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INTRODUCTION 
 

Hepatocellular carcinoma (HCC), ranking sixth highest 

in incidence and third in mortality rates, constitutes  

a significant global public health concern [1]. Its 

prognosis is often bleak, as the disease is frequently 

detected in its advanced stages, contributing to a five-

year survival rate that is disappointingly low [2]. The 

complex nature of HCC, along with the heterogeneity 
amongst patients, presents substantial challenges to 

effective treatment strategies, with no universally 

effective therapy currently available [3]. Hence, the 

exploration and investigation of HCC carries profound 

significance for the health of populations worldwide. 

 

A variety of therapeutic strategies are utilized in the 

treatment of HCC, including surgical interventions [1], 

radiofrequency ablation (RFA) or microwave ablation 

(MWA), systemic chemotherapy, Radiation therapy, 

and targeted therapies [4]. Recent advancements have 

also been made in immunotherapies, notably immune 
checkpoint inhibitors such as nivolumab and pembro-

lizumab [5]. Immune checkpoint inhibitors have been 

studied as a promising treatment option for liver cancer, 
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regression was performed to construct a prognostic model, which was validated in TCGA and ICGC datasets. 
Immune infiltration and prediction of immunotherapy response were analyzed using ssGSEA, ESTIMATE, TIDE, 
and TRS score calculation. Finally, qPCR and Western blot validation of key genes and protein levels in cell lines. 
Results: A risk model using 16-gene expression levels predicted liver cancer patients’ prognosis. The RiskScore 
associated significantly with tumor clinical characteristics and immunity, integrated with clinicopathological 
features for survival prediction. Differential expression of SRXN1 was verified in hepatocellular carcinoma and 
normal liver cells. 
Conclusion: Our study utilizes single-cell analysis to investigate the communication between malignant cells 
and other cell types, identifying molecular subtypes based on malignant cell receptor ligand genes, offering 
new insights for the development of personalized immunotherapy and prognostic prediction models. 
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but finding reliable biomarkers to predict response 

remains challenging [6]. The utilization of these 

medicines is currently limited to patients with advanced 

HCC, and they show variable responses with some 

patients achieving substantial durable responses, while 

many others do not respond or develop resistance after 

an initial response. 

 

Currently, the malignant cell receptor ligand genes refer 

to those genes that encode proteins serving as ligands 

for receptors found on HCC cells. These ligands can 

bind to their corresponding receptors, leading to the 

activation of signaling pathways involved in the 

progression and survival of malignant cells [7]. Ligand-

receptor interactions in liver cancer profoundly affect 

the immune microenvironment through various 

mechanisms in various studies. One previous study 

revealed that tumor cells continuously produce kynurenic 

acid (Kyn), an endogenous ligand for the aryl 

hydrocarbon receptor (AHR), via tryptophan-2,3-

dioxygenase (TDO). Consequently, Kyn, acting through 

AHR, suppresses anti-tumor immune responses and 

promotes tumor cell survival and motility [8]. 

Furthermore, the transforming growth factor-beta (TGFβ) 

signaling pathway, known for its critical role in tumor 

development, influences processes like cell invasion 

and immune modulation [9]. Interestingly, the genetic 

characteristics of tumors are correlated with immune 

cell infiltration and the presence of neoantigens [10]. 

 

The objective of this study is to identify molecular sub-

types of liver cancer based on malignant cell receptor 

ligand genes, and to develop a prognostic model for 

patients with liver cancer. To improve personalized 

immunotherapy, molecular subtypes based on malignant 

cell receptor ligand genes have been proposed as a 

potential approach. 

 

RESULTS 
 

Single-cell RNA clustering 

 

After rigorous quality control, we retained 24,329 cells, 

comprising eight cell subpopulations (Figure 1A). The 

number of UMIs and mRNAs showed a significant 

correlation, while the number of UMI/mRNAs was  

not significantly correlated with the content of mito-

chondrial genes (Supplementary Figure 1A). 

Supplementary Figure 1B, 1C depict the violin plots 

before and after quality control, and Supplementary 

Figure 1D demonstrates significant elimination of batch 

effects between samples. 

 

UMAP dimensionality reduction analysis was 

performed on 24,329 cells using RunUMAP function, 

revealing the presence of eight cell types: B cell, 

Endothelial cells, Hepatocytes, Macrophages, Mono-

cytes, NK cell, Fibroblasts, and T cells. Aneuploid cells 

were included in cell cluster marker identification for 

ten cell types. We further analyzed the 10 samples 

based on the proportion of the ten subpopulations  

and identified the location of aneuploid malignant cells 

on the UMAP (Figure 1B). The top-five marker genes 

with the most outstanding contribution in each subgroup 

are shown in Figure 1C, and the results of marker genes 

are provided in Supplementary Table 1. The differential 

gene enrichment analysis of each subpopulation of  

cells is shown in Figure 1D, and the aneuploid  

cells differential genes were mainly enriched in the 

complement and coagulation cascades, cholesterol 

metabolism, PPAR signaling pathway, and pentose and 

glucuronate interconversion. 

 

Cellchat analysis and construction of cellular 

communication network 

 

After rigorous quality control, we retained 49,701  

cells, comprising 22,920 cancer cells and 26,781 normal 

liver tissue cells. Uniform manifold approximation and 

projection (UMI) and the number of mRNAs showed 

significant correlation, while there was no significant 

correlation between number of UMI/mRNAs and the 

content of mitochondrial genes, as seen in Supplementary 

Figure 1A. The violin plot before and after quality 

control can be seen in Supplementary Figure 1B–1D 

demonstrates significant elimination of batch effects 

between samples. 

 
We used copykat to identify malignant cells and analyzed 

the intersubpopulation communication network using 

the CellChat (version 1.5.0) package. Results showed 

that the communication between malignant cells and 

macrophages had the highest number and intensity 

(Figure 2A, 2B). Additionally, visual analysis revealed 

that the first six signaling pathways (MIF, MHC-II, 

APP, MHC-I) of subgroup communication had signal 

outputs of malignant cells, with the MIF signaling 

pathway having the strongest output and Monocyte 

being the main signal receiver cell (Figure 2C, 2D). 

 
Construction of molecular subtypes based on 

malignant cell receptor ligand genes 

 

To analyze the role of malignant cell-associated 

receptors in Bulk RNA-seq data, we screened 72 

malignant cell-associated receptor genes using the 

results of the single-cell dataset CellChat. We found 

that 7 of the 72 related genes were associated with 

prognosis (p < 0.05), and protective gene 3 and risk 

gene 4 are shown in Figure 3A. We observed a 

relatively stable clustering result for Cluster 2 in the 

cumulative distribution function (CDF) Delta area 
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curve (Figure 3B, 3C) and selected K = 2 to obtain  

two molecular subtypes (Figure 3D). Furthermore, 

analysis of the prognostic characteristics of these two 

molecular subtypes revealed a significant difference in 

prognosis (Figure 3E), with intersecting clust2 and 

clust1 subtypes having worse prognosis. The tcga. 

Subtype. CLI. Txt contains data for the TCGA dataset 

subtype. We performed the same clustering method on 

the independent ICGC-JP dataset and obtained similar 

results (Figure 3F). The icgc. Subtype. CLI table 

provides data on subtypes in the ICGC-JP dataset. 

 

Mutation characteristics of molecular subtypes 

 

We obtained SNV mutation data from TCGA  

using Mutect2, as shown in Figure 4A, and presented 

the top 15 genes with the most significant mutations  

in each subtype. Moreover, we surveyed “Homologous 

 

 

 
Figure 1. Single-cell RNA clustering. (A) UMAP plot of the distribution of 10 samples, UMAP plot of the distribution of 20 

subpopulations, and UMAP plots of the subpopulations after cell annotation. (B) After CNV comment, the proportion and cell number of 
the subpopulation in each sample, and the UMAP map of malignant cells. (C) Dot plots of the expression of the first 5 marker genes of the 
subpopulations after CNV annotation. (D) The differential gene enrichment analysis of each subpopulation of cells. 
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Recombination Defects”, “Fraction Altered”, “Number 

of Segments”, “Nonsilent Mutation Rate”, and 

“Aneuploidy Score,” as well as the distribution of the 

Silent Mutation Rate. We noticed that the Homologous 

Recombination Defects and Aneuploidy scores varied 

between subtypes, as demonstrated in Figure 4B 

(PMC5982584). 

 

Pathway analysis of molecular subtypes 

 

We involved performing differential analysis for 

TCGA gene expression profiles grouped by cluster 

subtypes. This analysis revealed that when comparing 

clust1 to clust2, the expression of 188 genes increased 

while 1083 genes exhibited decreased expression 

(Figure 5A). Using the Hallmark gene sets in the 

Misgbd database as the background set, we per- 

formed a difference analysis GSEA (Figure 5B). The 

analysis results revealed that the Peroxisome and 

Histidine metabolism were activated in the clust1 

subtype, whereas Salmonella infection, Shigellosis, 

and Epithelial cell signaling in Helicobacter pylori 

infection were inhibited, as demonstrated in Figure  

5C. Our next step utilized GSVA pathway scoring  

on KEGG pathway enrichment obtained from the 

Misgbd database. Our analysis showed that 33 path-

ways were up-regulated and 23 were down-regulated, 

as demonstrated in Figure 5D. 

 

 
 

Figure 2. CellChat analysis and construction of cellular communication network. (A) Circle diagrams of that numb and strength of 

subpopulation interaction. (B) Number of communication interactions of each subgroup. (C) Communication and interaction strength of 
each subgroup. (D) Aneuploidy cell subpopulations and ligand receptor profiles among cell subpopulations. 
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Figure 3. Construction of molecular subtypes based on malignant cell receptor ligand genes. (A) Single factor Cox analysis HR 

distribution map of malignant cell associated receptor gene set. (B) CDF curve of TCGA cohort sample. (C) CDF Delta area curve of TCGA 
cohort sample, the horizontal axis represents the number of clusters K, and the vertical axis represents the relative change of the area 
under the CDF curve. (D) Sample cluster heat map of consensus K = 2. (E) KM curve of prognosis relationship between two subtypes of 
TCGA. (F) KM curve of prognosis relationship between two subtypes of ICGC-JP. 
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Immunological characteristics of molecular subtypes 

and differences in immunotherapy/chemotherapy 

 

To determine the differences in immune micro-

environment among molecular subtypes, we evaluated 

the infiltration level of immune cells using the 

expression levels of genes in immune cells in the 

TCGA cohort. We calculated the scores of immune 

cells using CIBERSORT, EPIC, Estlmate, MCPcounter, 

quanTlseg, TIMER, and xCell. Results indicated  

that the majority of immune cells had noteworthy 

differences between the two subtypes, with higher 

 

 
 

Figure 4. Genomic alterations in molecular subtypes of the TCGA cohort. (A) Somatic mutation analysis of different molecular 

subtypes in the TCGA cohort. (B) Comparison of “Homologous Recombination Defects”, “Fraction Altered”, “Number of Segments” “in 
different molecular subtypes of the TCGA cohort”. “Nonsilent Mutation Rate”, “Aneuploidy Score”, “difference in Silent Mutation Rate”. 
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scores observed in clust2 (Figure 6A), which indicates 

that clust2 (with poor prognosis) exhibited a high 

immune score. We also looked at the expression levels 

of immune checkpoint genes in the two subtypes  

and discovered that there were significant variations 

between the two subtypes, with clust1 having a higher 

expression level than clust2 (Figure 6B). Patients with 

high TIDE prediction scores are unlikely to benefit from 

immunotherapy, indicating a higher probability of 

immune escape. A Wilcox Test on Figure 6B showed 

that the TIDE score was highest in the TCGA cohort’s 

clust2 subtype, suggesting that this subtype has an 

elevated likelihood of immune escape and is less likely 

to benefit from immunotherapy. 

 

Construction of risk model 

 

We conducted Cox regression analysis on the 

differentially expressed genes among the cluster 

subtypes and identified 285 prognostically relevant 

genes present in both the TCGA and ICGC datasets. 

Using Lasso regression, we compressed the 285 genes 

further in the TCGA dataset by reducing the number of 

genes present in the risk model. The change trajectory 

of each independent variable was analyzed to determine 

the optimal model based on the lambda parameter; the 

figure (Figure 7A) indicates that with the gradual 

increase of lambda, the number of independent variable 

coefficients tending to 0 also increases gradually. We 

used a 10-fold cross-validation technique to build the 

model and analyzed the confidence interval for each 

lambda parameter, as shown in Figure 7B. The optimal 

lambda value was found to be 0.04711966, and 16 

genes were selected as target genes based on this value. 

Based on these 16 genes related to prognosis, nine 

genes (LPCAT1, SLC2A1, NEIL3, SRXN1, TRNP1, 

SLC7A11, STC2, ZNF239, CBX2, CDCA8, EPO, 

PON1, PBK, PFN2, ACOT12, ADH4) were identified 

 

 

 
Figure 5. Pathway analysis of molecular subtypes. (A) Volcano map of differential analysis of genes between the two subtypes. (B) GSEA-

GO analysis of differential genes between the two groups. (C) Bubble map of related pathways activated/inhibited in the comparison of the two 
subtypes. (D) Heat map of KEGG-related pathways with differences between the two subtypes. 
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using Lasso regression. We developed a final 16-gene 

signature with a Cox proportional hazards regression 

model with the RiskScore calculated as follows: 

 

RiskScore = −0.205 × LPCAT1 −0.068 × SLC2A1 

−0.194 × NEIL3 + 0.508 × SRXN1 + 0.117 × TRNP 1 + 

0.29 × SLC7A11 + 0.209 × STC2 + 0.087 × ZNF239 + 

0.25 × CBX2 + 0.111CDCA8 + 0.332EPO + 0.141PON1 

+ 0.377PBK + 0.186PFN2 + −0.175ACOT12 + −0.052 × 

ADH4. 

 

We used the TCGA dataset as our training dataset  

and calculated the risk score of each sample through 

16 gene expression levels to analyze the prognostic 

 

 
 

Figure 6. Immunological characteristics of molecular subtypes and differences in immunotherapy/chemotherapy. (A) The 
difference of 28 immune cell scores between different molecular subtypes in the TCGA cohort. (B) The difference of ESTIMATE immune 
infiltration between different molecular subtypes in the TCGA cohort. The immune checkpoint of differential expression between different 
subgroups in the TCGA cohort. Difference of TIDE analysis results between different groups in TCGA queue. 
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prediction efficiency classification at 1, 3  

and 5 years. The AUC for each year was 0.7. The 

Riskscore was standardized by zscore, and samples 

with Riskscore greater than zero after zscore were 

divided into a high-risk group and a low-risk group. 

The KM curve was drawn, and we found a significant 

difference between them (p < 0.05) (Figure 7C, 7D). 

To validate the accuracy of our model, we verified the 

ICGC dataset using the same method and found 

similar results (Figure 7E, 7F). 

 

 
 

Figure 7. Construction of risk model. (A) Trajectory of each independent variable with lambda; (B) Confidence interval under lambda. 

(C) KM curve of high and low risk of risk model constructed by 16 genes in TCGA data set. (D) ROC curve of risk model constructed by 16 
genes in TCGA data set. (E) KM curve of high and low risk of risk model built by 16 gene in ICGC data set. (F) ROC curve of risk models built 
by 16 gene in ICGC data set. 
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RiskScore in different clinicopathological features 

 

We analyzed the relationship between RiskScore 

scores and tumor clinical characteristics by studying 

the differences in scores between various clinical 

phenotypes in the TCGA dataset (Figure 8A). The 

findings revealed that the risk score increased with 

clinicopathological characteristics such as clinical 

grade, as indicated in Figure 8A, 8B. 

Relationship between RiskScore and immunity 

 

To further investigate the relationship between 

RiskScore and immunity, we used ESTIMATE to 

predict the immunity score and, employing Spearman’s 

method, found a significant positive correlation between 

the immunity score and RiskScore, as depicted in 

Figure 9A. Then we analyzed the scores of 28 immune 

cells to determine their association with high and low 

 

 
 

Figure 8. RiskScore in different clinicopathological features. (A) Comparison of clinical phenotypes between RiskScore groups in the 

TCGA cohort. (B) Differences between RiskScores of different phenotypes in the TCGA cohort (Wilcox. Test, *P < 0.05; **P < 0.01; ***P < 
0.001; and ****P < 0.0001). 
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risk groups, discerning significant differences in the 

scores of 12 immune cells, as shown in Figure 9B. 

The results of TIDE prediction score demonstrated 

that the TIDE score was higher among those with 

higher risk scores, as indicated in Figure 9C. We  

also evaluated the expression of checkpoints CTLA4, 

PD-1, and PD-L1 in the high-risk and low-risk 

groups, finding that the expression of these immune 

checkpoint genes was higher in the high-risk group 

(Wilcox. Test, Figure 9D). We calculated the TRS 

score using the ssGSEA method based on TRS-

associated characteristic genes, discovering that the 

Risk-High group had a higher TRS score (Wilcox. 

Test, Figure 9E). Furthermore, we computed the 

interferon (IFN) score using ssGSEA method and 

identified the gamma score (Th1/IFNγ score) to be 

significantly higher in the Risk-high group than in  

the Risk-low group, as presented in Figure 9F. 

 

 
 

Figure 9. Relationship between RiskScore and immunity. (A) Correlation analysis of RiskScore and immune score. (B) Comparison of 

28 immune cell scores in high and low risk groups. (C) Correlation analysis of RiskScore for TIDE. (D) Comparison of immune checkpoint 
expression in high and low risk groups. (E) Comparison of tumor reactivity scores in high and low risk groups. (F) Th1/IFNγ score comparison 
between high and low risk group. 
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RiskScore combined with clinicopathological features 

further improves the prognostic model and survival 

prediction 

 

We demonstrated RiskScore as the most significant 

prognostic factor by performing univariate and multi-

variate Cox regression analysis on RiskScore and clinical 

characteristics, as shown in Figure 10A, 10B. To estimate 

the risk assessment and survival probability of patients, 

we integrated RiskScore with other clinicopathological 

characteristics to design a nomogram presented in 

Figure 10C. The results of the model showed that 

RiskScore had the most substantial impact on survival 

prediction. Moreover, we employed the Decision curve 

analysis (DCA) to evaluate the model’s reliability and 

observed that both RiskScore and Nomogram benefits 

were significantly higher than the extreme curve 

compared to other clinicopathological features. Both  

the nomogram and RiskScore demonstrated significant 

survival predictive power, as presented in Figure 10D, 

10F. Additionally, we assessed the prediction accuracy 

of the model using the Calibration curve, illustrated in 

Figure 10E, and observed that the calibration curve of 

the three calibration points at 1, 3, and 5 years was close 

to the standard curve. This indicates that the nomogram 

provided good prediction performance. 

 

 
 

Figure 10. RiskScore combined with clinicopathological features further improves the prognostic model and survival prediction. 
(A) Univariate Cox analysis of RiskScore and clinical characteristics. (B) Multivariate Cox analysis of RiskScore and clinical characteristics. (C) 
Nomogram model. (D) Calibration curve of nomogram at 1, 3 and 5 years. (E) Decision curve of nomogram. (F) AUC line chart, the horizontal axis 
is the time unit year, and the vertical axis is the model AUC value. 
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Validation of the risk score in HCC 

 

To validate the risk-scoring model in HCC, we first 

conducted a survival analysis to identify SRXN1 with 

prognostic significance in the TCGA cohort (Figure 

11A). Next, we examined one of the previously identified 

SRXN1 mRNA that constructs predictive model in 

several tumor cells. The result of the Quantitative 

reverse transcriptase-polymerase chain reaction (qRT-

PCR) reveals SRXN1 mRNA levels were increased 

significantly in all tumor cell lines (Figure 11B). 

Finally, we examined the protein level of SRXN1 in 

cells of THLE-2 and HEP3B. Our Western blot results 

show that the SRXN1 protein level was increased 

significantly in the tumor cell line (Figure 11C). 
 

DISCUSSION 
 

In our study, we utilized single-cell genotyping to 

examine ligand-receptor interactions and identify the 

 

 
 

Figure 11. Validation of the risk score in HCC. (A) Survival analysis of TCGA-LIHC based on SRXN1 levels. (B) qRT-PCR images of tumor 

cell line (HEP3B, HCCLM3, HEPG2 and HUH7). SRXN1 levels were analyzed by qRT-PCR; **P < 0.01 versus liver cell line. (C) Representative 
images of Western blots of the liver cell line (THLE-2) and tumor cell line (HEP3B). SRXN1 levels were determined by Western blot (mean ± 
SEM; n = 5; **P < 0.001 versus THLE-2). 
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key receptor-ligand genes in HCC. Based on these 

genes, we clustered the patients in two clusters with 

disguising TME characteristics. We then constructed  

a prognostic model which can creativity predict  

the prognosis of HCC with 16 genes (receptor-ligand 

genes). This approach allowed us to gain insight into the 

patterns of receptor-ligand genotyping within the tumor 

microenvironment both in intra-tumor and extra-tumor, 

which could have significant implications for HCC who 

can be benefits from the immunotherapy. 

 
Ligand-receptor interactions, playing a crucial role for 

the signal transduction between cancer cells and non-

malignant cells in the tumor microenvironment (TME), 

is the key to the progression of tumors and exhibit  

a high degree of heterogeneity, posing challenges in 

understanding tumor progression and treatment. This 

heterogeneity is manifested in the interactions within 

the tumor microenvironment, including the ligand-

receptor signaling between tumor cells and non-

malignant cells. To resolve it, the clustering method was 

used in the identifying the special subpopulation for 

HCC by ligand-receptor genes in our study. A previous 

study also conducted the comprehensive understanding 

of these interactions, particularly across 20 solid tumor 

types, can aid in better understanding the paracrine 

interactions of cancer cells and the tumor micro-

environment [11]. According to previous studies, the 

intratumoral factors such as hypoxia [12] and metabolic 

abnormalities [13, 14] may lead to changes in the 

surface expression of ligands. For instance, in HCC, 

glycosylation regulator subtypes have been found to  

be associated with intratumoral factors [15, 16]. In 

addition, the evolution of hepatocellular carcinoma 

(HCC) is believed to be driven by both endogenous  

and exogenous factors, which may include genetic 

instability (endogenous factors) as well as factors from 

the tumor microenvironment, such as immune cells and 

cancer-associated fibroblasts (exogenous factors). Also, 

some receptors-ligand genes, such as PD-L1/PD1 both 

expressed in stromal cells or macrophage cells in HCC, 

could induce the immunosuppressive effect to TME  

[17, 18]. The aberrant activation of the Wnt signaling 

pathway, which is initiated by the binding of Wnt 

ligands to Frizzled receptors, is frequently implicated  

in stem cell cancer initiation and progression [19]. 

 
In our model, we next screened 16 ligand receptor  

genes in single cell tumor cells through prognosis, and 

extensive research has officially confirmed the role of 

these genes in hepatocellular carcinoma. For example, 

the increased expression of SRXN1 (Sulfiredoxin 1) 

may be helpful in resisting oxidative stress produced by 

tumor cells [20]. Overexpression of PBK (PDZ Binding 

Kinase) may lead to increased proliferation and survival 

ability of tumor cells [21]. EPO (Erythropoietin) can 

enhance the survival ability of tumor cells by inhibiting 

apoptosis and promoting angiogenesis. This may increase 

the risk of hepatocellular carcinoma [22]. SLC7A11 is 

involved in the uptake of sulfated amino acids by cells 

with increasing expression led to increased resistance to 

chemotherapy drugs in cancer [23]. 

 

However, our study is not without limitations. Although 

the clustering method was useful in identifying specific 

subpopulations in HCC, further research is needed  

to validate the clinical relevance of these clusters. In 

addition, the role of these 16 genes in HCC requires 

experimental validation to further establish their func-

tional significance in the progression of HCC. Moreover, 

our prognostic model needs to be validated in larger, 

prospective studies and across different populations. 

 

In conclusion, our study has shed light on the intricate 

landscape of ligand-receptor interactions within the 

TME of HCC. By identifying key receptor-ligand genes 

and developing a prognostic model, we provide new 

insights into HCC progression and potential therapeutic 

targets. Despite the limitations, our findings offer a 

promising step towards more personalized therapeutic 

strategies for HCC patients. 

 

MATERIALS AND METHODS 
 

Single cell data downloading and preprocessing 

 

We utilized the Seurat (Version 4.1.1) R package to 

process single cell data obtained from the GEO data-

base (https://www.ncbi.nlm.nih.gov/geo/) for a reliable 

liver cancer single cell expression profile dataset 

(GSE149614) [24]. The sequencing platform used was 

GPL24676 Illumina NovaSeq 6000 for Homo sapiens. 

We filtered the single-cell data by setting the criteria 

that each gene should be expressed in at least three  

cells and each cell should express at least 250 genes. 

We further ensured that the gene expressed by each cell 

was more than 500 and less than 4000, the unique 

molecular identifier (UMI) of each cell was less than 

15000, mitochondrial gene content was less than 10%, 

ribosome expression was more than 3%, and red blood 

cell expression was less than 1%, using the Percentage 

Feature Set function. We obtained a total of 18 single-

cell sequencing samples from the GSE149614 dataset, 

including 10 hepatocellular carcinoma tissues and 8 

normal liver tissues. 

 

TCGA database data and ICGC database data 

download 

 

We retrieved clinical phenotype data of liver cancer 

from The Cancer Genome Atlas (TCGA) database and 

removed samples without survival time and survival 

https://www.ncbi.nlm.nih.gov/geo/
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status. We ensured that all patients had a survival time 

of more than 0 days. Additionally, we downloaded 

TCGA expression profile data and obtained 368 tumor 

samples. Moreover, we downloaded the liver cancer 

data, expression profile data, and survival data of the 

ICGC-JP cohort from the International Cancer Genome 

Consortium (ICGC) database. We removed samples 

lacking survival time and survival status and ensured 

that all patients had a survival time of more than  

0 days. Eventually, we obtained a total of 232  

samples. We calculated snv mutation information of  

the gene of TCGA-LIHC using Mutect2 software 

through TCGAbiolinks (version 2.24.3) download  

[25]. Homologous Recombination Defects, Fraction 

Altered, Number of Segments, Nonsilent Mutation 

Rate, Aneuploidy Score, Silent Mutation Rate Data 

were obtained from a previous study [26]. 

 

Single-cell dimensionality reduction and annotation 

 

To normalize the data of the 18 samples, we applied 

log-normalization separately. Then, we found hyper-

variable genes using the FindVariable Features function, 

which identified variable features based on variance 

stabilization transformation (VST). We scaled all genes 

using the ScaleData function followed by PCA dimen-

sionality reduction using RunPCA to find anchor points, 

choosing dim = 30. The cells were clustered through  

the FindNeighbors and FindClusters functions with a 

resolution of 0.45 to avoid batch effect of the samples,  

a Harmony package (version 0.1.0) was used to batch 

correct the samples. For cell type annotation, we used 

the HumanPrimary CellAtlasData dataset in the SingleR 

(version 1.10.0) R package. We also used the tools 

Copycat [27] (version 1.0.8). Subsequently, marker 

genes of each sub-population were screened using  

the FindAllMarkers function with logfc = 0.5 (fold 

difference) and Minpct = 0.5 (minimum expression ratio 

of differential genes), with a screening threshold of a 

corrected p-value less than 0.05. 

 

Cell communication analysis 

 

We used the R package CellChat (version 1.5.0) for the 

analysis of cell-to-cell communication [28]. The results 

of CellChat were used to screen out the receptor ligand 

genes associated with malignant cells. 

 

Consistent clustering for receptor-ligand genes 

 

We performed univariate Cox regression analysis to 

identify genes associated with prognosis (p < 0.05), 

from the genes identified in CellChat. Based on the 
expression profile of these prognostically relevant 

genes, we classified the patients using the consensus 

clustering of tumor tissues in the TCGA dataset through 

ConsensusClusterPlus (version 1.60.0) package in R 

programming language [29]. We used the HC algorithm 

with “Pearson” as the metric distance and performed 

500 bootstraps with each bootstrap procedure including 

80% of the training set of patients. The number of 

clusters was set from 2 to 10, and the optimal number of 

clusters was determined by calculating the consistency 

matrix and the consistency cumulative distribution 

function. The CDF was used to determine the best 

classification. 

 

Path analysis and variance analysis 

 

We obtained Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway genes from the msigdb 

(http://www.gsea-msigdb.org/) database. To calculate 

pathway scores for samples of different molecular 

subtypes, we utilized the GSVA package [30]. For 

differential analysis of the pathway scores between the 

two subtypes, we used the limma package (version 

3.52.2) [31]. Here, we selected pathway visualization 

with |logFC| >0.15 and P-value < 0.05 criteria. 

Furthermore, we conducted differential analysis of gene 

expression by subtype using the limma package and 

identified differential genes by screening for |logFC| 

>log2 (1.2) and P-value < 0.05. We then employed gene 

set enrichment analysis (GSEA) using the Hallmark 

gene sets in the msigdb database as the background  

set, and we merged these results with the previous 

differential analysis to reveal further insights into the 

pathways and genes involved. 

 

LASSO regression analysis and risk model 

construction 

 

Genes significantly associated with survival outcomes 

were identified through univariate Cox regression 

models to construct a prognostic model. In addition, 

reliable predictors were selected using LASSO analysis 

[32], a compression estimator that constructs a penalty 

function to compress coefficients and set others to zero. 

This methodology retains the advantages of subset 

shrinkage and acts as a biased estimator that reduces 

multicollinearity problems encountered in regression 

analysis. We conducted LASSO Cox regression using 

the R software package glmnet (version 4.1-4). Risk 

scores for each patient in the TCGA and ICGC 

databases were calculated using the formula: Risk score 

= Σ coefficient mRNA × expression level mRNA. 

Finally, we analyzed the correlation between patient 

risk scores and prognosis. 

 
Immune infiltration and prediction of immunotherapy 

 

To assess the distribution of specific cellular 

components in the immune microenvironment, we 

http://www.gsea-msigdb.org/
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calculated the scores of 28 immune cells using ssGSEA 

based on characteristic genes obtained in a previous 

study [33]. Differences among subtypes were assessed 

using Kruskal test. In addition, we assessed immune cell 

infiltration using ESTIMATE [34] (version 1.0.13). We 

used TIDE to evaluate the potential clinical effects of 

immunotherapy across groups [35]. A previous study 

[36] showed that the TRS score could predict a patient’s 

response to immunotherapy. CD8+ T cells in the tumor 

microenvironment can produce interferon-γ (IFNγ), 

which can up-regulate PD-1/PD-L1 and IDO1 gene 

expression [37, 38]. Up-regulated IDO1 expression is 

positively associated with tumor progression and poor 

prognosis [39]. We extracted Th1/IFNγ gene signatures 

from a previous study [32] and calculated IFNγ scores 

using ssGSEA for each patient. 

 

Cell culture 

 

Here, we purchased normal liver cell line (THLE-2, 

Shanghai Academy of Life Science), and tumor  

cell lines, including HEP3B (catalog No. ZQ0024), 

HEPG2 (catalog No. ZQ0022), HCCLM3 (catalog No. 

ZQ0023) and HUH7 (catalog No. ZQ0025). Culture 

dishes with Dulbecco’s Modified Eagle’s Medium 

(DMEM) containing 10% fetal bovine serum (FBS) 

were used to inoculate all cell lines to maintain growth 

at 37°C with5% CO2. The cell culture medium was  

also supplemented with 1% penicillin/streptomycin. The 

culture dishes were purchased from Guangzhou Jet 

Biofiltration (Guangzhou, China). FBS, and penicillin/ 

streptomycin were purchased from BI (BI, Ridgefield, 

CT, USA). 

 

RNA extraction and quantitative reverse 

transcription PCR 

 

Using the total RNA isolation kit (Foregene, Chengdu, 

China) and the PrimeScript RT kit (Takara Biomedical 

Technology, Beijing, China), RNA was extracted from 

the cells and reverse transcribed into cDNA. TB Green 

Premix Ex Taq II (Takara Biomedical Technology, 

Beijing, China) and was tested by real-time PCR with 

2−ΔΔCt. GAPDH was the reference gene in the process. 

The qPCR primers are listed as follows: SRXN1 Forward 

Primer CAGGGAGGTGACTACTTCTACTC; SRXN1 

Reverse Primer CAGGTACACCCTTAGGTCTGA. 

 
Western blot 

 

RIPA lysis buffer was used to extract the protein, and 

the BCA Protein Assay Kit was used to calculate the 

protein concentration. 10% SDS-PAGE was used to 

separate equal amounts of protein, and the resultant 

membrane, polyvinylidene difluoride, was used. The 

membrane was incubated with the primary antibody 

overnight at 4°C after being blocked with 5% BSA in 

PBST for 1 hour at room temperature. It was then 

subjected to three PBST washes before being exposed 

to an appropriate horseradish peroxidase (HRP)-

conjugated secondary antibody for one hour at room 

temperature. With the use of an ECL chemiluminescent 

reagent, the reaction was observed. Using Image Lab, 

the blot’s intensity was measured. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. (A) Relationship between mitochondrial gene and UMI/mRNA quantity, relationship between UMI and mRNA 

quantity. (B) Relationship between mRNA/UMI/mitochondrial content/rRNA content of each sample before filtration. (C) Relationship 
between mRNA/UMI/mitochondrial content/rRNA content of each sample after filtration. (D) Sample distribution map of PCA dimension 
reduction and anchor map of PCA. 
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Supplementary Table 
 

 

Supplementary Table 1. Raw data for western blots and qRT-PCR. 

WB 

 GADPH SRXN1 GAPDH/SRXN1  

1 99187.844 35326.844 0.356161023  

2 84853.137 18479.309 0.217779915  

3 88187.844 41430.673 0.469800271  

4 94555.966 59051.551 0.62451428  

5 95978.966 46234.602 0.481715983  

6 96021.43 104183.673 1.085004389  

7 107641.258 79371.137 0.737367237  

8 101272.258 87097.844 0.860036556  

9 86776.894 72204.016 0.832064996  

10 85029.53 86875.187 1.021706071  

 

qPCR 

THLE-2 HEP3B HCCLM3 HEPG2 HUH7 

3.082 5.122 5.103917211 7.839581737 5.285772093 

4.053 7.378 7.032982417 6.364222221 4.958378712 

2.902 7.542 5.468909092 6.374691752 5.459431619 

6.146 5.861 5.56924803 5.185866545 8.572624443 

2.054 6.522 6.063934306 6.763145958 7.275472718 

1.806 4.987 4.164303583 5.502712486 5.656782364 

 

 


