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INTRODUCTION 
 

Prostate cancer (PCa) is a worldwide disease that  

affects men’s health and has risen to become the  

second most common malignancy in men [1]. In  

recent years, the incidence and mortality rate of PCa in 

China have also been increasing. Radical prostatectomy, 

external radiation therapy, and brachytherapy are the 

recommended interventions for localized PCa [2]. 

However, tumor recurrence is a clinical dilemma in the 

management of PCa, especially in patients with high 

tumor grade and high tumor stage [3]. It is estimated 

that > 40% of men with intermediate or high-risk PCa 

will experience biochemical recurrence after radical 
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ABSTRACT 
 

Basement membrane plays an important role in tumor invasion and metastasis, which is closely related to 
prognosis. However, the prognostic value and biology of basement membrane genes (BMGs) in prostate cancer 
(PCa) remain unknown. In the TCGA training set, we used differentially expressed gene analysis, protein-protein 
interaction networks, univariate and multivariate Cox regression, and least absolute shrinkage and selection 
operator regression to construct a basement membrane-related risk model (BMRM) and validated its 
effectiveness in the MSKCC validation set. Furthermore, the accurate nomogram was constructed to improve 
clinical applicability. Patients with PCa were divided into high-risk and low-risk groups according to the optimal 
cut-off value of the basement membrane-related risk score (BMRS). It was found that BMRS was significantly 
associated with RFS, T-stage, Gleason score, and tumor microenvironmental characteristics in PCa patients. 
Further analysis showed that the model grouping was closely related to tumor immune microenvironment 
characteristics, immune checkpoint inhibitors, and chemotherapeutic drug sensitivity. In this study, we 
developed a new BMGs-based prognostic model to determine the prognostic value of BMGs in PCa. Finally, we 
confirmed that THBS2, a key gene in BMRM, may be an important link in the occurrence and progression of 
PCa. This study provides a novel perspective to assess the prognosis of PCa patients and provides clues for the 
selection of future personalized treatment regimens. 
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prostatectomy [4]. Therefore, it is important to find 

reliable biomarkers to intervene in patients with a high 

risk of recurrence to guide treatment strategies and 

prognostic assessment. 

 

The basement membrane is an extracellular matrix 

(ECM) composed mainly of laminin and type IV 

collagen that serves as a structural barrier to tumor 

invasion and metastasis [5]. Underscoring their diverse 

and essential functions, variants in more than 20 

basement membrane genes (BMGs) underlie human 

diseases [6]. BMGs may be predominantly expressed 

in stromal cells, particularly in cells involved in  

the production and maintenance of the basement 

membrane, such as fibroblasts and myoepithelial cells. 

These cells synthesize and secrete matrix components, 

forming the structure of the basement membrane [7, 

8]. However, Laminin-511 has been implicated in cell 

migration, tumor growth, and metastasis, with higher 

levels of this isoform found in many breast, lung, 

thyroid, and prostate cancers [9, 10]. Tumor cells must 

penetrate the basement membrane during metastasis. 

Therefore, degradation of the basement membrane and 

ECM is a prerequisite for cancer invasion and distant 

metastasis [7]. PCa cells interact with the ECM to 

adjust its growth and metastasis [11]. Disruption of 

basement membrane continuity as well as the synthesis 

of basement membrane proteins is observed during 

PCa progression [12]. Fuchs et al. found that basement 

membrane staining was reduced in high Gleason grade 

PCa and completely disappeared in metastases [13]. It 

has been found that matrix metalloproteinase-7 (MMP-

7) disrupts and degrades the perlecan complex bound 

in the ECM, thereby facilitating circulating tumor cell 

production and distant metastasis in PCa [14]. 

 
Furthermore, as a specialized structure of the ECM,  

the basement membrane participates in the composition 

of the tumor immune microenvironment (TIME) [7].  

As the target of autoantibodies in immune diseases, 

BMGs are believed to regulate tumor immunity in 

addition to affecting tumor cell proliferation, invasion 

and migration [15]. It has been reported that laminin  

not only regulates T-cell adhesion and migration, but 

also directly correlates with patient prognosis and PD-

1/PD-L1 treatment response [16]. For these reasons, 

BMGs as tumor ECM components are considered as 

therapeutic targets for cancer. 

 
The aim of this study was to investigate the role of 

BMGs in the early prediction of biochemical recurrence 

of PCa and in guiding treatment decisions. Based on 

five differentially expressed BMGs, we constructed a 

prognostic model to predict recurrence-free survival 

(RFS) in PCa patients and found a strong correlation 

between BMGs and TIME. Our findings will provide 

guidance for the development of personalized treatment 

protocols to improve the prognosis of PCa patients. 

 

MATERIALS AND METHODS 
 

Data acquisition and processing 

 

The mRNA expression data and corresponding clinical 

information for 501 PCa and 52 adjacent normal 

samples were obtained from The Cancer Genome  

Atlas (TCGA, https://portal.gdc.cancer.gov) database. 

Ultimately, patients containing clinical information 

such as age, pathological T-stage, prostate-specific 

antigen (PSA), Gleason score, and time to recurrence 

(n = 423) were screened as a training cohort for the 

subsequent study. Similarly, 140 PCa patients from the 

Memorial Sloan Kettering Cancer Center (MSKCC) 

cohort (GSE21034, https://www.ncbi.nlm.nih.gov/geo/) 

were retained by the above screening criteria and used 

as an external validation cohort. 224 BMGs were 

obtained from previous studies [17] (Supplementary 

Table 1). The clinicopathological characteristics of 

patients in the TCGA-PRAD cohort and MSKCC 

cohort are detailed in Supplementary Table 2. 

 

Identification and functional enrichment analysis of 

DE-BMGs 

 

Differentially expressed genes (DEGs) were 

calculated in the TCGA-PRAD dataset using the 

“Limma” R package [18]. 120 differentially expressed 

BMGs (DE-BMGs) were included in the PCa based 

on a cut-off value of fold change > 1.5 and FDR < 

0.05. The DE-BMGs are shown by a volcano plot  

and heat map. Subsequently, Gene Ontology (GO)  

and Kyoto Encyclopedia of Genes and Genomes 

(KEGG) enrichment analyses were performed using 

the “ClusterProfiler” R software package [19] to 

investigate the biological functions of the DE-BMGs.  

 

Identification of prognosis-associated BMGs and 

their protein-protein interaction (PPI) network and 

copy number variation (CNV) landscapes 

 

We performed univariate Cox regression survival 

analysis using the “survival” R package to extract  

DE-BMGs associated with RFS for further study. 

Subsequently, the mRNA expression of the above-

mentioned genes was analyzed differentially in the 

TCGA-PRAD data. The PPI network of prognosis-

related DE-BMGs was assessed using the Search  

Tool for the Retrieval of Interaction Genes (STRING, 

https://STRING-db.org). Amplifications and deletions 

of DE-BMGs were identified based on CNV data,  

and the CNV landscape was visualized using the R 

software package “OmicCircos” [20]. 

https://portal.gdc.cancer.gov/
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Construction and validation of a prognostic model 

based on BMGs 

 

Following univariate Cox regression analysis with  

the least absolute shrinkage and selection operator 

(LASSO), five stable prognostic BMGs were identified, 

and further prognostic basement membrane-related risk 

models (BMRM) were constructed [21]. Regression 

coefficients for genes in the TCGA-PRAD cohort were 

obtained by multifactorial Cox regression analysis. The 

basement membrane-related risk score (BMRS) formula 

was calculated from this regression coefficient as 

follows: ( ) coefficientRiskScore exp BMGs=  , where 

coefficient indicates the regression coefficient of the 

prognostic gene signature. Patients were divided into 

low- and high-risk groups based on the best cutoff level. 

The value of BMRM for predicting RFS in PCa patients 

was assessed by Kaplan-Meier survival curves and 

time-dependent receiver operating characteristic (ROC) 

curves. In addition, the MSKCC cohort was selected as 

an external validation cohort to test the predictive power 

of prognosis-related BMRM. 

 

Identification of independent prognostic factors and 

construction of a nomogram for predicting RFS 

 

Univariate and multivariate Cox regression analyses 

were performed on the BMRM and clinicopathological 

parameters of patients in the TCGA-PRAD cohort  

to identify whether the BMRS could be used as an 

independent prognostic factor. Next, we combined the 

BMRS and clinical data to produce a nomogram for 

RFS [22]. In addition, RFS calibration curves were 

generated at 1, 3, and 5 years to verify the accuracy of 

the nomogram. Finally, the correlation between BMRS 

and clinicopathological features was represented by box 

plots. 

 

Analysis of BMRM in relation to PCa patient 

immune characteristics, TMB and drug sensitivity 

 

To explore the relationship between BMRS and immune 

cell infiltration, the ESTIMATE algorithm [23] was 

used to analyze the stromal score, immune score, and 

ESTIMATE score for each PCa sample. The relative 

proportions of 22 tumor-specific immune infiltrating 

cells in the different risk groups of PCa patients were 

obtained by using the CIBERSORT algorithm [24]. Next, 

the correlation between BMRS and immune check-

points was calculated using the Spearman correlation 

method. Tumor immune dysfunction and exclusion 

(TIDE) predicts the rate of response to immunotherapy 

in patients. The TIDE scores were mainly done through 

the TIDE website (http://TIDE.dfci.harvard.edu/). Sub-

sequently, information on mutations was obtained from 

the TCGA database, and the tumor mutation burden 

(TMB) of PCa patients was calculated using the 

“Maftools” package [25]. Correlations between TMB 

scores and different risk groups were assessed. Then, 

the 10 genes with the highest mutation frequency were 

selected for visualization. In addition, based on the 

Genomics of Drug Sensitivity in Cancer (GDSC, https:// 

www.cancerrxgene.org/), we used the “pRRophetic” R 

package [26] to obtain IC50 estimates for specific 

chemotherapeutic drug treatments to predict drug 

sensitivity in different risk groups of PCa patients. 

 
Cell culture and transfection 

 

The human PCa cell lines C4-2, C4-2B, DU145,  

PC-3 and normal prostate epithelial cells RWPE-1 were 

purchased from the Cell Bank of the Chinese Academy 

of Sciences. All cells were incubated at 37° C in  

a humidified atmosphere with 5% CO2. Cells were 

cultured in RPMI-1640 medium (Gibco, Waltham, MA, 

USA) supplemented with 10% fetal bovine serum  

(FBS, Gibco, Australia) and 1% penicillin/streptomycin 

(Gibco). For the transient knockdown of target genes, we 

transfected cells with Lipofectamine 3000 (Invitrogen, 

Carlsbad, CA, USA) and siRNAs targeting THBS2 

according to the manufacturer's instructions. Cells were 

collected 36 hours after transfection. All siRNAs were 

synthesized by RiboBio Company (Guangzhou, China). 

siRNA sequences are shown in Supplementary Table 3. 

 
Western blotting 

 
Western blotting experiments were carried out as 

previously described [27]. Primary antibodies used were 

as follows: THBS2 (ab112543, Abcam, UK), GAPDH 

(60004-1-Ig, Proteintech, China), and α-Tubulin (66031-

1-Ig, Proteintech). 

 
Cell counting kit-8 (CCK-8) and colony formation 

assays 

 
CCK-8 and colony formation assays were conducted to 

measure the PCa cells’ proliferation capacity. Treated 

cells were placed in a 96-well plate at a density of 2000 

cells/well. The cells were cultured in the presence of 

100 μL of CCK-8 (1:10 dilution, CK-04, Dojindo, 

Japan) solution for 2 h at 37° C. Then, the absorbance 

values of the wells at 450 nm were evaluated using  

an automatic spectrometer (Thermo Fisher Scientific, 

Waltham, MA, USA). This procedure was repeated at 1, 

2, 3, 4, and 5 days after cell seeding. For the colony 

formation assay, approximately 1000 cells/well were 

plated into a six-well plate and incubated for 10-14 

days. When colonies appeared, cells were fixed with  
4% paraformaldehyde for 5 min and stained for 10 with 

Giemsa (Solarbio, Beijing, China). All experiments were 

conducted in triplicate independently. 

http://tide.dfci.harvard.edu/
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Transwell migration assay 

 

The transwell migration assay was performed using 

transwell chambers (Corning Inc., Corning, NY, USA). 

Cells were resuspended in serum-free medium and 

inoculated in the upper chamber (5 × 104 cells per 

well); RPMI-1640 containing 10% FBS was usually 

added to the lower chamber. The culture plate was 

incubated at 37° C for 48 h. After 48 h inoculation, 

migrated cells were fixed with 4% paraformaldehyde 

for 5 min, followed by staining for 10 min with 

Giemsa (Solarbio, Beijing, China). 

 

Statistical analysis 

 

All statistical analyses were performed in R 4.2.1 or 

GraphPad Prism 9. Differences between the two risk 

groups were analyzed using the Wilcoxon test or t-test. 

Spearman's correlation analysis was used to assess the 

relationship between immune checkpoints and BMRS. 

Continuous variables were expressed as the mean ± 

standard deviation (SD). Any hypothesis tests with a  

p-value <0.05 were considered significant and were 

two-sided. 

 

Data availability statement 

 

The datasets analyzed for this study can be found in  

the TCGA (https://portal.gdc.cancer.gov/) and the GEO 

database (https://www.ncbi.nlm.nih.gov/geo/). 

 

RESULTS 
 

120 genes were identified as DE-BMGs in PCa 

 

Figure 1 illustrates the methodology of the study.  

To examine the tumor BMGs landscape in PCa,  

we performed differential expression analysis in the 

TCGA-PRAD cohort using the limma package in R. 

Setting adjusted p-values < 0.05 and |FC| > 1.5, a total 

of 7663 DEGs were identified between the PCa and 

normal groups. Further, combined with the set of known 

BMGs genes, the Venn diagram shows that 120 of these 

DEGs were identified as DE-BMGs (Figure 2A). 

Compared to normal tissues, 19 genes were upregulated 

and 101 genes were downregulated in PCa, as shown in 

the volcano map and heat map (Figure 2B, 2C). 

 

We then implemented GO and KEGG enrichment 

analyses to understand the potential function of these 

genes. The terminology of GO enrichment analysis is 

mainly related to the basement membrane, collagen-

containing ECM and ECM structural constituent (Figure 

2D). KEGG enrichment analysis showed that DE-BMGs 

interacted with ECM receptor interaction, focal adhesion 

and the PI3K-Akt signaling pathway (Figure 2E). 

Identification of DE-BMGs associated with RFS in 

PCa 

 
In order to explore the prognostic value of DE-BMGs, 

we analyzed 120 DE-BMGs obtained from the above 

TCGA-PCa cohort with univariate Cox analysis and 

found 16 genes related to RFS. Among them, SMOC1, 

PTN, EVA1C, AMELX, COL4A6 and MMP26 were 

protective factors (hazard ratio, HR < 1), while SDC1, 

COL8A2, LAMA3, FN1, GPC6, MMP21, GPC2, BGN, 

ADAMTS2 and THBS2 (HR > 1) were risk factors in 

PCa (Figure 3A). The PPI network showed the complex 

relationship between these prognostic indicators in PCa, 

where SDC1, BGN, FN1 and COL4A6 belong to the 

hub genes of the network (Figure 3B). Moreover, these 

prognostic indicators were strongly correlated, such as 

ADAMTS2 and BGN, THBS2 and FN1, COL4A6 and 

SMOC1 (Figure 3C). Compared with normal prostate 

tissues, only six genes (THBS2, MMP26, ADAMTS2, 

BGN, MMP21, and GPC2) were up-regulated in PCa 

(Figure 3D). Then, we analyzed the CNV landscape of 

these 16 RFS-related DE-BMGs in PCa. The CNV 

positions of these 16 genes on the chromosomes were 

shown in Figure 3E. Among them, BGN, AMELX, 

ADAMTS2, COL4A6, and LAMA3 exhibited a trend 

of copy number gains, while SMOC1, PTN, MMP26, 

SDC1, COL8A2, FN1, GPC6, MMP21, GPC2 and 

THBS2 showed a trend of copy number losses. In 

addition, EVA1C was in the neutral group with no copy 

number change (Figure 3F). 

 
Establish a RFS-related risk prediction model based 

on DE-BMGs in PCa 

 

As mentioned above, among 120 DE-BMGs, only 16 

genes were associated with the RFS of patients after 

univariate Cox regression analysis. Then, LASSO 

regression analysis was carried out to further narrow 

down the DE-BMGs related to RFS. A model with a 

minimum wavelength of 0.016 was selected, and nine 

genes (MMP21, THBS2, COL4A6, MMP26, GPC2, 

GPC6, SDC1, LAMA3 and BGN) were identified 

(Figure 4A, 4B). Then, five genes (THBS2, MMP26, 

COL4A6, MMP21 and SDC1) were identified as 

independent prognostic factors by stepwise multiple 

regression analysis (Figure 4C). Finally, we constructed 

a BMRM based on the above five genes to predict RFS 

in PCa patients. The BMRM was constructed based on 

the following formula: BMRS=0.25×THBS2−0.269× 

MMP26−0.319×COL4A6+0.769×MMP21+0.201×SDC

-1. The BMRS of each patient in the TCGA training  

set was calculated according to the above formula, and 

423 PCa patients were divided into a low-risk group  

(n = 308) and a high-risk group (n = 115) according to 

the best cutoff value of 1.46638 (Figure 4D, 4E). From 

the risk heat map, it can be seen that THBS2, MMP21 

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
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and SDC1 are more likely to be expressed in high-risk 

groups, while MMP26 and COL4A6 were opposite 

(Figure 4F). Kaplan-Meier survival analysis showed 

that the RFS time of the high-risk group was shorter 

than that of the low-risk group (p < 0.001; Figure 4G). 

Besides, the risk model had good prognostic validity in 

the TCGA training set, and the area under curve (AUC) 

values of RFS at 1, 3, and 5 years were 0.680, 0.721, 

and 0.769 respectively (Figure 4H). 

 

Verify the predictive value of the BMRM in the 

MSKCC cohort 

 

To further validate the prognostic value of BMRM, we 

filtered the MSKCC cohort containing RFS information 

in PCa and used it as an external validation set. 

Similarly, we used the same analysis in the validation 

set for the MSKCC cohort as in the TCGA training set, 

dividing 140 PCa patients into a low-risk group (n = 

102) and a high-risk group (n = 38) based on a cutoff 

value of 5.17873. The distribution of BMRS, patient 

survival status, and gene expression profiles for the 

MSKCC cohort are shown in Figure 5A–5C, all of 

which follow the same trend as the TCGA training set. 

Kaplan-Meier analysis for the MSKCC cohort also 

showed a shorter RFS time for the high-risk group, 

suggesting a worse prognosis (Figure 5D). Similarly, 

ROC curves were used to assess the prognostic value of 

BMRM in the MSKCC cohort. Figure 5E demonstrated 

the AUC values of 0.774, 0.71, and 0.646 for 1, 3, and 

5-year RFS in PCa patients, respectively. In summary, 

we confirmed the significant value of BMRM in 

predicting the prognosis of PCa patients with the TCGA 

training set and MSKCC validation set, where five 

carefully selected DE-BMG genes (THBS2, MMP26, 

COL4A6, MMP21, and SDC1) may be key molecules 

in PCa development. 

 

The relationship between BMRS and pathological 

and genetic characteristics in PCa patients 

 

Next, we explored the relationship between  

BMRS and the clinicopathological characteristics  

of patients with PCa at different stages. The results 

showed that BMRS in PCa patients was significantly 

different from age (p = 0.0127), T-stage (p < 0.001), 

PSA (p = 0.0155) and Gleason score (p < 0.001) 

(Figure 6A–6D). Patients in the high-risk group had 

significantly increased Gleason score, T-stage and 

PSA levels. In addition, it was shown that patients 

with high TMB were more likely to benefit from 

immune checkpoint inhibitors (ICIs) therapy [28],  

and we further explored the differences in TMB 

between the high- and low-risk groups. Surprisingly, the 

 

 

 
Figure 1. Methodology of the study. 
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TMB was significantly higher in the high-risk group 

than in the low-risk group (Figure 6E). In addition, 

comparing the mutation profiles, the proportion of 

mutations (like TP53 and TTN) was significantly 

higher in the high-risk group than in the low-risk 

group (Figure 6F, 6G). 

 

Assessment of the independent prognostic value of 

BMRM and construction of a nomogram in PCa 

patients 

 

Univariate and multivariate Cox regression analyses 

were performed in the TCGA dataset to compare  

the correlation between clinical information (including 

age, T stage, PSA and Gleason score) and BMRS in  

PCa patients. Forest plots indicated that BMRS may  

act as an independent factor for RFS in PCa (Figure 

7A). Moreover, the same results were observed in  

the forest plots of the MSKCC external validation set 

(Supplementary Figure 1). We then integrated clinical 

information from the TCGA dataset to generate a 

nomogram including BMRS to predict RFS at 1, 3, and 

5 years for PCa patients (Figure 7B). As expected, the 

calibration curves for the nomogram showed a high 

degree of agreement between the predicted and the 

actual RFS values of the patients (Figure 7C–7E). These 

results suggest that BMRM based on five key genes can 

effectively predict RFS in PCa patients. 

 

 
 

Figure 2. 120 genes were identified as DE-BMGs in PCa. (A) Venn diagram showing the acquisition of DE-BMGs in TCGA-PRAD dataset. 

(B) Volcano map showing 120 DE-BMGs of TCGA-PRAD dataset. Red indicates high expression, blue indicates low expression, and gray 
indicates no statistically significant difference. (C) Heat map of DE-BMGs in PCa (n = 423) and normal prostate tissue (n = 52), where red 
represents positive correlation and green represents negative correlation. (D) Bubble graph of the top 30 terms of DE-BMGs by GO analysis. 
(E) Bubble chart of the top 20 terms of DE-BMGs in KEGG enrichment analysis. 



www.aging-us.com 1587 AGING 

 
 

Figure 3. Identification of prognosis related DE-BMGs in PCa. (A) Forest map of 16 RFS related DE-BMGs in TCGA-PRAD 
dataset. (B) PPI network of 16 RFS related DE-BMGs. (C) Co-expression network of 16 RFS related DE-BMGs. (D) Expression of 16 RFS 
related DE-BMGs in PCa and normal tissues. (E, F) Chromosome location and CNV alteration frequency of 16 RFS related DE-BMGs. 
Copy number amplification, yellow dot; Copy number deletion, green dot. RFS: Recurrence free survival. * p < 0.05, ** p < 0.01, *** p 
< 0.001. 
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Figure 4. BMRM construction and prognostic analysis. (A) Selection of the optimal penalty parameter (λ) in the LASSO Cox regression 

model. (B) Gene coefficient spectrum of the 16 RFS-associated BMGs in the TCGA-PRAD cohort in the LASSO Cox regression analysis.  
(C) Forest plot of multivariate analysis showing 5 genes (THBS2, MMP26, COL4A6, MMP21 and SDC1) as independent prognostic factors for 
RFS in PCa patients. (D, E) BMRS plots from the TCGA training set. (F) Heat map of the two BMRS groups and correlation analysis of 
clinicopathological characteristics. (G) Kaplan-Meier analysis of RFS for PCa patients in both risk groups. (H) AUC shows the accuracy of 
BMRM in predicting 1-, 3-, and 5-year RFS in the TCGA training set. 
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Figure 5. Validate the predictive performance of BMRM in the MSKCC validation set. (A, B) Risk score plots from the MSKCC 

validation set. (C) Risk heat map of the two risk groups in the MSKCC validation set and correlation analysis of clinicopathological 
characteristics. (D) Kaplan-Meier analysis of RFS in the MSKCC validation set for PCa patients in both risk groups. (E) AUC shows the accuracy 
of BMRM in predicting 1-, 3-, and 5-year RFS in the MSKCC validation set. 
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Figure 6. Correlation analysis between BMRS and clinicopathological characteristics of patients with PCa. (A–D) Comparison of 

differences in BMRS between patients with different Age, T stage, PSA and Gleason score subgroups. (E) Analysis of the differences in TMB 
between the two risk groups. (F) Waterfall plot of the top 10 mutated genes in the high-risk group. (G) Waterfall plot of the top 10 mutated 
genes in the low-risk group. * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Figure 7. Assessment of independent prognostic value of BMRM and construction of a nomogram in PCa patients.  
(A) Univariate and multivariate Cox regression analysis of BMRS groupings and clinicopathological parameters in the TCGA training  
cohort. (B) Prediction of 1-, 3- and 5-year RFS for patients in the TCGA-PRAD dataset using the nomogram constructed by BMRS 
combined with clinicopathological parameters. (C–E) Calibration curves used to describe the agreement between the 1-, 3- and 5-year 
RFS predicted by the nomogram and the actual RFS of PCa patients . 
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Exploring immune characteristics and sensitive 

drugs based on BMRS grouping 

 
The TIME is a highly heterogeneous ecosystem  

that typically contains a collection of tumor cell 

populations, immune cells, and tissue-specific resident 

and recruited stromal cell types. The study of TIME  

has provided theoretical support for the development  

of tumor immunotherapy [29]. Firstly, we explored the 

relationship between BMRS and TIME. The stromal 

score, immune score, and ESTIMATE score were all 

higher in the high-risk group than in the low-risk group 

(Figure 8A). Next, we compared the relative propor-

tions of 22 immune cell types in samples from the two 

risk groups in the TCGA training set using CIBERSORT. 

Compared to the low-risk group, the high-risk group 

had a higher proportion of most tumor immune cells 

(Figure 8B), including initial B cells (p < 0.001), 

dormant CD4 memory cells (p = 0.0081), dormant 

natural killer cells (p = 0.145), M1-type macrophages  

(p = 0.0014), and M2-type macrophages (p < 0.001). 

ICIs are profoundly changing the therapeutic outlook 

for many cancers. Therefore, we screened for some 

classical ICIs and analyzed the correlation between 

BMRS and ICIs in PCa patients. The scatter plot  

results showed statistically significant expression of 

most immune checkpoint genes in both risk groups 

(Supplementary Figure 2). Interestingly, there was a 

significant positive correlation between BMRS and 

these seven immune checkpoints (BTLA, CD27, CTLA4, 

GPR65, HAVCR2, TIGIT and VSIG4; p < 0.001) and a 

significant negative correlation with CD38 (p < 0.001). 

In addition, we assessed the possible immunotherapy 

benefit between high- and low-risk individuals by  

TIDE score. It was shown that low-risk patients had 

significantly lower TIDE scores and immune escape 

capacity compared to high-risk patients, indicating a 

greater likelihood of benefiting from immunotherapy 

(Figure 8C). Finally, we also investigated the 

therapeutic response of PCa patients in both risk groups  

to chemotherapeutic agents. The results showed that 

patients in the high-risk group had a lower IC50, 

implying higher treatment sensitivity and response  

rates to Vinblastine, Cisplatin, Methotrexate, Docetaxel, 

Etoposide and Gemcitabine (Figure 8D–8I). 

 
Potentially related biological mechanisms based on 

BMRS grouping 

 

To further investigate the biological mechanisms 

potentially associated with the PCa prognostic model, we 

performed a gene set registration analysis (GSEA) of 

DEGs in the high-risk and low-risk groups of the TCGA 

training set. As shown in Figure 9A, 9B, we found that 

cell adhesion molecules, cell cycle and ECM receptor 

interactions were more active in the high-risk group, and 

the above three biological process features were closely 

related to tumorigenesis and progression. Arginine and 

proline metabolism, glutathione metabolism and oxidative 

phosphorylation were enriched in the low-risk group. 

 

THBS2 promotes proliferation and migration in PCa 

cells 

 

Univariate and multifactorial Cox regression analyses 

confirmed that a high level of THBS2 expression was 

an independent adverse prognostic factor in PCa. 

However, its biological function in PCa remains un-

clear. TCGA database analysis revealed high THBS2 

expression in PCa tissue compared to normal prostate 

tissue (Figure 10A). In addition, we also compared 

THBS2 expression levels between PCa cell lines (C4-2, 

C4-2B, DU145, and PC-3) and the normal prostate 

epithelial cell line (RWPE-1) by Western blotting 

analysis. The results showed that THBS2 was 

significantly upregulated in PCa cell lines, especially in 

C42 and PC-3 cells compared to RWPE-1 (Figure 10B), 

further demonstrating the upregulated expression of 

THBS2 in PCa. We used three siRNAs (si-THBS21#1, 

si-THBS2#2, and si-THBS2#3) to transiently knock-

down THSB2 in two PCa cell lines C4-2 and PC-3.  

To evaluate the knockdown efficacy of THBS2, 

Western blotting showed that THBS2 expression was 

significantly reduced in C4-2 and PC-3 cells after 

transfection with si-THBS2#3 (Figure 10C). We chose 

si-THBS2#3 for the subsequent experiments due to it 

having the best efficiency of interference. Experiments 

have shown that the knockdown of THBS2 can inhibit 

the proliferation and colony forming abilities of C4-2 

and PC-3 (Figure 10D, 10E). In addition, according  

to the migration results of Transwell, the silencing  

of THBS2 can significantly inhibit the migration of C4-

2 and PC-3 (Figure 10F). Collectively, these results 

demonstrate that THBS2 promotes PCa cell growth and 

migration. 

 

DISCUSSION 
 

Tumor metastasis is the most common cause of cancer-

related death [30]. The basement membrane acts as a 

resilient ECM and once the structure and function of  

the basement membrane are altered, cancer cells may 

break through the basement membrane and spread or 

metastasize [31, 32]. A growing number of studies have 

shown that the basement membrane plays an important 

role in the progression of PCa, influencing the migration 

and invasion of tumor cells [33, 34]. Therefore, it is 

imperative to seek biomarkers to construct risk prediction 

models that can predict early recurrence in PCa patients. 

 

We downloaded transcriptome sequencing data and 

clinical information about PCa patients from the TCGA 



www.aging-us.com 1593 AGING 

 
 

Figure 8. Exploring the relationship between BMRS and TIME, immunotherapy and chemotherapy. (A) Comparison of stromal 

score, immune score and ESTIMATE score between the high-risk and low-risk groups. (B) Differences in tumor immune cell infiltration 
between the high-risk and low-risk groups. (C) TIDE scores between high-risk and low-risk groups. (D–I) Association between BMRS and IC50 
of chemotherapeutic agents in PCa patients, including Vinblastine, Cisplatin, Docetaxel, Methotrexate, Etoposide and Gemcitabine. ns: p ≥ 
0.05, * p < 0.05, ** p < 0.01, *** p < 0.001. TIDE, Tumor Immune Dysfunction and Exclusion. ICIs, immune checkpoint inhibitors. TIME, tumor 
immune microenvironment. 
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database as a training set. The five BMGs  

(THSB2, COL4A6, MMP21, MMP26 and SDC1) were 

identified as independent prognostic factors for RFS  

in PCa patients using stepwise multiple regression 

analysis. Previous studies have shown that BMGs  

are associated with PCa pathophysiology. He et al. 

found that THBS2 is a metastasis-specific biomarker 

and poor survival key regulator in human colon  

cancer [35]. Downregulation of collagen COL4A6 is 

associated with PCa progression and metastasis [36]. 

Recent studies have shown that soluble syndecan-1 

(SDC1) serum level is an independent pre-operative 

predictor of cancer-specific survival in PCa, and SDC1 

is associated with more aggressive tumors and a worse 

prognosis [37]. In addition, matrix metalloproteinases 

(MMPs) are a class of zinc-dependent endoproteases 

responsible for tissue remodeling and degradation  

of ECM proteins [38]. There are at least 23 matrix 

metalloproteinases expressed in humans, and MMP21 

and MMP26 have been reported to play an important 

role in the progression of several cancers, including 

PCa [39, 40].  

 

We further constructed BMRM from five carefully 

selected BMGs and classified PCa patients into high- 

and low-risk groups according to the risk model.  

In the MSKCC cohort validation set, the ROC curves 

demonstrated the high sensitivity and specificity of  

our risk model in predicting 1-year, 3-year and 5- 

year RFS in PCa patients with different risk scores.  

In addition, we have combined the risk scores with 

different clinical characteristics to produce a nomogram 

with good predictive power, improving clinical 

applicability. Statistically significant differences in T-

stage, Gleason score, and PSA were found between  

the different risk groups, indicating a greater likelihood 

of tumor progression and recurrence in PCa patients in 

the higher risk groups. 

 

To further investigate the biological mechanisms 

potentially relevant to the prognostic risk assessment 

of BMRM, we performed a GSEA of DEGs between 

the high-risk and low-risk groups of the TCGA 

training set. We found that cell adhesion molecules, 

cell cycle and ECM receptor interaction pathways 

were more significantly enriched in the high-risk 

group. Among these, cell adhesion and cell cycle are 

both common signaling pathways in cancer research, 

mediating tumor proliferation, metastasis and treatment 

resistance [41]. Tumor cells interact with the ECM 

through receptors such as fibronectins and integrins, 

thereby transducing multiple signals to regulate critical 

cell differentiation, cell proliferation and migration 

[42]. 

 

TMB indicates the number of mutations per  

megabase (Mut/Mb) in DNA sequenced in cancers [43].  

Studies have shown that TMB is considered a reliable 

predictive biomarker of efficacy in cancer patients 

treated with ICIs [44, 45]. In the TCGA cohort, we found 

a significant correlation between TMB and BMRS.  

High-risk patients had a higher TMB and a poorer RFS, 

while low-risk patients had a lower TMB and a better 

RFS. In addition, the proportion of TP53 mutations was 

 

 
 

Figure 9. Potential biological mechanisms for prognostic analysis of BMRM. (A) GSEA analysis reveals the enriched KEGG pathways 
in the high-risk group. (B) GSEA analysis reveals the enriched KEGG pathways in the low-risk group. 
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Figure 10. Inhibition of THBS2 affects the proliferation and migration of PCa cells in vitro. (A) The expression of THBS2 in TCGA 

PCa tumor tissues (n = 492) and the normal (n = 52). (B) Protein expression of THBS2 in the normal prostate epithelial cell line (RWPE-1) and 
PCa cell lines (C4-2B, DU145, C4-2 and PC-3). (C) Western blotting showing THBS2 siRNA knockdown compared to control siRNA treatment. 
(D) CCK-8 assay showed that THBS2 knockdown inhibited C4-2 and PC-3 cell proliferation. (E) The colony formation assay showed that THBS2 
knockdown inhibited C4-2 and PC-3 colony formation. The graph on the right shows the colony numbers from 3 independent experiments. 
(F) Transwell assays showed that THBS2 knockdown inhibited C4-2 and PC-3 cell migration (Scale bar, 50 μm). The graph on the right shows 
the migrated cells from 3 independent experiments. All data are presented as the mean ± SD, *p < 0.05, **p < 0.01, ***p < 0.001. 
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significantly higher in the high-risk group compared  

to the mutation profile of patients in the low-risk 

group. The rate of TP53 mutations was consistent with 

previous reports that TP53 mutations were frequently 

detected in patients with high-risk PCa. Moreover, 

mutations in TP53 appeared more frequently in 

metastatic castration-resistant prostate cancer (mCRPC) 

compared with primary tumor [46, 47]. Furthermore, 

the TP53 gene is an important oncogene, and its 

mutation frequency is associated with poor outcomes 

and treatment resistance in PCa patients [48, 49]. 

 
Currently, tumor immunotherapy has significantly 

advanced the landscape of cancer treatment [50]. 

Unlike other malignancies, PCa as an immuno-

logically “cold” tumor has an immunosuppressive 

microenvironment and therefore the development of 

immunotherapy has lagged behind [51, 52]. In the 

future, a comprehensive and accurate assessment of 

the immune microenvironment of PCa and exploration 

of the underlying mechanisms of immunosuppression 

and immune escape will be an effective and important 

means of advancing the pace of immunotherapy. 

Therefore, we used the CIBERSORT algorithm to 

assess the relative proportions of 22 immune cell types 

in PCa. Depletion of CD8+ T-cells is detrimental to 

the anti-tumor immune response and is associated with 

a worse prognosis [53]. In addition, tumor-associated 

macrophages (TAMs), an important component of the 

immune microenvironment, mainly M2-type TAMs 

promote tumor growth and metastasis [27]. Consistent 

with our study, the high-risk group in this model had  

a lower abundance of CD8+ T-cells and a higher 

abundance of M2-type TAMs, suggesting that this 

BMRM provides clues to the study of immunotherapy 

and has implications for immunotherapy decisions in 

PCa patients. 

 
ICIs have brought survival benefits for some oncology 

patients, but response rates are low in patients with 

mCRPC [54, 55]. We performed a correlation analysis 

of risk scores with selected ICIs, and the expression  

of BTLA, CD27, CTLA4, GPR65, HAVCR2, TIGIT 

and VSIG4 was upregulated in the high-risk group, 

suggesting that these new immune checkpoints may 

serve as potential candidate immunotherapy targets 

for PCa. TIDE scores have been reported to be 

negatively correlated with responsiveness to anti-PD-

1 and anti-CTLA-4 therapy [56]. In our study, the 

higher TIDE score in the high-risk group implied  

that the efficacy of ICIs therapy might be worse. In 

summary, patients in the low-risk group were more 

likely to benefit from immunotherapy. However, the 

role of single immunotherapy in advanced metastatic 

PCa is very limited, and therefore targeted therapy  

or chemotherapy combined with immunotherapy are 

promising treatment options for the future  

[51, 57]. Next, we explored the sensitivity of different 

BMRS groups to specific chemotherapeutic agents 

(Vinblastine, Cisplatin, Methotrexate, Docetaxel, 

Etoposide and Gemcitabine), and the results revealed 

a higher response rate to these chemotherapeutic 

agents in the higher risk groups. 

 

This study explores the potential role of BMGs in the 

biochemical recurrence and therapeutic assessment of 

PCa. Constructing a BMRM by screening reliable BMGs 

may provide clues for clinical treatment decisions and 

patient prognostic assessment in PCa. However, our 

BMRM still has some limitations. First, although we 

have explored the risk score of our model in the TCGA 

training set and MSKCC validation set, validation of 

differential gene expression in an expanded sample size 

may further improve the confidence of the risk score. 

Secondly, this study confirms the good predictive value 

of the prognostic features of BMGs, but in vivo and  

in vitro experiments are still needed to reveal the role  

of BMGs in the development and progression of PCa. 

Thirdly, more clinical data and prospective studies are 

still needed to validate the clinical value of the 

prognostic features of carefully selected BMGs. 

 

In conclusion, we developed a new BMGs-based 

prognostic model to determine the prognostic value of 

BMGs in PCa. Furthermore, BMRS correlates with 

TIME characteristics, ICIs, and chemotherapeutic drug 

sensitivity, which may provide potential evidence for 

patient treatment selection. In addition, the key gene 

THBS2 of BMGs may be an important link in the 

genesis and progression of PCa. This study provides a 

novel perspective to assess the prognosis of PCa 

patients and provides clues for the selection of future 

personalized treatment regimens. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. The forest maps show the results of univariate and multivariate Cox regression analyses in the 
MSKCC validation set. 
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Supplementary Figure 2. Correlation analysis between BMRS and immune checkpoints. (A–L) The scatter plot results show 

statistically significant expression of most immune checkpoint genes in both risk groups. There was a significant positive correlation between 
BMRS and these seven immune checkpoints (BTLA, CD27, CTLA4, GPR65, HAVCR2, TIGIT and VSIG4) and a significant negative correlation 
with CD38. ns: p ≥ 0.05, *p < 0.05, **p < 0.01, ***p < 0.001.  
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Supplementary Tables 
 

Supplementary Table 1. A list of 224 basement membrane genes. 

 

  

Basement membrane genes (BMGs) 

ACAN COL5A1 FREM1 MMP2 ACHE FBN3 LOXL4 ROBO1 

ADAM10 COL6A1 FREM2 MMP21 ADAMTS1 FMOD LUM SDC1 

ADAM17 COL6A2 GPC3 MPZL2 ADAMTS14 FREM3 MATN1 SDC4 

ADAM9 COL6A3 GPC4 MUSK ADAMTS15 GPC1 MATN2 SEMA3B 

ADAMTS10 COL7A1 GPC6 NTN1 ADAMTS16 GPC2 MATN4 SLIT1 

ADAMTS13 COL8A2 HMCN1 P3H1 ADAMTS19 GPC5 MEGF6 SLIT2 

ADAMTS17 COL9A1 HSPG2 P3H2 ADAMTS20 HAPLN1 MEGF9 SLIT3 

ADAMTS18 COL9A2 ITGA2B PTPRF ADAMTS4 HAPLN2 MEP1A SPARCL1 

ADAMTS2 COL9A3 ITGA3 PXDN ADAMTS5 HMCN2 MEP1B SPOCK1 

ADAMTS3 COLQ ITGA6 ROBO2 ADAMTS6 ISLR MMP17 SPOCK2 

AGRN CST3 ITGA7 ROBO3 ADAMTS7 ITGA1 MMP26 SPOCK3 

AMELX CTSA ITGA8 ROBO4 ADAMTS8 ITGA10 MMP7 SPON1 

AMTN CTSB ITGB2 RPSA ADAMTS9 ITGA2 MMRN2 SPON2 

ANG CTSD ITGB3 SERPINF1 BCAN ITGA4 NELL1 TENM1 

BGN DAG1 ITGB4 SMC3 CCDC80 ITGA5 NELL2 TENM2 

CD151 DCC ITGB6 SMOC1 CD44 ITGA9 NID1 THBS1 

CERT1 DCN LAMA1 SMOC2 COL14A1 ITGAM NID2 THBS2 

COL12A1 DDR2 LAMA2 SPARC COL15A1 ITGAV NPNT THBS4 

COL13A1 ECM1 LAMA3 TENM3 COL28A1 ITGAX NTN4 TIMP1 

COL17A1 EFEMP1 LAMA4 TENM4 COL8A1 ITGB1 OGN TIMP2 

COL18A1 EFEMP2 LAMB1 TGFB1  CSPG4 ITGB5 OPTC TINAG 

COL2A1 FBLN1 LAMB2 TGFB2 DDR1 ITGB7 PAPLN TINAGL1 

COL4A1 FBLN5 LAMB3 TGFBI EGFL6 ITGB8 PHF13 UNC5A 

COL4A2 FBN1 LAMC2 TIMP3 EGFLAM LAD1 PODN UNC5B 

COL4A3 FBN2 LAMC3 TLL1 EVA1A LAMA5 POSTN UNC5C 

COL4A4 FGF9 LOXL1 TNC EVA1B LAMB4 PTN UNC5D 

COL4A5 FN1 MMP1 USH2A EVA1C LAMC1 PXDNL VTN 

COL4A6 FRAS1 MMP14 VCAN FBLN2 LOXL2 RECK VWA1 
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Supplementary Table 2. The clinicopathological 
characteristics of patients in the TCGA-PRAD 
cohort and MSKCC cohort. 

Characteristics 
TCGA-PRAD  

(n=423) 

MSKCC 

(n=140) 

Age(year)   

<65 283 117 

≥65 140 23 

T stage   

T1/2 154 86 

T3/4 269 54 

Gleason score   

<8 241 127 

≥8 182 13 

PSA (ng/mL)   

<10 or unknown 409 116 

≥10 14 24 

Recurrent events 52 36 

 

Supplementary Table 3. The siRNA oligos used for knock-down of 
THBS2. 

Name Target sequence Note 

si-THBS2#1 GTGGCACATTCTACGTAAA siRNA Knock-down 

si-THBS2#2 GGACCTATCTATGACCAAA siRNA Knock-down 

si-THBS2#3 GGAACATTGGCTGGAAGGA siRNA Knock-down 

 


