prognostic model overlaid on the t-SNE representation. 
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Supplementary Figure 6. The correlation among 29 immune cell types and immune-related pathways and ARGRS in the 
TCGA cohort. 
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Supplementary Figure 7. Correlation between immunological characteristics and ARGRS in the GSE3141 cohort. (A, B) 
Correlation between ARGRS and ImmuneScore (A) and tumor purity (B). (C) Comparison of ImmuneScore, StromalScore, ESTIMATEScore, and 
tumor purity between ARGRS-high and low groups. (D) Comparison of the enrichment of receptors, MHC molecules, Immunostimulator, and 
Chemokine between ARGRS-high and low groups. (E) Heatmap showing the enrichment scores of 29 immunological characteristics. 
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Supplementary Figure 8. Cell-cell communications among cell types in NSCLC (GSE150660). (A) Heatmap showing the interaction 

numbers among cell types. (B) Heatmap showing the ligand-receptors between tumor (ARGRS+ and ARGRS-) and T cells.  

 

 
 

Supplementary Figure 9. Comparison of expressed fraction of genes in the model between non-tumor and tumor cells.  
(A) Bar plot showing the expressed fraction of PLK1, ETV4, PHLDA2, ITGB4 between the non-tumor and tumor cells in the GSE150660 cohort. 
(B) Bar plot showing the expressed fraction of PLK1, ETV4, PHLDA2, ITGB4 between the non-tumor and tumor cells in the GSE148071 cohort. 
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Supplementary Figure 10. Correlation between expressed fractions of genes in the model and tumor/T cell percentage in 
GSE150660. (A) Correlation between HMGA1+ cells in tumor cells and tumor (left) and T cell percentage (right) in GSE150660 dataset. (B) 

Correlation between PLK1+ cells in tumor cells and tumor (left) and T cell percentage (right) in GSE150660 dataset. (C) Correlation between 
ETV4+ cells in tumor cells and tumor (left) and T cell percentage (right) in GSE150660 dataset. (D) Correlation between PHLDA2+ cells in 
tumor cells and tumor (left) and T cell percentage (right) in GSE150660 dataset. (E) Correlation between ITGB4+ cells in tumor cells and tumor 
(left) and T cell percentage (right) in GSE150660 dataset.   


