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INTRODUCTION 
 
Colorectal cancer (CRC) ranks as the third most 

prevalent cancer worldwide and represents a significant 

global health challenge, being the second leading cause 

of cancer-related mortality. The incidence and mortality 

rates of CRC are anticipated to rise substantially, with 

projections estimating 3.2 million new cases and 1.6 

million deaths by 2040, particularly in countries with a 
high Human Development Index [1–3]. As with many 

diseases, CRC is the result of the accumulation of 

multifactorial perturbations that include genetic, 
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ABSTRACT 
 

The role of gut microbes (GM) and their metabolites in colorectal cancer (CRC) development has attracted 
increasing attention. Several studies have identified specific microorganisms that are closely associated with 
CRC occurrence and progression, as well as key genes associated with gut microorganisms. However, the extent 
to which gut microbes-related genes can serve as biomarkers for CRC progression or prognosis is still poorly 
understood. This study used a bioinformatics-based approach to synthetically analyze the large amount of 
available data stored in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. 
Through this analysis, this study identified two distinct CRC molecular subtypes associated with GM, as well as 
CRC markers related to GM. In addition, these new subtypes exhibit significantly different survival outcomes 
and are characterized by distinct immune landscapes and biological functions. Gut microbes-related biomarkers 
(GMRBs), IL7 and BCL10, were identified and found to have independent prognostic value and predictability for 
immunotherapeutic response in CRC patients. In addition, a systematic collection and review of prior research 
literature on GM and CRC provided additional evidence to support these findings. In conclusion, this paper 
provides new insights into the underlying pathological mechanisms by which GM promotes the development of 
CRC and suggests potentially viable solutions for individualized prevention, screening, and treatment of CRC. 
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epigenetic, and environmental aspects [4]. In particular, 

environmental factors such as consumption of carcino-

genic foods, lack of physical activity, and cigarette 

smoking are known to assume a pivotal role in the 

intricate web of CRC progression [5]. 

 

Among the environmental factors, there has been 

increasing recognition of the role of the collective 

microbial community in the tumor environment. Our 

colon harbors about 30 trillion bacteria, which 

constantly interact with our intestinal epithelium. 

Alterations in the quantity of these microbes can disrupt 

gut physiology and lead to diseases [6]. Enrichment of 

several gut microbes (GM), such as Fusobacterium 
nucleatum, Peptostreptococcus anaerobius, and 

enterotoxigenic Bacteroides fragilis, has been found to 

enhance the development of CRC by promoting 

inflammation [7], DNA damage [8], tumor growth [9], 

and immune evasion [9]. Conversely, certain bacteria, 

primarily probiotics including Bifidobacterium 

adolescentis (ATCC 15703) [10] and Faecalibacterium 

prausnitzii (DSM 17677) [11, 12], are observed to be 

diminished in individuals with CRC and are believed to 

confer a safeguarding influence against CRC. In 

addition, there is growing evidence that dysbiosis of gut 

microbial ecology can influence the development of 

CRC by affecting the functional state of host cells. 

Interacting with Toll-like receptors, Bifidobacterium 

leads to the release of interleukin 10 (IL10) and 

expression of forkhead box P3 (FOXP3) regulatory T 

cells (Tregs) [13]. Meanwhile, Lactobacillus rhamnosus 

GG suppresses Th17 cell expression and cytokine 

secretion of interleukin 23(IL23) and interleukin 

17(IL17). It also promotes a shift in macrophage 

phenotype from pro-inflammatory M1 to immuno-

suppressive M2 by inhibiting nuclear factor kappa B 

(NF-κB) subunit 1 and signal transducer and activator 

of transcription 3(STAT3) signaling [14]. Additionally, 

Lactobacillus reuteri activates aryl hydrocarbon 

receptor (AHR) and influences the levels of interleukin 

6(IL6), interleukin 12(IL12), tumor necrosis factor 

(TNF) and interleukin 7(IL7), as well as macrophage 

and T-lymphocyte activation status [15]. A recent 

investigation has revealed that Bifidobacteria, known 

for their protective role against CRC, possess the 

capability to modulate dendritic cell (DC) maturation as 

well as tumor-specific T-cell responses. This intriguing 

finding suggests that Bifidobacteria may exert an 

impactful influence on the therapeutic efficacy of anti-

CRC immunization and anti-programmed death ligand 

1(PDL1) therapy [16]. 

 

Due to the intricate interplay between CRC and gut 
microbiome, existing studies have predominantly 

focused on exploring the use of particular microbiota 

and their metabolites as predictive markers of clinical 

response or cancer progression through microbiome 

analysis [17, 18]. However, the contribution of gut 

microbes-related genes (GMRGs) to the pathogenesis 

and prognosis of CRC remains unknown, and their 

potential as immunotherapy targets is yet to be fully 

understood. In our analysis, we conducted a 

comprehensive literature review of correlations between 

gut microbiota and host genes using the PubMed 

database, resulting in the identification of 164 GMRGs. 

Based on these genes, we developed a new subtype of 

CRC, revealing significant differences between various 

subtypes in terms of survival prognosis, functional 

enrichment, immune infiltration, and immunotherapy 

efficacy. Furthermore, we employed univariate and 

multivariate Cox regression analysis for identifying hub 

genes highly associated with CRC patient prognosis 

among GMRGs. By analyzing the expressed core genes 

in healthy humans, colorectal inflammation patients, 

and CRC patients, we evaluated their effectiveness as 

predictive indicators for the occurrence, development, 

and outcome of CRC. 
 

The core objective of this study is to identify GM-

related molecular subtypes and biomarkers to 

understand the complexity of CRC in terms of 

molecular biology, immunology, drug sensitivity, 

survival prognosis, and disease dynamics, aiming to 

promote more precise treatment planning to improve the 

survival rate and quality of life of patients. 

 

RESULTS 
 

Identification of GM molecular subtypes in CRC 
 

Figure 1 shows how the study works. A total of 164 

GMRGs were searched and screened in the PubMed 

database, and their expression levels were compared 

between 332 cancer and 41 normal samples from the 

TCGA-COAD dataset (Supplementary Figure 1). A 

noticeable discrepancy in transcript levels was observed 

between the two subgroups, as shown in the heatmap. 

The principal component analysis (PCA) plot further 

confirmed the existence of differential expression of 

GMRGs. Using a consensus clustering algorithm, the 

332 CRC patients were classified into two subtypes 

with optimal cluster stability (K = 2) (Supplementary 

Figure 2). Among them, 203 patients were assigned to 

the C1 cluster and 129 to the C2 cluster. The Kaplan-

Meier (K-M) analysis revealed that overall survival 

(OS) was significantly longer in subtype C1 compared 

to subtype C2 (P = 0.043, Figure 2A). The 

transcriptomes of the two subtypes were significantly 

different, as shown by PCA (Figure 2B) and heatmap 
(Figure 2C). To validate the results, the GSE87211 

dataset was used as a validation set, which showed 

similar results (Figure 2D–2F). Similarly, the 
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Figure 1. Workflow of the analytic process. 

 

 
 

Figure 2. Identification of GM molecular subtypes in CRC. (A–C) K-M analysis, PCA analysis, and heatmap between subtype C1 and 

subtype C2 in the TCGA-COAD cohort. (D–F) K-M analysis, PCA analysis, and heatmap between subtype C1 and subtype C2 in the GSE87211 
cohort. (G–I) K-M analysis, PCA analysis, and heatmap between subtype C1 and subtype C2 in the GSE161158 cohort. Abbreviations: GM: 
gut microbes; CRC: colorectal cancer; K-M: Kaplan-Meier; PCA: principal component analysis. 
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GSE161158 dataset was used as a test set, and the 

consensus clustering results confirmed that the C1 

subtype had a better prognosis than the C2 subtype (P = 

0.027, Figure 2G). The PCA (Figure 2H) and heatmap 

(Figure 2I) analyses also demonstrated significant 

differences between the two subtypes. 

 

Functional annotation of GM molecular subtypes 

 

To understand the functional patterns of two colon 

cancer subtypes based on GMRGs expression, we 

analyzed their distribution across the consensus 

molecular subtypes (CMS) of CRC (Figure 3A). We 

observed that C1 subtypes were more prevalent in 

CMS1 and CMS4 than C2 subtypes, while C2 subtypes 

were more prevalent in CMS2. To gain insight into the 

potential associations between these two classifications 

and aid in clinical translation, we conducted functional 

enrichment. We performed a differential analysis of the 

two subtypes to obtain differentially expressed genes 

(DEGs) in the different types (Supplementary Figure 3). 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

and Reactome enrichment analysis revealed that 

GMRGs were primarily enriched in the developmental 

maturation of the immune system and intra- and 

extracellular signaling, among others (Figure 3B, 3C). 

Using the Gene Ontology (GO) database for gene set 

enrichment analysis (GSEA) analysis (Figure 3D), we 

found that enriched pathways in the C1 subtype were 

mainly associated with the regulation of inflammatory 

immune response, cellular responses to various stimuli, 

and angiogenesis regulation. Meanwhile, enriched 

pathways in the C2 subtype were mainly associated 

with Wnt signaling, epithelial-mesenchymal transition, 

apoptosis, and metabolic regulation. We further 

performed gene set variation analysis (GSVA) analysis 

using the GO database (Figure 3E), which showed that 

enriched pathways in the C1 subtype were mainly 

associated with immune regulation, including 

macrophage fusion, T cell and plasma cell differen-

tiation, and binding of vascular endothelial growth 

factor and its regulation. The enriched pathways in the 

C2 subtype were mainly associated with ribosome 

assembly, biological enzyme activity, and cell cycle 

regulation. 

 

Evaluation of immune features and immunotherapy 

for GM molecular subtypes 

 

To further characterize tumor microenvironment (TME) 

in GM subtypes, we conducted CIBERSORT analysis to 

evaluate the distribution of 22 tumor-infiltrating immune 

cells (TICs) in the COAD cohort (Figure 4A). 
Significant disparities in the abundance of distinct 

immune cell populations were observed between the C1 

and C2 subtypes. The C1 subtype showed higher levels 

of M1 macrophages, T cells follicular helper, and B cells 

native compared to the C2 subtype. In contrast, 

regulatory T cells, plasma cells, and monocytes were 

more abundant in the C2 subtype compared to the C1 

subtype (Figure 4B). To further evaluate TME, the 

ESTIMATE algorithm was employed to calculate the 

ESTIMATE score, immune score, and stromal score. 

The findings revealed that the C1 subtype exhibited a 

significantly elevated ESTIMATE score (P < 0.001), 

immune score (P < 0.001), and stromal score (P < 0.001) 

in comparison to the C2 subtype (Figure 4C). 

Subsequently, the Tumor Immune Dysfunction and 

Exclusion (TIDE) algorithm was utilized to predict the 

response to immunotherapy in CRC patients with 

varying levels of immune infiltration and GM subtypes. 

By stratifying responders and non-responders based on 

the median TIDE score, a higher proportion of 

responders was observed in the C2 subtype characterized 

by low immune infiltration and low TIDE scores (Figure 

4D). This suggests that the C2 subtype, characterized by 

lower immune infiltration, may exhibit a more favorable 

response to immunotherapy. Furthermore, we examined 

the expression of immune checkpoint markers as 

potential indicators of immunosuppression. The analysis 

revealed a higher proportion of samples in the C1 

subtype with high expression of programmed cell death 

1 (PD1) and cytotoxic T-lymphocyte associated protein 

4 (CTLA4), while the C2 subtype had a higher 

proportion of samples with low expression of immune 

checkpoint markers (Figure 4E). Lastly, we performed 

drug sensitivity predictions to identify potential 

therapeutic options for each subtype. The analysis 

showed that the C2 subtype was more sensitive to 

Vorinostat and Sorafenib, while the C1 subtype 

exhibited higher sensitivity to Bortezomib and 

Temsirolimus (Figure 4F). 

 

Identification and analysis of prognosis-related 

GMRGs 

 

We conducted univariate Cox regression analysis on 

164 GMRGs and identified 9 prognostic genes in the 

TCGA-COAD cohort (P < 0.05) (Supplementary Table 

1). Subsequently, we examined the correlation between 

these 9 genes (Figure 5A) to assess their association. 

We also analyzed the somatic mutation frequencies of 

these 9 GMRGs and found relatively high mutation 

rates in the TCGA-COAD samples (Figure 5B). Among 

the samples, 61 (13.41%) had mutations in the GMRGs, 

with MTOR showing the highest mutation frequency 

(7%), followed by MMP9, NPC1L1, PKN2, PTGS2, 

SULT2B1, BCL10, STAT3, and IL7. Furthermore, we 

explored the relationship between these 9 prognostic 
genes and immune cells to investigate the interplay 

between gene expression and immune functions (Figure 

5C). We also determined the chromosomal locations of 
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these genes (Figure 5D). To examine whether changes 

in gene expression directly impact checkpoint activity 

or vice versa, we assessed the correlation between the 9 

prognostic genes and immune checkpoints (Figure 5E). 

Interestingly, SULT2B1 exhibited a significant negative 

correlation with most of the checkpoints, while MMP9 

 

 
 

Figure 3. Functional expression patterns of GM molecular subtypes in CRC. (A) Distribution of GM molecular subtypes in CRC 
consensus subtypes. (B) KEGG enrichment analysis of DEGs in GM molecular subtypes. (C) Reactome enrichment analysis of DEGs in GM 
molecular subtypes. (D) GSEA analysis of GM molecular subtypes using the GO database. (E) GSVA analysis of GM molecular subtypes using 
the GO database. Abbreviations: GM: gut microbes; CRC: colorectal cancer; KEGG: Kyoto Encyclopedia of Genes and Genomes; DEGs: 
differentially expressed genes; GSEA: gene set enrichment analysis; GO: Gene Ontology; GSVA: gene set variation analysis. 

 

 
 

Figure 4. Immunological characterization and evaluation of immunotherapy for GM molecular subtypes. (A) Relative content 

distribution of 22 TICs in COAD samples. (B) Box plots showing the difference in abundance of 22 TICs between the two subtypes. (C) 
Comparison of stromal, immune, and ESTIMATE scores in the two subtypes. (D) Estimation of immunotherapy effect in the two subtypes 
using the TIDE algorithm. (E) Immune checkpoint expression in two GM subtypes. (F) Box plots of the estimated IC50 of chemotherapy 
drugs between the two GM subtypes. Abbreviations: GM: gut microbes; TICs: tumor-infiltrating immune cells; TIDE: Tumor Immune 
Dysfunction and Exclusion; IC50: semi-inhibitory concentration. 
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showed a strong positive correlation with most of the 

immune checkpoints. 

 

Construction and evaluation of GM risk signature 

 

The prognostic signature based on 2 GMRGs was 

established using stepwise multivariate Cox regression 

analysis (Figure 6A). The prognostic model formula 

was as follows: risk score = (−0.044870355898046 × 

expression level of IL7) + (−0.00841862944423366 × 

expression level of BCL10). Using the median risk 

score, CRC patients were divided into high-risk (n = 

166) and low-risk (n = 166) groups. The high-risk group 

showed a lower long-term survival rate compared to the 

low-risk group (p = 0.0034, Figure 6B). The sensitivity 

and specificity of the prognostic characteristics were 

assessed using receiver operating characteristic (ROC) 

curves for 5-, 10-, and 30-month overall survival rates, 

with area under the curves (AUCs) of 0.745, 0.726, and 

0.699, respectively (Figure 6C). Forest plots were used 

to present the results of the clinical characteristics 

analysis (Supplementary Figure 4). The relationship 

between risk models, GM molecular subtypes, CRC 

consensus molecular subtypes, and the end state was 

analyzed to gain a deeper understanding of disease 

mechanisms (Figure 6D). 

 

GMRBs survival analysis and immune correlation 

analysis 

 

To investigate the potential prognostic significance of 

the two GMRBs identified by multivariate Cox 

regression analysis, we conducted a correlation analysis 

between risk scores and the expression levels of 

GMRBs. Notably, a significant negative correlation was 

observed between IL7 and BCL10 and risk scores 

 

 
 

Figure 5. Discovery and investigation of GMRGs linked to prognostic outcomes. (A) Correlation analysis of 9 prognostic genes 
obtained by univariate Cox regression analysis. (B) Mutation landscape of 9 prognostic genes. (C) Correlation analysis of 9 prognostic genes 
with immune cells. (D) Display of 9 prognostic genes locations on the chromosome. (E) Correlation analysis of 9 prognostic genes with 
immune checkpoints. Abbreviation: GMRGs: gut microbes-related genes. 
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(Figure 7). Based on the median gene expression as a 

threshold, patients were categorized into high and low-

expression groups. Subsequent survival analysis was 

performed for each group, and K-M survival curves 

were generated to visually represent these findings 

(Figure 8A, 8B). The prognostic characteristics of both 

IL7 and BCL10 consistently demonstrated a better 

prognosis in the high-expression group. To further 

validate the prognostic characteristics, we performed an 

analysis in an independent GEO cohort, confirming the 

favorable prognosis associated with high expression of 

both IL7 and BCL10 (Supplementary Figure 5). 

Moreover, to elucidate the underlying biological 

mechanisms, we investigated their correlation with 

immune cell populations. Remarkably, both IL7 and 

BCL10 exhibited a strong association with CD4 T cells 

(Figure 8C). Moreover, both GMRBs displayed a 

positive correlation with M1 cell expression (Figure 

8D), indicating the potential involvement of GMRBs in 

its activation or recruitment. 
 

Expression analysis of GMRBs across diverse 

molecular subtypes, cancer types, and disease stages 
 

Differential expression analysis of the two GMRBs was 

performed across various molecular subtype systems, 

 

 
 

Figure 6. Creation of a risk profile through stepwise multiple Cox regression analysis based on two GMRGs. (A) Analysis of GMRG 

risk scores: distribution of risk scores among CRC patients; survival status and duration of CRC patients; heatmap illustrating the expression of 2 
genes. (B) K-M survival analysis of CRC patients in the high and low-risk groups in the TCGA-COAD cohort. (C) ROC calibration curves predicting 
overall survival at 5, 10, and 30 months in the high- and low-risk groups. (D) Sankey diagram illustrating the differential distribution of CRC 
patients in CRC consensus molecular subtypes, GM subtypes, survival outcomes, and high- and low-risk groups. Abbreviations: GMRGs: gut 
microbes-related genes; CRC: colorectal cancer; K-M: Kaplan-Meier; ROC: receiver operating characteristic; GM: gut microbes. 
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including consensus clustering (Figure 9A), high- and 

low-risk clustering (Figure 9B), and CRC consensus 

subtypes (Figure 9C). The analysis revealed higher 

expression levels of both IL7 and BCL10 in the C1 

subtype compared to the C2 subtype. Furthermore, in 

the high-risk group, their expression was lower than in 

 

 
 

Figure 7. Correlation analysis between risk scores and expression levels of the two GMRBs. The scatter plot from the 

correlation analysis revealed a significant negative correlation between the risk score and the expression levels of the two GMRBs (IL7 and 
BCL10). Abbreviation: GMRBs gut microbes-related biomarkers. 

 

 
 

Figure 8. Analysis of the prognostic impact of GMRBs and their correlation with immune response. (A) K-M analysis of OS in 

CRC patients based on IL7 expression. (B) K-M analysis of OS in CRC patients based on BCL10 expression. (C) Correlation analysis of GMRBs 
with immune cell infiltration. (D) Correlation analysis of GMRBs with M1 macrophages. Abbreviations: GMRBs: gut microbes-related 
biomarkers; K-M: Kaplan-Meier; OS: overall survival; CRC: colorectal cancer. 
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the low-risk group. Notably, the CMS1 subtype, 

characterized by a strong immune profile in CRC 

consensus subtypes, exhibited the highest expression of 

GMRBs. Pan-cancer analysis revealed that GMRBs 

showed differential expression in different cancers 

(Figure 9D, 9E). Interestingly, in the COAD, DLBC, 

PAAD, READ, and STAD datasets, both IL7 and 

BCL10 were expressed higher in the cancer group than 

in the normal group. Additionally, differential 

expression data of the GMRBs were obtained for 

healthy individuals, patients with inflammatory bowel 

disease (IBD), and CRC patients using the GSE37283, 

TCGA-COAD, and GSE3629 datasets. Both IL7 and 

BCL10 exhibited elevated expression levels in both 

IBD and CRC patients compared to healthy individuals 

(Figure 9F, 9G). When comparing the IBD and CRC 

groups, both genes showed higher expression levels in 

the CRC group (Figure 9H). Finally, in the TCGA-

COAD dataset, the expression levels of the GMRBs 

were analyzed in patients at different stages of CRC. 

The analysis showed that the expression of GMRBs 

showed a decreasing trend at different stages of the 

cancer (Figure 9I). 
 

DISCUSSION 
 

This study provides a comprehensive analysis of the 

role of GMRGs in CRC, including their subtyping, 

prognostic significance, immune-related characteristics, 

and potential as predictive markers. Initially, we 

examined the differential expression of 164 GMRGs in 

the TCGA-COAD dataset, comparing cancer and 

normal groups. Using a consensus clustering algorithm, 

we identified two distinct GM clusters, namely subtype 

C1 and subtype C2, in the TCGA-COAD cohort. These 

clusters were further validated using the GEO cohort. 

Through comprehensive functional enrichment and 

immune analysis, we embarked on a profound 

 

 
 

Figure 9. Analyze the expression status of GMRBs in different molecular subtypes, cancer types and disease stages. (A) 

GMRBs expression in molecular subtypes obtained by consensus clustering. (B) GMRBs expression in high-risk and low-risk groups. (C) 
GMRBs expression in CRC consensus molecular subtypes. (D, E) Expression of IL7 and BCL10 in various cancer types. (F) Differential 
expression of GMRBs between healthy individuals and patients with IBD. (G) Differential expression of GMRBs between healthy individuals 
and patients with CRC. (H) Differential expression of GMRBs between patients with IBD and patients with CRC. (I) Differential expression of 
GMRBs in CRC patients at different disease stages. Abbreviations: GMRBs: gut microbes-related biomarkers; CRC: colorectal cancer; IBD: 
inflammatory bowel disease. 
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exploration of the intricate biological functionalities and 

immunological characteristics exhibited by each cancer 

subtype. By conducting univariate Cox regression 

analysis, we found that nine genes (MTOR, MMP9, 

NPC1L1, PKN2, PTGS2, SULT2B1, BCL10, STAT3, 

IL7) exhibited significant associations with OS within 

CRC patients. We also examined characteristics such as 

mutations and immunity in these genes. Further analysis 

using stepwise multifactorial Cox regression identified 

two selected OS-related GMRBs, namely IL7 and 

BCL10. Prognostic models were developed based on 

these GMRBs, allowing for clinical survival predictions. 

Additionally, we investigated the association of IL7 and 

BCL10 with prognosis and immunity. We explored their 

expression levels across different staging systems, 

cancer types, disease stages, and CRC stages. In 

summary, our study revealed novel insights into the GM 

molecular subtypes of CRC and identified IL7 and 

BCL10 as predictive GM markers for CRC. 

 

Molecular subtyping of tumors has garnered 

considerable attention in cancer research due to its 

relevance in prognostic prediction and understanding 

the composition of the TME. However, there remains a 

limited number of comprehensive studies investigating 

the role of GMRGs in molecular subtypes of CRC. 

Previous research by Zheng et al. focused on stem cell-

related molecular subtypes associated with CRC 

prognosis [19], while Dai et al. established a 

senescence-related subtype using 91 senescence-related 

genes [20]. Additionally, Yuan et al. employed a non-

negative matrix factorization clustering algorithm to 

identify energy metabolism-related CRC subtypes [21]. 

In this study, we aimed to identify distinct GM 

molecular subtypes (C1 and C2) based on their 

expression profiles in CRC. Our findings revealed a 

strong association between the C1 subtype and CMS1 

and CMS4 subtypes, representing immune activation 

and stromal invasion, respectively, as defined by Justin 

et al. [22]. Furthermore, enrichment analysis 

demonstrated that C1 subtypes have significant 

regulatory effects on immune responses and immune 

system processes, particularly in Toll-like receptor 

(TLR) signaling, mitogen-activated protein kinase 

kinase kinase 14 (MAP3K14)/NF-κB signaling, and 

vascular endothelial growth factor signaling pathways. 

TLR signaling is critical for innate and adaptive 

immunity, as it plays a crucial role in the development 

and maturation of the human immune system [23]. This 

receptor detects pathogen-associated molecular patterns, 

activating the immune system and providing 

opportunities for the use of tailored adjuvants with 

specific immune effects in targeted cancer therapy [24]. 
 

Regarding TME patterns, the C1 subtype exhibited a 

substantial enrichment of M1 macrophages known for 

their pro-inflammatory and anti-tumor properties [25]. 

These M1 macrophages possess enhanced phagocytic 

activity and secrete pro-inflammatory cytokines and 

chemokines that facilitate the recruitment and activation 

of cytotoxic T cells and natural killer cells, effectively 

targeting and eliminating malignant cells [26]. 

Additionally, M1 macrophages promote tumor antigen 

presentation and support the generation of a robust anti-

tumor immune response [27]. Stimulators of the 

classical pathway, such as bacterial components, 

interferon-gamma, lipopolysaccharide, and TLRs, 

promote the polarization of M1 macrophages. These 

polarized M1 macrophages induce oncogenic effects by 

releasing pro-inflammatory cytokines (e.g., interleukin 

1 and IL12) and cytotoxic agents (e.g., reactive oxygen 

species and TNF) [28, 29]. In addition, the C2 subtype 

exhibited a significant enrichment of Tregs, which play 

a complex role in the progression and immune evasion 

of CRC [30]. Tregs, characterized by FOXP3 

expression, are recruited to CRC sites via chemokine 

signaling and exert immunosuppressive functions by 

suppressing effector T cell responses and hindering 

anti-tumor immune surveillance [31]. Mechanistically, 

Tregs exert their suppressive effects through the 

secretion of immunosuppressive cytokines such as IL10 

and transforming growth factor-β (TGF-β), as well as 

direct cell-to-cell contact involving immune checkpoint 

molecules such as CTLA4 [32, 33]. The abundance of 

Tregs within CRC tumors is associated with a poor 

prognosis and reduced patient survival [34]. Notably, 

our study found that the outcome of immune infiltration 

in both GM molecular subtypes was consistent with 

prognosis, with patients characterized by TME 

activation in the C1 subtype exhibiting a longer survival 

time than those with TME suppression in the C2 

subtype. 

 

Based on GM molecular subtypes, we identified 2 core 

GMRGs (IL7 and BCL10). IL7 is an important cytokine 

that can be regulated by gut microorganisms and is 

involved in human immune response and lymphocyte 

development [35–37]. Intestinal symbionts with 

preventive or inhibitory effects on colorectal cancer, 

Bifidobacterium [38] and Lactobacillus reuteri [39], 

have been disclosed to have significant regulatory 

effects on host IL7 expression [35, 40]. Among them, a 

specific subspecies of Lactobacillus reuteri, clade IV 

strains, was able to specifically activate human myeloid 

cells and significantly increase their IL7 expression 

[40]. Current research substantiates the vital role of IL7 

throughout all phases of T-cell development [41, 42] 

and highlights its importance in the preservation of 

quiescent T cells and the establishment and sustenance 
of memory T cell populations [43, 44]. The restoration 

of T cell homeostasis through the activation of the 

suppressor of cytokine signaling (SOCS)/signal 
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transducer and activator of transcription 5 (STAT5) 

pathway [45] has been demonstrated for IL7, alongside 

its role in guiding T cell migration, homing and 

activation through the induction of chemokine and 

integrin expression [46, 47]. Activated T cells then 

mediate the tumor antigen recognition process of CRC 

immunotherapy, a key process that greatly determines 

the efficacy and availability of antigen-targeted 

immunotherapy for cancer patients [48, 49]. In 

particular, it should be emphasized that owing to 

extensive and potent biological effects of IL7 on T-cell 

survival, development, proliferation, and memory 

maintenance, several studies have employed it as a 

molecular adjunct to augment the antigenicity elicited 

by cancer vaccines and sustain long-term memory 

responses against cancer. Zhao et al. reported persistent 

and active IL7 production in cancer vaccines modified 

with the IL7 gene, with undetectable levels in tumor 

cells [50]. The supernatant from transfected cancer cells 

was found to enhance T-cell proliferation, with a 

volume of 10 μl corresponding to 1 ng of recombinant 

human IL7 protein [46]. Whole tumor cell-based 

vaccines expressing IL7 demonstrated vigorous 

preventative and therapeutical outcomes in murine 

models, inhibiting tumorigenesis and extending survival 

time. These vaccines also increased T-lymphocytes of 

the CD4 and CD8 subsets infiltration within tumor 

fields [50, 51]. In a Phase-II clinical trial, subcutaneous 

injection of IL7 in oncology patients under treatment 

with the FDA-approved tumoral vaccine sipuleucel-T 

resulted in the augmentation of CD4 and CD8 T 

lymphocytes [52, 53]. Enhanced levels of intracellular 

cytokines, such as interleukin 2(IL2), TNF-α, 

interferon-gamma (IFN-γ), and IL6, were observed 

within the memory subpopulation, indicating that IL7 

may stimulate a memory immune response targeting 

cancer. Furthermore, Jeong et al. investigated the 

delivery of a fusion protein containing human 

macrophage migration inhibitory factor (MIF) and IL7 

through Mycobacterium smegmatis, utilized as a 

bacterial-based cancer vaccine [54]. This vaccine 

elicited anti-tumor immune responses through the 

recruitment of potent T cells and reduced the infiltration 

of myeloid-derived suppressor cells (MDSCs) within 

the TME. Notably, combining this vaccine with PDL1 

immunotherapy led to heightened antitumor effects. 

Furthermore, in our study, we consistently observed 

elevated IL7 expression in the immune inflammation-

activated phenotype C1. This higher expression was 

significantly associated with CD4 T cell infiltration in 

TME and correlated with a favorable prognosis in the 

high-expression group. When comparing the normal, 

IBD, and cancer groups, we found that IL7 levels were 
higher in the cancer group compared to the control 

group but lower than in the IBD group. In conclusion, 

the above findings not only reveal that IL7 regulated by 

GM has the potential to serve as a cancer vaccine 

adjuvant and a novel immune checkpoint in CRC, but 

also emphasize the great feasibility of in-depth study of 

certain specific gut-microbial subspecies including 

Lactobacillus reuteri clade IV strains for the realization 

of microecological therapies for CRC. 

 

BCL10, a critical member of the caspase activation and 

recruitment domain (CARD) family, plays a pivotal role 

in mediating inflammatory responses [55]. Through 

interactions with CARD11 and mucosa-associated 

lymphoid tissue lymphoma translocation protein 1 

(MALT1), it forms the CARD11-BCL10-MALT1 

(CBM) complex [56]. Activation of the CBM complex 

downstream of B-cell receptor (BCR) or T-cell receptor 

(TCR) signaling in B and T cells initiates the NF-κB 

and mitogen-activated protein kinase (MAPK) 

pathways, leading to a robust phenotypic response [57, 

58]. In particular, hyperactivation of the NF-κB 

pathway permits tumor-selective reprogramming of the 

chemokine microenvironment, and this reprogramming 

greatly enhances the recruitment of effector CD8(+) T 

cells, which in turn leads to the generation of potent 

anti-CRC effects [59, 60]. Notably, butyrate produced 

by intestinal Roseburia intestinalis can bind directly to 

T cell surface receptors, which would likely induce 

CD8 T cell cell cell activation through CBM complex 

activation of NF-κB signaling [61]. In addition, 

Aberrant CBM function resulting from BCL10 

mutations is a key factor in a range of diseases, 

including B-cell lymphoma, autoimmune diseases, and 

IBD [62–64]. Xia et al. reported frequent mutations in 

BCL10 signaling mediators, which chronically activate 

the CBM signaling amplification complex, thereby 

contributing to an unfavorable outcome in activated B-

cell-like diffuse large B-cell lymphoma (ABC-DLBCL) 

[62]. Similarly, Zhou et al. demonstrated a significant 

positive correlation between higher expression levels of 

BCL10 and favorable survival outcomes in colon cancer 

patients [65]. Furthermore, Borthakur et al. found that 

carrageenan, a high molecular weight sulfated 

polygalactan, significantly increases BCL10 secretion in 

patients with IBD [66]. Collectively, these studies 

underscore BCL10 as a valuable prognostic indicator in 

CRC patients. The enriched NF-κB and MAPK 

pathways, along with its association with T and B cells, 

suggest that BCL10 may exert its effects by inducing an 

inflammatory response enhancing killing and inhibiting 

tumor cell proliferation, further emphasizing its 

potential significance. 

 

Although our study has yielded encouraging results, 

there are several specific limitations that should be 
addressed. Firstly, while we utilized open data sources 

including TCGA and GEO to construct, validate, and 

test GM subtypes, we acknowledge the necessity for 
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external independent large datasets with comprehensive 

coverage to facilitate further in-depth investigations. 

Secondly, the lack of complete and reliable 

experimental evidence poses challenges in validating 

the actual impact of hub genes in clinical immuno-

therapy and comprehending the influence of micro-

ecological modulators on hub gene expression levels. In 

addition, the analysis of the relationship between GM 

and host genes in the paper relied primarily on existing 

literature, and further experiments may be needed to 

determine the specific mechanisms linking GM, 

GMRBs, and CRC. Furthermore, it is imperative to 

acknowledge that the exact mechanism underlying the 

role of GM in CRC remains unclear, and the fluctuation 

in the amount and ratio of pathogenic and non-

pathogenic GMs in different genera is often implicated 

in the development and progression of CRC through its 

involvement in the role of GM. Therefore, further 

research in this area is warranted. Future studies should 

endeavor to elucidate the intricate mechanisms 

underlying the involvement of these two GMRBs in 

CRC progression and to meticulously evaluate their 

efficacy in the context of clinical immunotherapy and 

microecological adjuvant therapy for CRC. 

 

In conclusion, this paper presents novel CRC subtypes 

and biomarkers associated with GM, thereby providing 

new potentially feasible options for patient risk 

stratification and immunotherapy. 

 

MATERIALS AND METHODS 
 

Data acquisition 

 

We downloaded RNA sequencing (RNA-seq) 

information and clinical information of CRC patients 

from The Cancer Genome Atlas (TCGA; 

https://portal.gdc.cancer.gov/) database, which was 

processed to obtain 332 cancer samples as well as 41 

normal samples. Then, the GSE87211, GSE161158, 

GSE37283, and GSE3629 datasets were collected from 

the Gene Expression Omnibus (GEO; https://www.ncbi. 

nlm.nih.gov/geo/) project. The GSE87211 and 

GSE161158 datasets were used as external validation 

sets, while the GSE37283 and GSE3629 datasets 

contained the expression profiles of patients with colitis. 

In addition, somatic mutation data were acquired from 

TCGA, containing 455 CRC samples. 

 

Consensus clustering of GMRGs  

 

We employed a range of keyword search strategies in 

the PubMed database, including “Medical Subject 

Headings (MeSH)”, “probiotics”, “microorganisms”, 

“microbiome”, “microbiome”, “bacteria”, and “fungi” 

in conjunction with “host”, “human”, “intestinal”, 

“colitis”, “Crohn’s disease”, “ulcerative colitis”, 

“colorectal”, and “colon cancer” term combinations to 

retrieve related articles. The reference lists of relevant 

articles were also reviewed, resulting in 164 GMRGs, as 

detailed in Supplementary Table 2. Based on the 

GMRGs expression levels, we applied consensus 

unsupervised clustering to categorize patients into 

separate GM molecular subtypes using the 

“ConsensusClusterPlus” R package [67]. Then, we 

compared the overall survival (OS) of GM molecular 

subtypes with the assistance of the R packages 

“survminer” and “survival”. Principal component 

analysis (PCA) and heatmap visualization were 

conducted to show the classification of GM molecular 

subtypes. Subsequently, it was further validated  

and tested on external datasets GSE87211 and 

GSE16115. 

 

Association analysis of GM molecular subtypes with 

consensus molecular subtypes of CRC  

 

To classify the CRC patient samples into consensus 

subtypes, we employed the “Biobase” and “CMScaller” 

packages in R. We then visualized the proportion of 

GM molecular subtypes in each consensus subtype 

using the “tidyverse” and “ggplot2” packages. This 

approach allowed for a comprehensive exploration of 

the characteristics of the GM molecular subtypes and 

their relationship with consensus subtypes. 

 

Differential expression analysis and functional 

enrichment of GM molecular subtypes 

 

The limma, DESeq2, and edgeR packages in R were 

utilized to determine differentially expressed genes 

(DEGs) within dissimilar GM molecular subtypes. The 

significant criterion for identifying DEGs was set to 

|log2 (FoldChange)| > (mean(abs(log2FoldChange)) + 2 

× sd(abs(log2FoldChange))) and adjusted P-value < 

0.05. The “ReactomePA” and “org.Hs.eg.db” R 

packages were used for the Kyoto Encyclopedia of 

Genes and Genomes (KEGG) and Reactome enrichment 

analyses of DEGs. 

 

Gene set enrichment analysis (GSEA) and gene set 

variation analysis (GSVA) 

 

The gseGO function of “clusterProfiler” package was 

deployed to examine the underlying mechanism of 

diverse GM molecular subtypes, subsequently 

identifying enriched Gene Ontology (GO) pathways. To 

discern dissimilar biological functions among GM 

molecular subtypes, GSVA was executed on 
“c5.go.bp.v7.5.symbols” using the “GSVA” R package. 

Visualization of results was carried out via 

implementation of the “pheatmap” R package. 

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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Immune cell infiltration analysis 

 

We used CIBERSORT deconvolution algorithm for 

quantifying abundance of tumor-infiltrating immune 

cells (TICs) in each CRC sample [68]. Specifically,  

we downloaded the TICs gene expression signature 

matrix on the CIBERSORT website platform 

(https://cibersortx.stanford.edu/) and employed it in our 

analysis. This allowed us to accurately determine the 

composition and quantity of TICs present in each 

sample and provided valuable insights into the immune 

microenvironment of CRC. Then, we used the R 

package “ESTIMATE” to assess the degree of 

infiltration of tumor fibrous tissue and immune cells to 

obtain a comprehensive assessment of the overall TME. 

 

Evaluation of immunotherapy response and immune 

checkpoints 

 

Therapy using immune checkpoint blockade is 

emerging as a promising strategy for cancer treatment 

[69]. In this study, we employed the Tumor Immune 

Dysfunction and Exclusion (TIDE) model to investigate 

the key mechanisms underlying tumor immune evasion 

and to forecast the therapeutic response of GM subtypes 

using expression profile data [70]. Moreover, we 

estimated the expression of programmed cell death 1 

(PD1) and cytotoxic T-lymphocyte associated protein 4 

(CTLA4) immune checkpoint molecules in different 

subtypes, which can regulate self-immune response by 

modulating T cell activity. This analysis allowed us to 

determine the sensitivity of different subtypes to 

immune checkpoint inhibitor therapy [71]. 

 

Drug susceptibility analysis 

 

For the evaluation of the therapeutic efficacy of the 

drugs in both subgroups, we utilized the “pRRophetic” 

R package to compute semi-inhibitory concentration 

(IC50) values corresponding to the drugs. 

 

Identification and analysis of prognosis-related 

GMRGs 

 

We performed rigorous analyses using the TCGA-

COAD dataset to determine GMRGs associated with 

prognosis, utilizing a univariate Cox regression 

analysis. To further assess the degree of relationship 

among these genes, we calculated Pearson correlation 

coefficients using the highly regarded “Hmisc” R 

package. The post-screening genes were then subjected 

to rigorous visualization and analysis using the 

powerful “maftool” package. In addition, we employed 
advanced R packages, such as “psych”, “GSVA”, and 

“ggcorrplot”, to comprehensively investigate the 

association between prognostic GMRGs and 

tumor-infiltrating immune cells. To elucidate the 

chromosomal localization of prognosis-associated 

GMRGs, we utilized the “RCircos” package. Finally, 

we conducted a thorough examination of the association 

between prognosis-related GMRGs and common 

immune checkpoints, providing a critical understanding 

of the potential impact of these genes on the immune 

response to cancer. 

 

Construction and evaluation of GM risk signature 

 

On the basis of prognosis-associated genes by 

univariate Cox regression analysis, we performed 

multivariate Cox regression analysis on the TCGA-

COAD dataset to construct a prediction model 

associated with GM and to obtain GMRBs. All CRC 

patients were stratified into high- and low-risk groups 

according to the median risk score calculated from 

TCGA-COAD data. The log-rank test was applied to 

investigate the difference in OS between the high- and 

low-risk groups, and the sensitivity and specificity of 

the features were evaluated by time-dependent receiver 

operating characteristic (ROC) curve analysis. The 

association between molecular consensus subtypes, 

consensus clustering subtypes, endpoint survival status, 

and risk models was also visualized by Sankey diagram. 

 

GMRBs survival analysis and immune correlation 

analysis 

 

To investigate the potential prognostic implications of 

two GMRBs identified through multivariate Cox 

regression analysis, we correlated risk scores with the 

expression levels of these genes. Patients were divided 

into high- and low-expression cohorts according to 

median gene-expressed levels. Survival analysis was 

subsequently conducted for each group, and Kaplan-

Meier (K-M) survival curves were constructed to 

visualize these results. To gain further insights into the 

underlying biological mechanisms driving the 

prognostic role of these genes, we examined their 

correlation with representative immune cells using the 

“ggcor” package. 

 

Expression analysis of GMRBs across diverse 

molecular subtypes, cancer types, and disease stages 

 

We performed differential expression profiling of two 

GMRBs in various molecular subtype systems, 

encompassing consensus clustering, high-low risk 

clustering, and CRC consensus subtypes. This analysis 

was carried out employing the “ggpubr” and “ggsignif” 

software packages, with the goal of elucidating  
the association between GMRBs and the prognostic 

value within different subtypes. Furthermore, a 

comprehensive pan-cancer investigation of the GMRBs 

https://cibersortx.stanford.edu/
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was conducted using the web-based tool “GEPIA” 

(http://gepia.cancer-pku.cn/). Additionally, we acquired 

differential expression data for the GMRBs in healthy 

individuals, patients diagnosed with V, and individuals 

with CRC, utilizing the GSE37283, TCGA-COAD, and 

GSE3629 datasets. Finally, within the TCGA-COAD 

dataset, we performed expression profiling of the 

GMRBs across distinct stages of CRC. 

 

Statistical analysis 

 

Data analyses were carried out with R software v4.2.0. 

Pearson’s coefficient or Spearman’s coefficient was used 

to calculate the correlation between variables. 

Continuous variables fitted to a normal distribution 

between two groups were compared using t-tests. 

Analysis of variance was employed to compare more 

than two groups. Count data between groups were tested 

by χ2. All statistical calculations were evaluated by the 

following standards: *P < 0.05; **P < 0.01; ***P < 0.001. 

 

Abbreviations 
 

GM: gut microbes; CRC: colorectal cancer; TCGA: The 

Cancer Genome Atlas; GEO: Gene Expression 

Omnibus; GMRBs: gut microbes-related biomarkers; 

IL10: interleukin 10; FOXP3: forkhead box P3; Tregs: 

regulatory T cells; IL23: interleukin 23; IL17: 

interleukin 17; NF-κB: nuclear factor kappa B; STAT3: 

signal transducer and activator of transcription 3; AHR: 

aryl hydrocarbon receptor; IL6: interleukin 6; IL12: 

interleukin 12; TNF: tumor necrosis factor; IL7: 

interleukin 7; DC: dendritic cell; PDL1: programmed 

death ligand 1; GMRGs: gut microbes-related genes; 

PCA: principal component analysis; K-M: Kaplan-

Meier; OS: overall survival; CMS: consensus molecular 

subtypes; DEGs: differentially expressed genes; KEGG: 

Kyoto Encyclopedia of Genes and Genomes; GO: Gene 

Ontology; GSEA: gene set enrichment analysis; GSVA: 

gene set variation analysis; TME: tumor micro-

environment; TICs: tumor-infiltrating immune cells; 

TGF-β: transforming growth factor-β; TIDE: Tumor 

Immune Dysfunction and Exclusion; PD1: programmed 

cell death 1; CTLA4: cytotoxic T-lymphocyte 

associated protein 4; ROC: receiver operating 

characteristic; AUCs: area under the curves; IBD: 

inflammatory bowel disease; TLR: Toll-like receptor; 

MAP3K14: mitogen-activated protein kinase kinase 

kinase 14; TGF-β: transforming growth factor-β; SOCS: 

suppressor of cytokine signaling; STAT5: signal 

transducer and activator of transcription 5; IL2: 

interleukin 2; IFN-γ: interferon-gamma ; MIF: 

migration inhibitory factor; MDSCs: myeloid-derived 

suppressor cells; IL13: interleukin 13; CARD: caspase 

activation and recruitment domain; MALT1: mucosa-

associated lymphoid tissue lymphoma translocation 

protein 1; CBM: CARD11-BCL10-MALT1; BCR: B-

cell receptor; TCR: T-cell receptor; MAPK: mitogen-

activated protein kinase; ABC-DLBCL: activated B-

cell-like diffuse large B-cell lymphoma; RNA-seq: 

RNA sequencing; MeSH: Medical Subject Headings. 

 

AUTHOR CONTRIBUTIONS 
 

L-MW and K-XM contributed to the conception and 

design of the study. X-LL was the major contributor to 

writing the manuscript. G-LZ was involved in the 

writing of the manuscript, contributing more to the 

research and methodological studies. SY-L is mainly 

responsible for data management and validation. YC-L 

contributed to the supervision and resources. All authors 

read and approved the final manuscript. 

 

ACKNOWLEDGMENTS 
 

We would like to express our sincere gratitude to all 

individuals and institutions who contributed to this 

research. 

 

CONFLICTS OF INTEREST 
 

The authors declare that the research was conducted in 

the absence of any commercial or financial relationships 

that could be construed as a potential conflict of interest. 

 

FUNDING 
 

This work was supported by the National Natural 

Science Foundation of China (81972749), the Science 

and Technology Project of Liaoning (2021JH2/ 

10300020), and the Innovative Teams Project in Key 

Areas of Dalian (2021RT01). 

 

REFERENCES 
 

1. Morgan E, Arnold M, Gini A, Lorenzoni V, Cabasag CJ, 
Laversanne M, Vignat J, Ferlay J, Murphy N, Bray F. 
Global burden of colorectal cancer in 2020 and 2040: 
incidence and mortality estimates from GLOBOCAN. 
Gut. 2023; 72:338–44. 
https://doi.org/10.1136/gutjnl-2022-327736 
PMID:36604116 

2. Araghi M, Soerjomataram I, Jenkins M, Brierley J, 
Morris E, Bray F, Arnold M. Global trends in colorectal 
cancer mortality: projections to the year 2035. Int J 
Cancer. 2019; 144:2992–3000. 
https://doi.org/10.1002/ijc.32055 
PMID:30536395 

3. Liu Y, Zhang C, Wang Q, Wu K, Sun Z, Tang Z, Zhang B. 
Temporal Trends in the Disease Burden of Colorectal 
Cancer with Its Risk Factors at the Global and 

http://gepia.cancer-pku.cn/
https://doi.org/10.1136/gutjnl-2022-327736
https://pubmed.ncbi.nlm.nih.gov/36604116
https://doi.org/10.1002/ijc.32055
https://pubmed.ncbi.nlm.nih.gov/30536395


www.aging-us.com 2263 AGING 

National Level from 1990 to 2019, and Projections 
Until 2044. Clin Epidemiol. 2023; 15:55–71. 
https://doi.org/10.2147/CLEP.S388323 
PMID:36659904 

 4. Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, 
Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, 
Hemminki K. Environmental and heritable factors in 
the causation of cancer--analyses of cohorts of twins 
from Sweden, Denmark, and Finland. N Engl J Med. 
2000; 343:78–85. 
https://doi.org/10.1056/NEJM200007133430201 
PMID:10891514 

 5. Peto R. The fraction of cancer attributable to lifestyle 
and environmental factors in the UK in 2010. Br J 
Cancer. 2011 (Suppl 2); 105:S1. 
https://doi.org/10.1038/bjc.2011.473 
PMID:22158311 

 6. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, 
Manichanh C, Nielsen T, Pons N, Levenez F, Yamada 
T, Mende DR, Li J, Xu J, et al, and MetaHIT 
Consortium. A human gut microbial gene catalogue 
established by metagenomic sequencing. Nature. 
2010; 464:59–65. 
https://doi.org/10.1038/nature08821 
PMID:20203603 

 7. Chung L, Thiele Orberg E, Geis AL, Chan JL, Fu K, 
DeStefano Shields CE, Dejea CM, Fathi P, Chen J, 
Finard BB, Tam AJ, McAllister F, Fan H, et al. 
Bacteroides fragilis Toxin Coordinates a Pro-
carcinogenic Inflammatory Cascade via Targeting of 
Colonic Epithelial Cells. Cell Host Microbe. 2018; 
23:203–14.e5. 
https://doi.org/10.1016/j.chom.2018.01.007 
PMID:29398651 

 8. Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. 
Fusobacterium nucleatum promotes colorectal 
carcinogenesis by modulating E-cadherin/β-catenin 
signaling via its FadA adhesin. Cell Host Microbe. 
2013; 14:195–206. 
https://doi.org/10.1016/j.chom.2013.07.012 
PMID:23954158 

 9. Yang Y, Weng W, Peng J, Hong L, Yang L, Toiyama Y, 
Gao R, Liu M, Yin M, Pan C, Li H, Guo B, Zhu Q, et al. 
Fusobacterium nucleatum Increases Proliferation of 
Colorectal Cancer Cells and Tumor Development in 
Mice by Activating Toll-Like Receptor 4 Signaling to 
Nuclear Factor-κB, and Up-regulating Expression of 
MicroRNA-21. Gastroenterology. 2017; 152:851–
66.e24. 
https://doi.org/10.1053/j.gastro.2016.11.018 
PMID:27876571 

10. Lin Y, Fan L, Qi Y, Xu C, Jia D, Jiang Y, Chen S, Wang L. 
Bifidobacterium adolescentis induces Decorin+ 

macrophages via TLR2 to suppress colorectal 
carcinogenesis. J Exp Clin Cancer Res. 2023; 42:172. 
https://doi.org/10.1186/s13046-023-02746-6 
PMID:37464382 

11. Dikeocha IJ, Al-Kabsi AM, Chiu HT, Alshawsh MA. 
Faecalibacterium prausnitzii Ameliorates Colorectal 
Tumorigenesis and Suppresses Proliferation of 
HCT116 Colorectal Cancer Cells. Biomedicines. 2022; 
10:1128. 
https://doi.org/10.3390/biomedicines10051128 
PMID:35625865 

12. Obuya S, Elkholy A, Avuthu N, Behring M, Bajpai P, 
Agarwal S, Kim HG, El-Nikhely N, Akinyi P, Orwa J, 
Afaq F, Abdalla M, Michael A, et al. A signature of 
Prevotella copri and Faecalibacterium prausnitzii 
depletion, and a link with bacterial glutamate 
degradation in the Kenyan colorectal cancer patients. 
J Gastrointest Oncol. 2022; 13:2282–92. 
https://doi.org/10.21037/jgo-22-116 
PMID:36388691 

13. Konieczna P, Groeger D, Ziegler M, Frei R, Ferstl R, 
Shanahan F, Quigley EM, Kiely B, Akdis CA, O'Mahony 
L. Bifidobacterium infantis 35624 administration 
induces Foxp3 T regulatory cells in human peripheral 
blood: potential role for myeloid and plasmacytoid 
dendritic cells. Gut. 2012; 61:354–66. 
https://doi.org/10.1136/gutjnl-2011-300936 
PMID:22052061 

14. Sichetti M, De Marco S, Pagiotti R, Traina G, Pietrella 
D. Anti-inflammatory effect of multistrain probiotic 
formulation (L. rhamnosus, B. lactis, and B. longum). 
Nutrition. 2018; 53:95–102. 
https://doi.org/10.1016/j.nut.2018.02.005 
PMID:29674267 

15. Pernomian L, Duarte-Silva M, de Barros Cardoso CR. 
The Aryl Hydrocarbon Receptor (AHR) as a Potential 
Target for the Control of Intestinal Inflammation: 
Insights from an Immune and Bacteria Sensor 
Receptor. Clin Rev Allergy Immunol. 2020; 59:382–90. 
https://doi.org/10.1007/s12016-020-08789-3 
PMID:32279195 

16. Sivan A, Corrales L, Hubert N, Williams JB, Aquino-
Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B, 
Alegre ML, Chang EB, Gajewski TF. Commensal 
Bifidobacterium promotes antitumor immunity and 
facilitates anti-PD-L1 efficacy. Science. 2015; 
350:1084–9. 
https://doi.org/10.1126/science.aac4255 
PMID:26541606 

17. Dai Z, Coker OO, Nakatsu G, Wu WKK, Zhao L, Chen Z, 
Chan FKL, Kristiansen K, Sung JJY, Wong SH, Yu J. 
Multi-cohort analysis of colorectal cancer 
metagenome identified altered bacteria across 

https://doi.org/10.2147/CLEP.S388323
https://pubmed.ncbi.nlm.nih.gov/36659904
https://doi.org/10.1056/NEJM200007133430201
https://pubmed.ncbi.nlm.nih.gov/10891514
https://doi.org/10.1038/bjc.2011.473
https://pubmed.ncbi.nlm.nih.gov/22158311
https://doi.org/10.1038/nature08821
https://pubmed.ncbi.nlm.nih.gov/20203603
https://doi.org/10.1016/j.chom.2018.01.007
https://pubmed.ncbi.nlm.nih.gov/29398651
https://doi.org/10.1016/j.chom.2013.07.012
https://pubmed.ncbi.nlm.nih.gov/23954158
https://doi.org/10.1053/j.gastro.2016.11.018
https://pubmed.ncbi.nlm.nih.gov/27876571
https://doi.org/10.1186/s13046-023-02746-6
https://pubmed.ncbi.nlm.nih.gov/37464382
https://doi.org/10.3390/biomedicines10051128
https://pubmed.ncbi.nlm.nih.gov/35625865
https://doi.org/10.21037/jgo-22-116
https://pubmed.ncbi.nlm.nih.gov/36388691
https://doi.org/10.1136/gutjnl-2011-300936
https://pubmed.ncbi.nlm.nih.gov/22052061
https://doi.org/10.1016/j.nut.2018.02.005
https://pubmed.ncbi.nlm.nih.gov/29674267
https://doi.org/10.1007/s12016-020-08789-3
https://pubmed.ncbi.nlm.nih.gov/32279195
https://doi.org/10.1126/science.aac4255
https://pubmed.ncbi.nlm.nih.gov/26541606


www.aging-us.com 2264 AGING 

populations and universal bacterial markers. 
Microbiome. 2018; 6:70. 
https://doi.org/10.1186/s40168-018-0451-2 
PMID:29642940 

18. Sadrekarimi H, Gardanova ZR, Bakhshesh M, 
Ebrahimzadeh F, Yaseri AF, Thangavelu L, Hasanpoor 
Z, Zadeh FA, Kahrizi MS. Emerging role of human 
microbiome in cancer development and response to 
therapy: special focus on intestinal microflora. 
J Transl Med. 2022; 20:301. 
https://doi.org/10.1186/s12967-022-03492-7 
PMID:35794566 

19. Zheng H, Liu H, Li H, Dou W, Wang J, Zhang J, Liu T, 
Wu Y, Liu Y, Wang X. Characterization of stem cell 
landscape and identification of stemness-relevant 
prognostic gene signature to aid immunotherapy  
in colorectal cancer. Stem Cell Res Ther. 2022; 
13:244. 
https://doi.org/10.1186/s13287-022-02913-0 
PMID:35681225 

20. Dai JJ, Fu YY, Zhong XQ, Cen W, Ye MF, Chen XH, Pan 
YF, Ye LC. Identification of Senescence-Related 
Subtypes, the Development of a Prognosis Model, 
and Characterization of Immune Infiltration and Gut 
Microbiota in Colorectal Cancer. Front Med 
(Lausanne). 2022; 9:916565. 
https://doi.org/10.3389/fmed.2022.916565 
PMID:35721059 

21. Yuan Y, Chen J, Wang J, Xu M, Zhang Y, Sun P, Liang L. 
Development and Clinical Validation of a Novel 4-
Gene Prognostic Signature Predicting Survival in 
Colorectal Cancer. Front Oncol. 2020; 10:595. 
https://doi.org/10.3389/fonc.2020.00595 
PMID:32509568 

22. Guinney J, Dienstmann R, Wang X, de Reyniès A, 
Schlicker A, Soneson C, Marisa L, Roepman P, 
Nyamundanda G, Angelino P, Bot BM, Morris JS, 
Simon IM, Gerster S, et al. The consensus molecular 
subtypes of colorectal cancer. Nat Med. 2015; 
21:1350–6. 
https://doi.org/10.1038/nm.3967 
PMID:26457759 

23. Lim KH, Staudt LM. Toll-like receptor signaling. Cold 
Spring Harb Perspect Biol. 2013; 5:a011247. 
https://doi.org/10.1101/cshperspect.a011247 
PMID:23284045 

24. Kaur A, Baldwin J, Brar D, Salunke DB, Petrovsky N. 
Toll-like receptor (TLR) agonists as a driving force 
behind next-generation vaccine adjuvants and 
cancer therapeutics. Curr Opin Chem Biol. 2022; 
70:102172. 
https://doi.org/10.1016/j.cbpa.2022.102172 
PMID:35785601 

25. Mosser DM, Edwards JP. Exploring the full spectrum 
of macrophage activation. Nat Rev Immunol. 2008; 
8:958–69. 
https://doi.org/10.1038/nri2448 
PMID:19029990 

26. Li Y, Chen Z, Han J, Ma X, Zheng X, Chen J. Functional 
and Therapeutic Significance of Tumor-Associated 
Macrophages in Colorectal Cancer. Front Oncol. 2022; 
12:781233. 
https://doi.org/10.3389/fonc.2022.781233 
PMID:35186730 

27. Shapouri-Moghaddam A, Mohammadian S, Vazini H, 
Taghadosi M, Esmaeili SA, Mardani F, Seifi B, 
Mohammadi A, Afshari JT, Sahebkar A. Macrophage 
plasticity, polarization, and function in health and 
disease. J Cell Physiol. 2018; 233:6425–40. 
https://doi.org/10.1002/jcp.26429 
PMID:29319160 

28. Tariq M, Zhang J, Liang G, Ding L, He Q, Yang B. 
Macrophage Polarization: Anti-Cancer Strategies to 
Target Tumor-Associated Macrophage in Breast 
Cancer. J Cell Biochem. 2017; 118:2484–501. 
https://doi.org/10.1002/jcb.25895 
PMID:28106295 

29. Wunderlich CM, Ackermann PJ, Ostermann AL, 
Adams-Quack P, Vogt MC, Tran ML, Nikolajev A, 
Waisman A, Garbers C, Theurich S, Mauer J, 
Hövelmeyer N, Wunderlich FT. Obesity exacerbates 
colitis-associated cancer via IL-6-regulated macro-
phage polarisation and CCL-20/CCR-6-mediated 
lymphocyte recruitment. Nat Commun. 2018; 9:1646. 
https://doi.org/10.1038/s41467-018-03773-0 
PMID:29695802 

30. Fanelli GN, Naccarato AG, Scatena C. Recent 
Advances in Cancer Plasticity: Cellular Mechanisms, 
Surveillance Strategies, and Therapeutic 
Optimization. Front Oncol. 2020; 10:569. 
https://doi.org/10.3389/fonc.2020.00569 
PMID:32391266 

31. Sui H, Zhang L, Gu K, Chai N, Ji Q, Zhou L, Wang Y, 
Ren J, Yang L, Zhang B, Hu J, Li Q. YYFZBJS 
ameliorates colorectal cancer progression in ApcMin/+ 
mice by remodeling gut microbiota and inhibiting 
regulatory T-cell generation. Cell Commun Signal. 
2020; 18:113. 
https://doi.org/10.1186/s12964-020-00596-9 
PMID:32677955 

32. Wang S, Xia P, Chen Y, Qu Y, Xiong Z, Ye B, Du Y, Tian 
Y, Yin Z, Xu Z, Fan Z. Regulatory Innate Lymphoid Cells 
Control Innate Intestinal Inflammation. Cell. 2017; 
171:201–16.e18. 
https://doi.org/10.1016/j.cell.2017.07.027 
PMID:28844693 

https://doi.org/10.1186/s40168-018-0451-2
https://pubmed.ncbi.nlm.nih.gov/29642940
https://doi.org/10.1186/s12967-022-03492-7
https://pubmed.ncbi.nlm.nih.gov/35794566
https://doi.org/10.1186/s13287-022-02913-0
https://pubmed.ncbi.nlm.nih.gov/35681225
https://doi.org/10.3389/fmed.2022.916565
https://pubmed.ncbi.nlm.nih.gov/35721059
https://doi.org/10.3389/fonc.2020.00595
https://pubmed.ncbi.nlm.nih.gov/32509568
https://doi.org/10.1038/nm.3967
https://pubmed.ncbi.nlm.nih.gov/26457759
https://doi.org/10.1101/cshperspect.a011247
https://pubmed.ncbi.nlm.nih.gov/23284045
https://doi.org/10.1016/j.cbpa.2022.102172
https://pubmed.ncbi.nlm.nih.gov/35785601
https://doi.org/10.1038/nri2448
https://pubmed.ncbi.nlm.nih.gov/19029990
https://doi.org/10.3389/fonc.2022.781233
https://pubmed.ncbi.nlm.nih.gov/35186730
https://doi.org/10.1002/jcp.26429
https://pubmed.ncbi.nlm.nih.gov/29319160
https://doi.org/10.1002/jcb.25895
https://pubmed.ncbi.nlm.nih.gov/28106295
https://doi.org/10.1038/s41467-018-03773-0
https://pubmed.ncbi.nlm.nih.gov/29695802
https://doi.org/10.3389/fonc.2020.00569
https://pubmed.ncbi.nlm.nih.gov/32391266
https://doi.org/10.1186/s12964-020-00596-9
https://pubmed.ncbi.nlm.nih.gov/32677955
https://doi.org/10.1016/j.cell.2017.07.027
https://pubmed.ncbi.nlm.nih.gov/28844693


www.aging-us.com 2265 AGING 

33. Sakaguchi S, Mikami N, Wing JB, Tanaka A, Ichiyama 
K, Ohkura N. Regulatory T Cells and Human Disease. 
Annu Rev Immunol. 2020; 38:541–66. 
https://doi.org/10.1146/annurev-immunol-042718-
041717 
PMID:32017635 

34. Ye L, Zhang T, Kang Z, Guo G, Sun Y, Lin K, Huang Q, 
Shi X, Ni Z, Ding N, Zhao KN, Chang W, Wang J, et al. 
Tumor-Infiltrating Immune Cells Act as a Marker for 
Prognosis in Colorectal Cancer. Front Immunol. 2019; 
10:2368. 
https://doi.org/10.3389/fimmu.2019.02368 
PMID:31681276 

35. Zhang J, Wan S, Gui Q. Comparison of safety, 
effectiveness and serum inflammatory factor indexes 
of Saccharomyces boulardii versus Bifidobacterium 
triple viable in treating children with chronic diarrhea: 
a randomized trial. Transl Pediatr. 2021; 10:1677–85. 
https://doi.org/10.21037/tp-21-195 
PMID:34295782 

36. Lundström W, Fewkes NM, Mackall CL. IL-7 in human 
health and disease. Semin Immunol. 2012; 24:218–24. 
https://doi.org/10.1016/j.smim.2012.02.005 
PMID:22410365 

37. Barata JT, Durum SK, Seddon B. Flip the coin: IL-7 and 
IL-7R in health and disease. Nat Immunol. 2019; 
20:1584–93. 
https://doi.org/10.1038/s41590-019-0479-x 
PMID:31745336 

38. Asadollahi P, Ghanavati R, Rohani M, Razavi S, 
Esghaei M, Talebi M. Anti-cancer effects of 
Bifidobacterium species in colon cancer cells and a 
mouse model of carcinogenesis. PLoS One. 2020; 
15:e0232930. 
https://doi.org/10.1371/journal.pone.0232930 
PMID:32401801 

39. Gao C, Ganesh BP, Shi Z, Shah RR, Fultz R, Major A, 
Venable S, Lugo M, Hoch K, Chen X, Haag A, Wang TC, 
Versalovic J. Gut Microbe-Mediated Suppression of 
Inflammation-Associated Colon Carcinogenesis by 
Luminal Histamine Production. Am J Pathol. 2017; 
187:2323–36. 
https://doi.org/10.1016/j.ajpath.2017.06.011 
PMID:28917668 

40. Spinler JK, Sontakke A, Hollister EB, Venable SF, Oh 
PL, Balderas MA, Saulnier DM, Mistretta TA, Devaraj 
S, Walter J, Versalovic J, Highlander SK. From 
prediction to function using evolutionary genomics: 
human-specific ecotypes of Lactobacillus reuteri have 
diverse probiotic functions. Genome Biol Evol. 2014; 
6:1772–89. 
https://doi.org/10.1093/gbe/evu137 
PMID:24951561 

41. Akashi K, Kondo M, Weissman IL. Role of interleukin-7 
in T-cell development from hematopoietic stem cells. 
Immunol Rev. 1998; 165:13–28. 
https://doi.org/10.1111/j.1600-065x.1998.tb01226.x 
PMID:9850848 

42. Hong C, Luckey MA, Park JH. Intrathymic IL-7: the 
where, when, and why of IL-7 signaling during T cell 
development. Semin Immunol. 2012; 24:151–8. 
https://doi.org/10.1016/j.smim.2012.02.002 
PMID:22421571 

43. Fry TJ, Mackall CL. Interleukin-7: from bench to clinic. 
Blood. 2002; 99:3892–904. 
https://doi.org/10.1182/blood.v99.11.3892 
PMID:12010786 

44. Ribeiro D, Melão A, van Boxtel R, Santos CI, Silva A, 
Silva MC, Cardoso BA, Coffer PJ, Barata JT. STAT5 is 
essential for IL-7-mediated viability, growth, and 
proliferation of T-cell acute lymphoblastic leukemia 
cells. Blood Adv. 2018; 2:2199–213. 
https://doi.org/10.1182/bloodadvances.2018021063 
PMID:30185437 

45. Li HB, Tong J, Zhu S, Batista PJ, Duffy EE, Zhao J, Bailis 
W, Cao G, Kroehling L, Chen Y, Wang G, Broughton JP, 
Chen YG, et al. m6A mRNA methylation controls T cell 
homeostasis by targeting the IL-7/STAT5/SOCS 
pathways. Nature. 2017; 548:338–42. 
https://doi.org/10.1038/nature23450 
PMID:28792938 

46. Cimbro R, Vassena L, Arthos J, Cicala C, Kehrl JH, Park 
C, Sereti I, Lederman MM, Fauci AS, Lusso P. IL-7 
induces expression and activation of integrin α4β7 
promoting naive T-cell homing to the intestinal 
mucosa. Blood. 2012; 120:2610–9. 
https://doi.org/10.1182/blood-2012-06-434779 
PMID:22896005 

47. Ponte R, Rancez M, Figueiredo-Morgado S, Dutrieux J, 
Fabre-Mersseman V, Charmeteau-de-Muylder B, 
Guilbert T, Routy JP, Cheynier R, Couëdel-Courteille A. 
Acute Simian Immunodeficiency Virus Infection 
Triggers Early and Transient Interleukin-7 Production 
in the Gut, Leading to Enhanced Local Chemokine 
Expression and Intestinal Immune Cell Homing. Front 
Immunol. 2017; 8:588. 
https://doi.org/10.3389/fimmu.2017.00588 
PMID:28579989 

48. Leko V, Rosenberg SA. Identifying and Targeting Human 
Tumor Antigens for T Cell-Based Immunotherapy of 
Solid Tumors. Cancer Cell. 2020; 38:454–72. 
https://doi.org/10.1016/j.ccell.2020.07.013 
PMID:32822573 

49. Feng M, Zhao Z, Yang M, Ji J, Zhu D. T-cell-based 
immunotherapy in colorectal cancer. Cancer Lett. 
2021; 498:201–9. 

https://doi.org/10.1146/annurev-immunol-042718-041717
https://doi.org/10.1146/annurev-immunol-042718-041717
https://pubmed.ncbi.nlm.nih.gov/32017635
https://doi.org/10.3389/fimmu.2019.02368
https://pubmed.ncbi.nlm.nih.gov/31681276
https://doi.org/10.21037/tp-21-195
https://pubmed.ncbi.nlm.nih.gov/34295782
https://doi.org/10.1016/j.smim.2012.02.005
https://pubmed.ncbi.nlm.nih.gov/22410365
https://doi.org/10.1038/s41590-019-0479-x
https://pubmed.ncbi.nlm.nih.gov/31745336
https://doi.org/10.1371/journal.pone.0232930
https://pubmed.ncbi.nlm.nih.gov/32401801
https://doi.org/10.1016/j.ajpath.2017.06.011
https://pubmed.ncbi.nlm.nih.gov/28917668
https://doi.org/10.1093/gbe/evu137
https://pubmed.ncbi.nlm.nih.gov/24951561
https://doi.org/10.1111/j.1600-065x.1998.tb01226.x
https://pubmed.ncbi.nlm.nih.gov/9850848
https://doi.org/10.1016/j.smim.2012.02.002
https://pubmed.ncbi.nlm.nih.gov/22421571
https://doi.org/10.1182/blood.v99.11.3892
https://pubmed.ncbi.nlm.nih.gov/12010786
https://doi.org/10.1182/bloodadvances.2018021063
https://pubmed.ncbi.nlm.nih.gov/30185437
https://doi.org/10.1038/nature23450
https://pubmed.ncbi.nlm.nih.gov/28792938
https://doi.org/10.1182/blood-2012-06-434779
https://pubmed.ncbi.nlm.nih.gov/22896005
https://doi.org/10.3389/fimmu.2017.00588
https://pubmed.ncbi.nlm.nih.gov/28579989
https://doi.org/10.1016/j.ccell.2020.07.013
https://pubmed.ncbi.nlm.nih.gov/32822573


www.aging-us.com 2266 AGING 

https://doi.org/10.1016/j.canlet.2020.10.040 
PMID:33129958 

50. Zhao L, Mei Y, Sun Q, Guo L, Wu Y, Yu X, Hu B, Liu X, 
Liu H. Autologous tumor vaccine modified with 
recombinant new castle disease virus expressing IL-7 
promotes antitumor immune response. J Immunol. 
2014; 193:735–45. 
https://doi.org/10.4049/jimmunol.1400004 
PMID:24943214 

51. Gu YZ, Fan CW, Lu R, Shao B, Sang YX, Huang QR, Li X, 
Meng WT, Mo XM, Wei YQ. Forced co-expression of 
IL-21 and IL-7 in whole-cell cancer vaccines promotes 
antitumor immunity. Sci Rep. 2016; 6:32351. 
https://doi.org/10.1038/srep32351 
PMID:27571893 

52. Pachynski RK, Morishima C, Szmulewitz R, Harshman 
L, Appleman L, Monk P, Bitting RL, Kucuk O, Millard F, 
Seigne JD, Fling SP, Maecker HT, Duault C, et al. IL-7 
expands lymphocyte populations and enhances 
immune responses to sipuleucel-T in patients with 
metastatic castration-resistant prostate cancer 
(mCRPC). J Immunother Cancer. 2021; 9:e002903. 
https://doi.org/10.1136/jitc-2021-002903 
PMID:34452927 

53. Higano CS, Small EJ, Schellhammer P, Yasothan U, 
Gubernick S, Kirkpatrick P, Kantoff PW. Sipuleucel-T. 
Nat Rev Drug Discov. 2010; 9:513–4. 
https://doi.org/10.1038/nrd3220 
PMID:20592741 

54. Jeong H, Lee SY, Seo H, Kim BJ. Recombinant 
Mycobacterium smegmatis delivering a fusion protein 
of human macrophage migration inhibitory factor 
(MIF) and IL-7 exerts an anticancer effect by inducing 
an immune response against MIF in a tumor-bearing 
mouse model. J Immunother Cancer. 2021; 
9:e003180. 
https://doi.org/10.1136/jitc-2021-003180 
PMID:34389619 

55. Zhang T, Sun J, Wang L, Yao H, Guo Z, Wu W, Li Y, 
Wang L, Song L. BCL10 regulates the production of 
proinflammatory cytokines by activating MAPK-NF-
κB/Rel signaling pathway in oysters. Fish Shellfish 
Immunol. 2022; 120:369–76. 
https://doi.org/10.1016/j.fsi.2021.12.009 
PMID:34906687 

56. Yin H, Karayel O, Chao YY, Seeholzer T, Hamp I, 
Plettenburg O, Gehring T, Zielinski C, Mann M, 
Krappmann D. A20 and ABIN-1 cooperate in balancing 
CBM complex-triggered NF-κB signaling in activated T 
cells. Cell Mol Life Sci. 2022; 79:112. 
https://doi.org/10.1007/s00018-022-04154-z 
PMID:35099607 

57. Thome M, Charton JE, Pelzer C, Hailfinger S. Antigen 
receptor signaling to NF-kappaB via CARMA1, BCL10, 
and MALT1. Cold Spring Harb Perspect Biol. 2010; 
2:a003004. 
https://doi.org/10.1101/cshperspect.a003004 
PMID:20685844 

58. Meininger I, Krappmann D. Lymphocyte signaling and 
activation by the CARMA1-BCL10-MALT1 
signalosome. Biol Chem. 2016; 397:1315–33. 
https://doi.org/10.1515/hsz-2016-0216 
PMID:27420898 

59. Muthuswamy R, Berk E, Junecko BF, Zeh HJ, Zureikat 
AH, Normolle D, Luong TM, Reinhart TA, Bartlett DL, 
Kalinski P. NF-κB hyperactivation in tumor tissues 
allows tumor-selective reprogramming of the 
chemokine microenvironment to enhance the 
recruitment of cytolytic T effector cells. Cancer Res. 
2012; 72:3735–43. 
https://doi.org/10.1158/0008-5472.CAN-11-4136 
PMID:22593190 

60. Naito Y, Saito K, Shiiba K, Ohuchi A, Saigenji K, Nagura 
H, Ohtani H. CD8+ T cells infiltrated within cancer cell 
nests as a prognostic factor in human colorectal 
cancer. Cancer Res. 1998; 58:3491–4. 
PMID:9721846 

61. Kang X, Liu C, Ding Y, Ni Y, Ji F, Lau HCH, Jiang L, Sung 
JJ, Wong SH, Yu J. Roseburia intestinalis generated 
butyrate boosts anti-PD-1 efficacy in colorectal cancer 
by activating cytotoxic CD8+ T cells. Gut. 2023; 
72:2112–22. 
https://doi.org/10.1136/gutjnl-2023-330291 
PMID:37491158 

62. Juilland M, Thome M. Role of the 
CARMA1/BCL10/MALT1 complex in lymphoid 
malignancies. Curr Opin Hematol. 2016; 23:402–9. 
https://doi.org/10.1097/MOH.0000000000000257 
PMID:27135977 

63. Turvey SE, Durandy A, Fischer A, Fung SY, Geha RS, 
Gewies A, Giese T, Greil J, Keller B, McKinnon ML, 
Neven B, Rozmus J, Ruland J, et al. The CARD11-
BCL10-MALT1 (CBM) signalosome complex: Stepping 
into the limelight of human primary immuno-
deficiency. J Allergy Clin Immunol. 2014; 134:276–84. 
https://doi.org/10.1016/j.jaci.2014.06.015 
PMID:25087226 

64. Borthakur A, Bhattacharyya S, Alrefai WA, Tobacman 
JK, Ramaswamy K, Dudeja PK. Platelet-activating 
factor-induced NF-kappaB activation and IL-8 
production in intestinal epithelial cells are Bcl10-
dependent. Inflamm Bowel Dis. 2010; 16:593–603. 
https://doi.org/10.1002/ibd.21092 
PMID:19714753 

https://doi.org/10.1016/j.canlet.2020.10.040
https://pubmed.ncbi.nlm.nih.gov/33129958
https://doi.org/10.4049/jimmunol.1400004
https://pubmed.ncbi.nlm.nih.gov/24943214
https://doi.org/10.1038/srep32351
https://pubmed.ncbi.nlm.nih.gov/27571893
https://doi.org/10.1136/jitc-2021-002903
https://pubmed.ncbi.nlm.nih.gov/34452927
https://doi.org/10.1038/nrd3220
https://pubmed.ncbi.nlm.nih.gov/20592741
https://doi.org/10.1136/jitc-2021-003180
https://pubmed.ncbi.nlm.nih.gov/34389619
https://doi.org/10.1016/j.fsi.2021.12.009
https://pubmed.ncbi.nlm.nih.gov/34906687
https://doi.org/10.1007/s00018-022-04154-z
https://pubmed.ncbi.nlm.nih.gov/35099607
https://doi.org/10.1101/cshperspect.a003004
https://pubmed.ncbi.nlm.nih.gov/20685844
https://doi.org/10.1515/hsz-2016-0216
https://pubmed.ncbi.nlm.nih.gov/27420898
https://doi.org/10.1158/0008-5472.CAN-11-4136
https://pubmed.ncbi.nlm.nih.gov/22593190
https://pubmed.ncbi.nlm.nih.gov/9721846
https://doi.org/10.1136/gutjnl-2023-330291
https://pubmed.ncbi.nlm.nih.gov/37491158
https://doi.org/10.1097/MOH.0000000000000257
https://pubmed.ncbi.nlm.nih.gov/27135977
https://doi.org/10.1016/j.jaci.2014.06.015
https://pubmed.ncbi.nlm.nih.gov/25087226
https://doi.org/10.1002/ibd.21092
https://pubmed.ncbi.nlm.nih.gov/19714753


www.aging-us.com 2267 AGING 

65. Zhou Y, Guo Y, Wang Y. Identification and validation 
of a seven-gene prognostic marker in colon cancer 
based on single-cell transcriptome analysis. IET Syst 
Biol. 2022; 16:72–83. 
https://doi.org/10.1049/syb2.12041 
PMID:35352485 

66. Borthakur A, Bhattacharyya S, Dudeja PK, Tobacman 
JK. Carrageenan induces interleukin-8 production 
through distinct Bcl10 pathway in normal human 
colonic epithelial cells. Am J Physiol Gastrointest Liver 
Physiol. 2007; 292:G829–38. 
https://doi.org/10.1152/ajpgi.00380.2006 
PMID:17095757 

67. Wilkerson MD, Hayes DN. ConsensusClusterPlus: a 
class discovery tool with confidence assessments and 
item tracking. Bioinformatics. 2010; 26:1572–3. 
https://doi.org/10.1093/bioinformatics/btq170 
PMID:20427518 

68. Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, 
Kim D, Nair VS, Xu Y, Khuong A, Hoang CD, Diehn M, 
West RB, Plevritis SK, Alizadeh AA. The prognostic 
landscape of genes and infiltrating immune cells 
across human cancers. Nat Med. 2015; 21:938–45. 
https://doi.org/10.1038/nm.3909 
PMID:26193342 

69. Yap TA, Parkes EE, Peng W, Moyers JT, Curran MA, 
Tawbi HA. Development of Immunotherapy 
Combination Strategies in Cancer. Cancer Discov. 
2021; 11:1368–97. 
https://doi.org/10.1158/2159-8290.CD-20-1209 
PMID:33811048 

70. Qiu C, Shi W, Wu H, Zou S, Li J, Wang D, Liu G, Song Z, 
Xu X, Hu J, Geng H. Identification of Molecular 
Subtypes and a Prognostic Signature Based on 
Inflammation-Related Genes in Colon 
Adenocarcinoma. Front Immunol. 2021; 12:769685. 
https://doi.org/10.3389/fimmu.2021.769685 
PMID:35003085 

71. Kornepati AVR, Vadlamudi RK, Curiel TJ. Programmed 
death ligand 1 signals in cancer cells. Nat Rev Cancer. 
2022; 22:174–89. 
https://doi.org/10.1038/s41568-021-00431-4 
PMID:35031777 

 

 

https://doi.org/10.1049/syb2.12041
https://pubmed.ncbi.nlm.nih.gov/35352485
https://doi.org/10.1152/ajpgi.00380.2006
https://pubmed.ncbi.nlm.nih.gov/17095757
https://doi.org/10.1093/bioinformatics/btq170
https://pubmed.ncbi.nlm.nih.gov/20427518
https://doi.org/10.1038/nm.3909
https://pubmed.ncbi.nlm.nih.gov/26193342
https://doi.org/10.1158/2159-8290.CD-20-1209
https://pubmed.ncbi.nlm.nih.gov/33811048
https://doi.org/10.3389/fimmu.2021.769685
https://pubmed.ncbi.nlm.nih.gov/35003085
https://doi.org/10.1038/s41568-021-00431-4
https://pubmed.ncbi.nlm.nih.gov/35031777


www.aging-us.com 2268 AGING 

SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Expression analysis of GMRGs in the TCGA-COAD cohort. (A) PCA plot of GMRGs. (B) Heatmap of 

GMRGs. Abbreviations: GMRGs: gut microbes-related genes; PCA: principal component analysis. 
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Supplementary Figure 2. Construction of GM molecular subtypes using TCGA-COAD samples. The two GM subtypes identified 

by the consensus clustering. Abbreviation: GM: gut microbes. 
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Supplementary Figure 3. DEGs between GM molecular subtypes. (A) PCA plot of DEGs. (B) Heatmap of DEGs. (C) Venn diagram of 

DEGs. Abbreviations: DEGs: differentially expressed genes; GM: gut microbes; PCA: principal component analysis. 

 

 
 

Supplementary Figure 4. Clinical value of risk signature. Forest plot of clinical characteristics and risk scores. 
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Supplementary Figure 5. K-M survival analysis based on GMRBs expression in the GSE87211 cohort. (A) K-M survival analysis 

between high and low expression groups of IL7. (B) K-M survival analysis between high and low expression groups of BCL10. Abbreviations: 
K-M: Kaplan-Meier; GMRBs: gut microbes-related biomarkers. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 2. 

 

Supplementary Table 1. Univariate Cox regression analysis identified 9 prognostic genes in the TCGA-COAD cohort 
(P < 0.05). 

GENE HR P 

MTOR 2.256 0.007 

MMP9 2.012 0.025 

NPC1L1 0.433 0.007 

PKN2 1.853 0.038 

PTGS2 2.064 0.027 

SULT2B1 0.552 0.045 

BCL10 2.248 0.007 

STAT3 2.104 0.019 

IL7 2.090 0.019 

 

 

Supplementary Table 2. 164 GMRGs obtained using a keyword search strategy in the PubMed database. 

 

 


