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INTRODUCTION 
 

Breast cancer poses a significant global health challenge 

[1] and continues to be one of the most prevalent cancers 

worldwide, with 2.26 million reported cases in 2020.  

In addition, it is the main factor affecting female cancer-

related fatalities [2]. Invasive breast cancer (IBC) is the 

most prevalent type of breast cancer-related mortality. 

Although the prognosis has improved for most patients 

with IBC, inter-individual heterogeneity can still result  

in a poor prognosis for some patients [3]. Therefore, it  

is imperative to identify novel biomarkers as soon as 

possible to improve IBC patient diagnosis and therapy. 

 

When cells separate from the extracellular matrix, a type 

of programmed cell death known as anoikis occurs. [4]. 

In normal cells, this process functions as a protective 

mechanism that prevents the survival and proliferation  

of cells detached from their normal tissue architecture. 

However, in cancer cells, resistance to anoikis is a crucial 

step in acquiring metastatic potential [5]. Cancer cells 

typically separate from the original tumor and infiltrate 

the neighboring tissues as the tumor grows. These cells 

must resist anoikis and survive in the absence of attach-

ment to the extracellular matrix [4]. Anoikis resistance 

can be mediated by various mechanisms, including 

alterations in cell-surface receptor expression, activation 

of survival pathways, and changes in the expression of 

pro- and anti-apoptotic proteins [6]. According to current 

findings, anoikis is critical for the development of gastric 

cancer [7], esophageal squamous cell carcinoma [8], and 

breast cancer [9]. 
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ABSTRACT 
 

The global prevalence of breast cancer necessitates the development of innovative prognostic markers and 
therapeutic strategies. This study investigated the prognostic implications of anoikis-related long non-coding 
RNAs (ARLs) in invasive breast cancer (IBC), which is an area that has not been extensively explored. By 
integrating the RNA sequence transcriptome and clinical data from The Cancer Genome Atlas (TCGA) database 
and employing advanced regression analyses, we devised a novel prognostic model based on ARL scores. ARL 
scores correlated with diverse clinicopathological parameters, cellular pathways, distinct mutation patterns, 
and immune responses, thereby affecting both immune cell infiltration and anticipated responses to 
chemotherapy and immunotherapy. Additionally, the overexpression of a specific lncRNA, AL133467.1, 
significantly impeded the proliferation and migration, as well as possibly the anoikis resistance of breast cancer 
cells. These findings highlight the potential of the ARL signature as a robust prognostic tool and a promising 
basis for personalized IBC treatment strategies. 
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Long noncoding RNAs (lncRNAs) are involved in 

various biological activities and play crucial roles in  

the regulation of gene expression [10]. Dysregulated 

expression of lncRNAs has been observed in cancer, 

where they function as oncogenes or tumor suppressors 

[11]. The mechanisms by which lncRNAs regulate 

cancer development are diverse and complex and 

involve interactions with DNA, RNA, and proteins [12]. 

An enhanced understanding of lncRNA functions in 

tumor biology may pave the way for innovative cancer 

therapies. However, the precise roles of anoikis-related 

lncRNAs (ARLs) in invasive breast cancer have not yet 

been fully elucidated. 

 

In the present study, we systematically explored  

the role of ARLs in IBC. We identified IBC- 

related ARLs and created a prognostic model that can 

direct prognostic predictions and clinical treatment 

decisions. Furthermore, we thoroughly examined a  

key ARL prognostic gene, AL133467.1, to validate its 

association with migration, proliferative capacity, and 

anoikis in breast cancer cells. By uncovering the 

molecular mechanisms underlying IBC progression, 

our findings offer valuable insights and present a 

potential novel strategy for the diagnosis and treatment 

of this disease. 

 

RESULTS 
 

Identification of anoikis-related differentially 

expressed LncRNAs 

 

We identified 1002 differentially expressed  

lncRNAs (DELs) between normal breast and IBC 

samples. In a previous study, 434 anoikis-related  

genes were identified [13]. We then performed co-

expression analysis to identify 1951 lncRNAs that  

are co-expressed with anoikis-related genes. The  

1002 DELs intersected with the 1951 co-expressed 

lncRNAs, resulting in the selection of 110 anoikis-

related DELs (Figure 1A). The co-expression network 

of anoikis-related DELs and genes is shown in  

Figure 1B. 

 

Screening prognostic anoikis-related DELs and 

construction of a prognostic model 

 

We identified 14 lncRNAs (C6orf99,  

AL391421.1, HOTAIR, LINC01614, LINC02613, 

LINC01705, AC055854.1, AC105219.1, AP003555.2, 

AL133467.1, AC036108.3, AC004585.1, LINC01929, 

and MAPT-IT1) as prognostic genes (P < 0.05) 

through univariate Cox analysis of 110 anoikis- 

related DELs (Figure 1C). We subsequently screened 

seven core prognostic genes (C6orf99, LINC01614, 

LINC02613, AC055854.1, AL133467.1, AC004585.1, 

and MAPT-IT1; P < 0.05) by Kaplan-Meier survival 

analysis (Supplementary Figure 1). The breast cancer 

patients in TCGA were randomly distributed into  

test and training cohorts. Table 1 illustrates that the 

baseline traits of patients with breast cancer did not 

vary significantly between the training and test sets. 

For the training set, the seven prognostic lncRNAs 

were integrated into Least Absolute Shrinkage  

and Selection Operator (LASSO) regression analysis 

to establish a prognostic model (Figure 1D, 1E).  

This model was constructed using the following 

formula for the anoikis-related lncRNA (ARL) score:  

ARL score = C6orf99 × 0.171007158825575 + 

LINC01614 × 0.135601559840202 + LINC02613 × 

−0.189357717333547 + AC055854.1 × 

−0.195901072958402 + AL133467.1 × 

−0.396564264243533 + AC004585.1 × 

−0.201708797422736 + MAPT.IT1 × 

−0.685621403207209 (Figure 1F). As shown  

in Figure 1G, C6orf99, LINC01614, AC055854.1, 

AC004585.1, and MAPT.IT1 were highly expressed 

in breast cancer, whereas LINC02613 and AL133467.1 

were expressed at lower levels. Additionally, Figure 

1H shows that the seven core prognostic lncRNAs 

positively correlated with most of the corresponding 

co-expressed anoikis-related genes. 

 
Application and validation of the prognostic model 

 

Patients in both sets were further classified into  

high and low ARL score groups based on the median 

ARL score. The ARL score distribution, survival status, 

and expression levels of the seven core lncRNAs in  

the low- and high ARL score groups are shown in 

Figure 2A–2C. These results illustrate the intuitive 

differences between the two groups in the training, 

testing, and entire sets, which were supported by 

Principal Component Analysis (PCA) (Figure 2D–2F). 

 
Moreover, the low ARL score group exhibited 

significantly better overall survival (OS) compared with 

the high ARL score group (Figure 2G–2I). This trend 

was also observed for other clinical characteristics such 

as TNM stage, grade, and age (Supplementary Figure 

2A). The 1-, 3-, and 5-year area under the curve (AUC) 

values of the prognostic model were 0.729, 0.738,  

and 0.710, respectively (Figure 2J–2L). In addition, 

univariate Cox regression analysis showed that the N 

stage, M stage, pathological stage, and ARL score were 

predictors of survival in the training set, test set, and 

entire set, whereas multivariate analysis indicated that 

the ARL score was the only common independent 

predictive factor for breast cancer patients across all sets 

(Supplementary Figure 3). These findings suggest that 

the model has a relatively good predictive ability for 

prognosis. 
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Correlation between clinical characteristics and the 

prognostic model 

 

Additionally, we investigated the clinical significance 

of a prognostic model utilizing ARLs by assessing their 

association with clinical features. As shown in Figure 

3A, a significant correlation was observed between age 

and the ARL score (P < 0.05). Individuals diagnosed 

with T4, N2, M1, and stage IV conditions demonstrated 

the most elevated ARL scores, signifying that elevated 

 

 
 

Figure 1. Identification of core DELs related to anoikis and construction of a prognostic model. (A) Venn diagram illustrating the 

screening process for DELs related to anoikis. (B) Network diagram depicting the relationship between the identified anoikis-related DELs 
and their corresponding genes. (C) Results of univariate Cox analysis. (D, E) Results of LASSO regression analysis (F) Coefficients of the seven 
core lncRNAs based on LASSO analysis. (G) Volcano plot displaying the differential expression of the seven core lncRNAs in normal and 
tumor tissues. (H) Sankey diagram illustrating the correlation between anoikis-related DELs and genes in breast cancer. 
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Table 1. Comparison of clinical feature between train and test sets. 

Clinical feature  Total (N = 1065) Test (N = 532) Train (N = 533) P value 

Age – – 59 (48, 68.25) 57 (48, 65) 0.0543 

T 

T1&T2 893 (83.85%) 442 (83.08%) 451 (84.62%) 

0.5961 T3&T4 169 (15.87%) 88 (16.54%) 81 (15.2%) 

Unknown 3 (0.28%) 2 (0.38%) 1 (0.19%) 

N 

N0 494 (46.38%) 243 (45.68%) 251 (47.09%) 

0.8649 N1&N2&N3 551 (51.74%) 275 (51.69%) 276 (51.78%) 

Unknown 20 (1.88%) 14 (2.63%) 6 (1.13%) 

M 

M0 874 (82.07%) 441 (82.89%) 433 (81.24%) 

0.1835 M1 21 (1.97%) 7 (1.32%) 14 (2.63%) 

Unknown 170 (15.96%) 84 (15.79%) 86 (16.14%) 

Pathologic stage 

I&II 784 (73.62%) 394 (74.06%) 390 (73.17%) 

0.8295 III&IV 258 (24.23%) 127 (23.87%) 131 (24.58%) 

Unknown 23 (2.16%) 11 (2.07%) 12 (2.25%) 

ER 

Negative 229 (21.5%) 111 (20.86%) 118 (22.14%) 

0.6049 Positive 793 (74.46%) 402 (75.56%) 391 (73.36%) 

Unknown 43 (4.04%) 19 (3.57%) 24 (4.5%) 

PR 

Negative 328 (30.8%) 159 (29.89%) 169 (31.71%) 

0.518 Positive 692 (64.98%) 352 (66.17%) 340 (63.79%) 

Unknown 45 (4.23%) 21 (3.95%) 24 (4.5%) 

HER2 

Negative 545 (51.17%) 274 (51.5%) 271 (50.84%) 

0.7997 Positive 154 (14.46%) 75 (14.1%) 79 (14.82%) 

Unknown 366 (34.37%) 183 (34.4%) 183 (34.33%) 

 
ARL scores are associated with advanced TNM  

and pathological stages. (Figure 3B–3E) (P < 0.05). 

Among the PAM50 breast cancer subtypes, patients 

with HER2-enriched breast cancer had the highest ARL 

scores (P < 0.001), whereas those with luminal A breast 

cancer had the lowest scores (Figure 3F) (P < 0.05). 

Interestingly, the frequency of PIK3CA gene mutation 

was highest (44%) in the group with a low ARL  

score, in contrast to a mutation rate of 26% in the group 

with a high ARL score. In the high ARL score group, 

TP53 emerged as the gene with the highest occurrence 

of mutations, with a frequency of 47%, whereas the  

low ARL score group had a mutation rate of only  

20% (Figure 3G, 3H). Furthermore, to confirm that the 

ARL score could differentiate patients with varying 

prognoses across different breast cancer subtypes,  

we conducted survival analyses stratified by the ARL 

score within each breast cancer subtype. The results  

of our study suggest that patients with low ARL  
scores consistently had better prognoses (P < 0.05)  

in all four breast cancer subtypes, namely, basal- 

like/TNBC, luminal A, luminal B, and normal-like. 

Although a comparable pattern was observed in patients 

with HER2-amplified breast cancer, the difference  

was not statistically significant (P > 0.05), possibly 

because of the small number of participants in this 

specific patient cohort (Supplementary Figure 2B). 

These findings suggest the potential utility of the  

ARL-based prognostic model in aiding the diagnosis, 

prognostication, and formulation of treatment strategies. 

 

Developing the nomogram to predict the outcome of 

IBC 

 

To improve the practicality of the prognostic model, the 

ARL scores were integrated with prognostic clinical 

characteristics to develop a nomogram that predicts the 

overall survival (OS) of patients with IBC (Figure 4A). 

To assess the superiority of the nomogram in predicting 

outcomes, various parameters, such as age, T stage, N 

stage, M stage, pathological stage, and ARL score, were 

evaluated using a Receiver Operating Characteristic 
(ROC) curve. As shown in Figure 4B–4D, the AUC 

values for predicting the 1-, 3-, and 5-year outcomes 

using the nomogram (0.795, 0.791, and 0.776, res-

pectively) were higher compared to age (0.711, 0.593, 
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and 0.582, respectively), T stage (0.644, 0.588,  

and 0.555, respectively), N stage (0.568, 0.614, and 

0.625, respectively), M stage (0.598, 0.538, and 0.532, 

respectively), pathological stage (0.675, 0.674, and 

0.630, respectively), and ARL scores (0.682, 0.707, and 

0.695, respectively). This indicates the strong ability of 

 

 
 

Figure 2. Construction and validation of the prognostic model in the train, test, and entire sets. (A–C) Distribution of ARL 

scores, survival status, and expression levels of the seven core lncRNAs in the train, test, and entire sets. (D–F) Results of principal 
component analysis (PCA) in the train, test, and entire sets. (G–I) Survival differences between the low and high ARL score groups in the 
train, test, and entire sets. (J–L) Results of receiver operating characteristic (ROC) analysis of the prognostic model in the train, test, and 
entire sets. 
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the nomogram to predict the prognosis of IBC.  

Figure 4E shows a calibration plot, indicating that the 

nomogram exhibited a favorable capacity for predicting 

patient prognosis. Based on the decision curve analysis 

(DCA) results for 1-, 3-, and 5-year periods, it can be 

inferred from Figure 4F that the nomogram exhibited 

superior clinical usefulness compared to alternative 

factors. The nomogram prediction model, which is 

based on ARL scores and clinicopathological features, 

has been thoroughly validated using various approaches 

and has demonstrated robust predictive capacity and 

clinical usefulness. 

 

Function enrichment analysis 

 

To clarify the possible biological roles and pathways 

linked to the ARL signature, we performed various 

enrichment analyses such as GSEA, GSVA, GO, and 

KEGG. The results of the GO and KEGG enrichment 

analyses in Figure 5A show a significant correlation 

 

 
 

Figure 3. Correlation between clinical characteristics and the prognostic model. (A–F) Clinical characteristics differences 

between the high and low ARL score groups. (G, H) Waterfall plots displaying the mutation frequencies of the top 10 genes in the high 
and low ARL score groups. Statistical significance symbols: ns, p ≥ 0.05; *p < 0.05; **p < 0.01; ***p < 0.001. 
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between differentially expressed genes (DEGs) in the low 

and high ARL score groups and signal transduction-

related biological functions, including channel activity, 

passive transmembrane transporter activity, anion trans-

membrane transporter activity, hormone activity, and 

receptor ligand activity. 

Additionally, we conducted GSEA enrichment analysis 

to compare the groups with low and high ARL scores 

and identify distinct biological functions and path- 

ways between the two groups. Figure 5B, 5C illustrate 

that the group with low ARL scores had a notable 

enhancement in biological processes, including early 

 

 
 

Figure 4. Construction of a nomogram for predicting the prognosis of IBC patients. (A) Nomogram predicting 1-, 3-, and 5-year 

overall survival (OS) of IBC patients. (B–D) Time-independent ROC curves comparing the predictive performance of the nomogram with 
other prognostic indicators. (E) Calibration plots demonstrating the predictive accuracy of the nomogram. (F) Decision curve analysis (DCA) 
assessing the clinical utility of the nomogram. 
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estrogen response, late estrogen response, fatty acid 

metabolism, muscle formation, and xenobiotic meta-

bolism. In contrast, the group with high ARL scores 

exhibited notable enrichment in pathways including 

E2F targets, G2/M checkpoint, glycolysis, MTORC1 

signaling, and MYC targets. 

 

Furthermore, GSVA revealed 31 distinct pathways  

that differed between IBC patients with low and high 

ARL scores. Patients with high ARL scores exhibited 

positive associations with pathways such as mismatch 

repair, DNA replication, homologous recombination, 

and the cell cycle, as shown in Figure 5D, whereas the 

low ARL score group had negative associations. These 

results indicated that these physiological processes may 

be linked to poor outcomes in patients with IBC. 

 

Immune infiltration characteristics of the TME  

 

In light of mounting evidence that immune infiltration 

characteristics have a major impact on the progression 

and development of breast cancer, we accessed the 

relationship between immune infiltration characteristics 

and ARL scores. As shown in Figure 6A, the low ARL 

score group exhibited significantly higher infiltration 

fractions of immune cells (P < 0.05). Furthermore, 

Figure 6B demonstrates that immune-related pathways, 

including cytolytic activity, human leukocyte antigen 

 

 

 
Figure 5. Functional enrichment analysis. (A) Enrichment results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) for the differentially expressed genes (DEGs) between high versus low ARL score groups. (B) Top five pathways enriched 
in the low ARL score group. (C) Top five pathways enriched in the high ARL score group. (D) Differential pathways between high versus low 
ARL score groups. 
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Figure 6. The relationship between the ARL score and immune cell infiltration, immunotherapy response, and  
chemotherapy sensitivity. (A) Comparison of immune cell infiltration in low versus high ARL score groups. (B) Comparison of enrichment 
of immune-related pathways between low versus high ARL score groups. (C) Comparison of immune and stromal scores between low 
versus high ARL groups. (D) Comparison of tumor mutation burden between low versus high ARL groups. (E) Comparison of expression 
levels of selected checkpoints between low versus high ARL score groups. (F) Comparison of immunotherapy response of PD-1 and CTLA4 
between low versus high ARL score groups based on the results of immunogenomic analyses from The Cancer Immunome Atlas. 
(G) Comparison of immunotherapy response of PD-1 and CTLA4 between low versus high ARL score groups based on TIDE score. 
(H) Correlation between IC50 values of common chemotherapy drugs for breast cancer and ARL scores. Statistical significance symbols: ns, p 
≥ 0.05; *p < 0.05; **p < 0.01; ***p < 0.001. 
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(HLA), T cell co-stimulation, and type II IFN  

response, were highly enriched in the low ARL  

score group, whereas only the type I IFN response  

was highly enriched in the high ARL score group 

(P < 0.05). Additionally, the low ARL score group 

exhibited significantly higher immune, stromal, and 

estimated scores than the high ARL score group 

(P < 0.05), as depicted in Figure 6C. 

 

To examine the relationship between ARL scores  

and the degree of immune cell infiltration in various 

breast cancer subtypes, we extended our analysis to 

include immune cell infiltration across five subtypes: 

basal-like/TNBC, HER2-enriched, luminal A, luminal B, 

and normal-like (Supplementary Figure 4). Despite the 

distinct immune cell infiltration characteristics among the 

four breast subtypes (basal-like/TNBC, HER2-enriched, 

luminal A, and normal-like), our data demonstrated  

that patients with low ARL scores invariably exhibited 

higher levels of immune cell infiltration (P < 0.05). 

Interestingly, patients with luminal B breast cancer 

deviated from this trend. An increase in the infiltration 

levels of certain immune cells, including central memory 

CD8 T cells, gamma delta T cells, type 17 T helper  

cells, CD56dim natural killer cells, and neutrophils, was 

significantly correlated with high ARL scores (P < 0.05). 

These findings underscore the fact that ARL scores can 

differentiate immune cell infiltration profiles among 

different breast cancer subtypes, which may aid the 

development of targeted treatments in the future. 

 

Immunotherapy response and chemotherapy 

sensitivity  

 

Recently, immunotherapy and targeted therapy have 

played important roles in the clinical treatment of breast 

cancer and have become popular research topics. 

Therefore, a comparison was made between individuals 

with IBC who had low versus high ARL scores to 

determine the differences in responses to immune-

targeted therapy. As shown in Figure 6E, most of the 

immune checkpoint candidate genes, such as PD-L1, 

were expressed at higher levels in the low ARL score 

group (P < 0.05). In addition, the results of immuno-

genomic analyses from The Cancer Immunome Atlas 

(TCIA) demonstrated that patients in the low ARL score 

group exhibited better responses to immunotherapy  

than patients in the high ARL score group, particularly 

when using CTLA4 targeted therapy alone, PD1 targeted 

therapy alone, or combined PD1 and CTLA4 targeted 

therapy, as well as targeted therapy excluding PD1  

and CTLA4 (Figure 6F) (P < 0.05). Moreover, Tumor 

Immune Dysfunction and Exclusion (TIDE) analysis 
showed that patients in the low ARL score group had 

lower TIDE scores than patients in the high ARL score 

group, implying that those with low ARL scores may 

had better immunotherapy responses at PD-L1/CTLA4 

immune checkpoint inhibitors (Figure 6G) (P < 0.05). 

Moreover, individuals with low ARL scores had lower 

tumor mutation burdens (TMBs) than patients with high 

ARL scores (Figure 6D) (P < 0.05). As chemotherapy 

plays an important role in the pre- and post-surgical 

treatment of patients with breast cancer, the role of  

the ARL score in chemotherapy for patients with IBC 

was explored in this study. Figure 6H illustrates the 

correlation between ARL scores and the half-maximal 

inhibitory concentration (IC50) of specific breast cancer 

chemotherapeutics. The IC50 values of chemotherapeutic 

drugs, including sorafenib, epirubicin, 5-fluorouracil, 

gemcitabine, and vinorelbine, were positively correlated 

with the ARL score (P < 0.05), whereas that of lapatinib 

was negatively correlated with the ARL score (P < 0.05). 

These findings suggest that individuals with different 

ARL scores may benefit from appropriate chemothera-

peutic drugs tailored to their ARL, thereby potentially 

improving the prognosis of patients with IBC. 

 

Validation of the expression levels of the 7 

prognostic LncRNAs 

 

To analyze the expression profiles in clinical  

samples, we investigated the expression levels of the 

seven core prognostic lncRNAs in both TCGA cohort 

and clinical samples. As depicted in Supplementary 

Figure 5A, 5B, C60rf99, LINC01614, AC004585, 
MAPT-IT1, and AC004585.1 exhibited significantly 

higher expression levels in breast tumor tissues than  

in paired or unpaired normal breast tissues (P < 0.05). 

In contrast, LINC02613 and AL133467.1 displayed 

significantly lower expression levels in breast tumor 

tissues than in paired or unpaired normal breast  

tissues (P < 0.05). Additionally, quantitative reverse 

transcription-polymerase chain reaction (qRT-PCR) 

analysis revealed that the expression levels of C60rf99, 

LINC02613, AL133467.1, MAPT-IT1, and AC004585.1 

were downregulated in breast tumor tissues relative to 

normal breast tissues (P < 0.05) (Supplementary Figure 

5C). However, no significant difference was observed 

in the expression levels of LINC01614 and AC055854.1 

between tumor and normal clinical samples (P > 0.05) 

(Supplementary Figure 5C). 

 

Effect of AL133467.1 expression in pan-cancer 

 

The expression levels of AL133467.1 were investigated 

across a range of cancers by contrasting tumorous  

and corresponding normal tissues. Notably, AL133467.1 

demonstrated elevated expression in lung adeno-

carcinoma (LUAD) and lung squamous cell carcinoma 
(LUSC) (P < 0.05). In stark contrast, AL133467.1 

displayed significantly reduced expression in colon 

adenocarcinoma (COAD), colon adenocarcinoma/rectum 



www.aging-us.com 412 AGING 

adenocarcinoma esophageal carcinoma (COADREAD), 

invasive breast carcinoma (BRCA), kidney renal 

papillary cell carcinoma (KIRP), liver hepatocellular 

carcinoma (LIHC), thyroid carcinoma (THCA), rectum 

adenocarcinoma (READ), bladder urothelial carcinoma 

(BLCA), kidney chromophobe (KICH), and chol-

angiocarcinoma (CHOL) (P < 0.05) as depicted in 

Supplementary Figure 6A). The expression of 

AL133467.1 did not differ significantly between normal 

and tumorous tissues in the other 14 cancer types. 

 
Survival analyses were conducted for each cancer type 

to assess the role of AL133467.1 in the prognosis of 

patients with different cancer types. A univariate Cox 

analysis revealed a significant association between 

AL133467.1 levels and overall survival (OS) outcomes 

in pan-kidney (KIPAN; P = 3.8e-4), glioblastoma 

multiforme (GBM; P = 0.05), kidney renal clear cell 

carcinoma (KIRC; P = 0.03), COADREAD (P = 0.03), 

KICH (P = 6.8e-5), BRCA (P = 0.01), head and neck 

squamous cell carcinoma (HNSC; P = 0.02), skin 

cutaneous melanoma (SKCM; P = 0.02), SKCM-M 

(P = 0.02), and ovarian serous cystadenocarcinoma 

(OV; P = 2.3e-3), as shown in Supplementary Figure 

6B. These findings suggest that AL133467.1 could be 

considered to be a high-risk gene in KIPAN, GBM, 

KIRC, COADREAD, and KICH but a low-risk gene in 

BRCA, HNSC, SKCM-M, SKCM, and OV. 

 
We employed an additional correlation analysis to 

elucidate the relationship between AL133467.1 expres-

sion levels and immune-related markers across diverse 

types of cancer. As depicted in Supplementary Figure 

6C, AL133467.1 manifested positive correlation with 

both immune inhibitory and stimulatory markers across 

most cancer types. The correlation between AL133467.1 

expression and various cell infiltration levels within the 

tumor microenvironment was subsequently investigated. 

Our findings demonstrate that an increase in AL133467.1 

expression considerably amplified the infiltration levels 

of numerous cells within the microenvironment across 

most tumor types. As indicated in Supplementary Figure 

6D, cells such as aDC, B cells, CD4+ memory T cells, 

CD4+ naive T cells, CD8+ T cells, CD8+ Tcm, CD8+ 

Tem, cDC, chondrocytes, class-switched memory B 

cells, DC, hematopoietic stem cells (HSCs), iDC, M2 

macrophages, M1 macrophages, mast cells, megakaryo-

cytes, melanocytes, memory B cells, monocytes, multi-

potent progenitor (MPP) cells, endothelial cells, naive  

B cells, pDCs, plasma cells, and Tgd cells demonstrated 

a positive correlation with heightened AL133467.1 

expression in most cancer types (P < 0.05). In contrast, 

common lymphoid progenitor (CLP) cells, osteoblasts, 

epithelial cells, and smooth muscle cells were negatively 

associated with AL133467.1 expression in most cancer 

types (P < 0.05). In addition, scores pertaining to the 

immune response, stromal components, and overall 

tumor microenvironment were positively correlated 

with AL133467.1 expression. These results underscore 

the strong association between AL133467.1 and the 

tumor microenvironment across an array of cancer 

types. 

 

Elevated expression of AL133467.1 notably reduced 

the proliferation and migration of breast cancer  

cells 

 

To decipher the molecular roles of anoikis-related  

genes (ARGs) in breast cancer, a comprehensive  

study on AL133467.1, based on findings from qRT-PCR 

and survival analyses, aimed to clarify its distinct 

function in IBC. Transient transfection was carried  

out for AL133467.1, to attain its overexpression in  

both MCF-7 and MDA-MB-231 cell lines (Figure  

7A). CCK-8 assay confirmed that enhanced expression 

of AL133467.1 greatly reduced the proliferation of  

both MCF-7 and MDA-MB-231 cells (Figure 7B). 

Moreover, a wound-healing assay showed that enhanced 

expression of AL133467.1 significantly reduced the 

migration potential of MCF-7 cells (Figure 7C). Lastly, 

Transwell assay demonstrated that enhanced expression 

of AL133467.1 significantly reduced the migration of 

MDA-MB-231 cells (Figure 7D). 

 

Over-expression of AL133467.1 impaired anoikis in 

breast cancer cells 

 

To elucidate the effect of AL133467.1 expression on 

anoikis in breast cancer, we studied the association 

between AL133467.1 expression and anoikis. As 

depicted in Figure 8A, AL133467.1 expression was 

negatively correlated with anoikis, suggesting that 

AL133467.1 can potentially function as a negative 

regulator of anoikis. To confirm these findings, we 

induced anoikis in MCF-7 cells by preventing cell 

adhesion to the culture dish. As depicted in Figure 8B, 

following a 24-hour incubation, the cells overexpressing 

AL133467.1 exhibited lower viability than the control 

cells. To quantitatively assess differences between the 

two groups, flow cytometry was used to measure cell 

viability. After a 24-hour or 48-hour incubation in an 

anti-adhesion environment, the overexpression group 

displayed significantly reduced cell viability relative to 

the control group (Figure 8C). These findings suggest 

that overexpression of AL133467.1 may enhance anoikis 

in MCF-7 cells. 

 

DISCUSSION 
 

Anoikis is a unique variant of apoptosis that has 

significant physiological relevance in organisms as it 

circumvents unwarranted cell adherence and subsequent 
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proliferation [14]. Recent research has highlighted the 

pivotal role of anoikis in breast cancer ontogeny and 

metastasis. Many studies have emphasized that the 

counter-anoikis signal is a critical phase for breast 

cancer cells to obtain the capability of invasion and 

metastasis [15]. Breast cancer cells survive within  

the circulatory system by impeding anoikis, thereby 

increasing the likelihood of establishing colonies in 

distal tissues. Consequently, exploring the mechanisms 

inhibiting anoikis and methods to obstruct these 

processes has become a key area for future breast cancer 

research [4]. Moreover, anoikis could potentially serve 

as a novel target for drug discovery. For instance, 

medications designed to counteract anoikis resistance 

mechanisms may bolster treatment efficacies in patients 

with breast cancer [16]. To the best of our knowledge, 

previous studies have not systematically evaluated the 

prognostic value of anoikis-associated lncRNAs in 

breast cancer. Thus, this study can be used as the main 

reference for subsequent research. 

 

LncRNAs are important for the progression of  

breast cancer. Specific lncRNAs have been reported  

to either promote or hinder breast cancer  

progression through key processes that influence  

tumor proliferation, invasion, and metastasis [17]. For 

instance, the lncRNA HOTAIR, which is overexpressed 

in breast cancer, can change gene expression through 

alterations in chromosome structure [18]. In contrast, 

expression of the lncRNA GAS5 is diminished in many 

forms of breast cancer, and its loss is associated with 

the incidence and progression of breast cancer [19]. 

These findings indicate that lncRNAs may exert a 

significant effect on the pathogenesis of breast cancer, 

thus providing a potential novel approach for breast 

cancer treatment. 

 

We established and validated a signature of seven  

ARLs to predict the prognosis of breast cancer patients. 

The OS of patients in the low and high ARL score 

groups was distinctly stratified using ARL signatures. 

Five ARLs (MAPT.IT1, AL133467.1, AC004585.1, 
AC055854.1, and LINC02613) were identified as 

protective factors, whereas two (LINC01614 and 

C6orf99) were identified as risk factors for breast 

cancer. In vitro functional experiments indicated a 

 

 
 

Figure 7. In vitro experiments to investigate the role of AL133467.1 in breast cancer cells. (A) qRT-PCR results showing the 

overexpression of AL133467.1 in MCF-7 and MDA-MB-231 cells. (B) CCK-8 assay results of MCF-7 and MDA-MB-231 cell proliferation. 
(C) Wound-healing assay results evaluating MCF-7 cell migration. (D) Transwell assay results of MDA-MB-231 cell migration. Statistical 
significance symbols: ns, p ≥ 0.05; *p < 0.05; **p < 0.01; ***p < 0.001. 
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significant role of AL133467.1 in the proliferation and 

migration of breast cancer cells, as well as a certain 

degree of impact on the resistance of breast cancer cells 

to anoikis. Previous studies have not reported the role of 

AL133467.1 in breast cancer; thus, exploring the 

relationship between AL133467.1 and anoikis could 

potentially aid in understanding AL133467.1’s role in 

breast cancer. 

 

 
 

Figure 8. In vitro experiments to investigate the relationship between AL133467.1 and anoikis in breast cancer cells. 
(A) Correlation analysis between AL133467.1 expression and anoikis. (B) Fluorescence detection to explore the role of AL133467.1 in 
anoikis regulation in MCF-7 cells; Green: viable cells; Red: dead cells. (C) Quantitative analysis of the effect of AL133467.1 on anoikis using 
flow cytometry. Statistical significance symbols: ns, p ≥ 0.05; *p < 0.05; **p < 0.01; ***p < 0.001. 
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In addition, we investigated the correlation between 

ARL scores and clinicopathological features. Among 

the parameters of age, tumor stage (T), node stage (N), 

metastatic stage (M), pathological stage, and ARL 

score, only age and the ARL score were identified as 

independent prognostic factors for IBC in the complete 

training and test sets. This underscores the ability of the 

ARL score to independently predict the prognosis of 

IBC. To enhance its clinical applicability, we integrated 

the ARL score with other clinical prognostic factors to 

construct a prognostic nomogram. The ROC curve, cali-

bration curve, and DCA confirmed that the nomogram 

exhibited considerable advantages in predicting survival 

and guiding clinical decision-making compared with 

traditional clinicopathological features. 

 

In this study, the results of GSVA enrichment  

analysis revealed that patients with elevated ARL  

scores demonstrated significant activation of cell cycle, 

energy metabolism, and biosynthesis-related pathways, 

including the proteasome, cell cycle, DNA replication, 

homologous recombination, and mismatch repair. 

Increased activation of these pathways may facilitate 

uncontrolled cellular proliferation and tumorigenesis 

[20–23]. Concurrently, the amplified expression of 

energy metabolism pathways such as glycolysis, the 

citrate cycle (TCA cycle), oxidative phosphorylation, 

and the pentose phosphate pathway may satisfy the 

energy requirements of tumor cells [24, 25]. Further-

more, an increase in the expression of amino sugars  

and nucleotide sugar metabolism, folate biosynthesis, 

terpenoid backbone biosynthesis, and steroid bio-

synthesis can promote the growth of tumor cells [26–

28]. In contrast, patients with lower ARL scores exhibit 

increased expression of immune response-related 

pathways such as primary immunity, hematopoietic cell 

lineage, and an intentional immune network for IgA 

production, reflecting the potential protective role  

of a robust immune system in averting tumorigenesis 

[29, 30]. In addition, upregulation of circadian rhythms 

in mammals may underscore the tumor-suppressive role 

of a well-functioning biological clock [31]. Although 

these preliminary analyses contributed to a compre-

hensive understanding of the prognostic implications of 

ARL scores in patients with breast cancer, there is a 

compelling need for further research to corroborate and 

expand these observations. 

 

Gene mutations, particularly in pivotal tumor suppressor 

genes and oncogenes, can induce unregulated cell growth 

and division, thereby promoting tumor formation. These 

alterations can modulate sensitivity to specific treatments 

and provide critical information for clinical decision-
making and prognostic prediction [32]. In our analysis, 

several key genes, such as TP53 and PIK3CA, exhibited 

diverse mutation frequencies in breast cancer patients 

with high and low ARL scores. Intriguingly, we 

discovered a significantly higher mutation frequency in 

TP53 among patients with poor prognoses (47%)  

than among those with good prognoses (20%). Given 

the crucial role of TP53 as a tumor suppressor, its 

mutation may precipitate unregulated cell growth and 

division, thereby increasing tumor risk [33]. Hence, the 

elevated TP53 mutation rate may suggest enhanced 

tumorigenic potential in breast cancer patients with a 

high ARL score. Concurrently, we observed a higher 

mutation frequency in PIK3CA in patients with a low 

ARL score (44%) than in those with a high ARL score 

(26%). The protein encoded by PIK3CA plays a pivotal 

role in various biological processes including cell 

growth, survival, and metabolism [34]. While the  

reason for the higher PIK3CA mutation frequency in 

patients with a better prognosis remains elusive, it may 

suggest novel therapeutic avenues, such as PIK3CA-

specific mutation inhibitors. Additionally, we detected 

high mutation frequencies in TTN and GATA3  

across both the high and low ARL score groups, 

potentially reflecting common biological characteristics 

of breast cancer and underscoring their importance in 

breast cancer pathogenesis [35, 36]. Although our 

research has provided interesting insights, various 

factors warrant further exploration, including the type 

and location of mutations and the impact of other 

genetic and environmental factors on breast cancer 

prognosis. 

 

To delve deeper into the function of the prognostic 

model based on the ARL score in IBC, we explored  

the correlation between chemotherapy and ARL scores. 

Lapatinib, vinorelbine, gemcitabine, 5-fluorouracil, 

epirubicin, and sorafenib are used for breast cancer 

chemotherapy. Our results demonstrated a positive 

association between the IC50 values of vinorelbine, 

gemcitabine, 5-fluorouracil, epirubicin, and sorafenib 

and the ARL score, whereas a negative relationship was 

found between the IC50 value of lapatinib, indicating a 

strong link between the ARL score and chemotherapy. 

This discovery further highlights the potential of the 

prognostic model and may offer clinical guidance for 

the selection of chemotherapeutic drugs for breast cancer 

patients with different ARL scores. 

 

Immune cell dynamics within the tumor 

microenvironment play a pivotal role in determining 

breast cancer prognoses [37]. Our results revealed that 

patients with low ARL scores exhibited significantly 

increased infiltration of activated CD8 T cells, effector 

memory CD8 T cells, effector memory CD4 T cells,  

and type 1 T helper cells. These cells are integral to 
tumor inhibition, especially in facilitating cytotoxic 

reactions to eliminate tumor cells [38]. Additionally, we 

observed substantial infiltration of natural killer cells 
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into the tumor microenvironment of patients with low 

ARL scores. As natural antitumor immune cells,  

natural killer cells play a critical role in directly 

eliminating tumor cells and orchestrating adaptive 

immune responses [39]. In contrast, patients with high 

ARL scores had elevated levels of activated CD4 T 

cells, gamma-delta T cells, and type 17 T helper cells. 

This may reflect an immunosuppressive phenomenon 

within the tumor microenvironment, and these cells can 

contribute to the regulation of inflammation and the 

survival of tumor cells during tumorigenesis [40– 

42]. Our findings under-score the importance of in- 

depth examination of the roles of these immune  

cell subsets in breast cancer prognosis, which has 

profound implications for devising more effective 

antitumor immunotherapies. 

 

Despite these insightful findings, this study has  

several limitations. First, prospective multicenter 

studies with extensive BRCA cohorts are warranted to 

corroborate the reliability of the ARL signature and the 

accompanying results. Secondly, although we explored 

the functionality of one ARL in vitro, additional expe-

rimental investigations are necessary to elucidate its 

regulatory mechanisms and functions. 

 

MATERIALS AND METHODS 
 

Data collection 

 

The main information utilized for this research  

was obtained from TCGA repository, comprising 

1,109 IBC samples and 113 healthy breast tissue 

samples. Patients with unknown clinical information 

and an overall survival time of less than 30 days  

were excluded from the study. Gene sets associated 

with anoikis were obtained from a prior investigation 

[43]. Figure 9 shows the flowchart of our study. 

 

Identification of anoikis-related differentially 

expressed lncRNAs 

 

The package “DESeq2” was utilized to screen  

DELs between IBC versus normal breast tissues in 

TCGA dataset [44]. DELs were identified based  

on a log2 (fold change) >1 and an adjusted p- 

value < 0.05. Spearman’s analysis was used to 

investigate the relationship between lncRNAs and 

ARGs. To identify anoikis-related lncRNAs, we  

used a previously described co-expression gene 

identification method [45, 46]. This method involves 

the selection of lncRNAs based on two criteria: a 

Spearman correlation coefficient greater than 0.4 and 

a p-value below 0.001. Anoikis-related DELs were 

obtained by intersecting DELs with anoikis-related 

lncRNAs. 

Prognostic model construction and verification  

 

The RNA data of anoikis-related DELs and clinical 

information on IBC from TCGA were combined based 

on the sample ID. Only patients with an OS time of 

30 days or more were included in further survival 

analyses. Univariate Cox regression analysis was 

performed using the Kaplan–Meier “survival” package 

[47]. Subsequently, for further identification of the core 

genes related to anoikis and the construction of an ARL 

score-based prognostic model, we employed the 

“glmnet” and “survival” packages to conduct LASSO 

logistic regression analysis [48]. The following formula 

was used to calculate the ARL score of IBC patients: 

C6orf99 expression value × corresponding coef + 

LINC01614 expression value × corresponding coef + 

LINC02613 expression value × corresponding coef + 

AC055854.1 expression value × corresponding coef + 

AL133467.1 expression value × corresponding coef + 

AC004585.1 expression value × corresponding coef + 

MAPT.IT1 expression value × corresponding coef. The 

Shapiro–Wilk normality test and Wilcoxon test were 

used to perform a difference analysis between the two 

groups. The Spearman method was used to perform 

correlation analysis. Kaplan–Meier survival analysis  

was performed using the “survminer” and “survival” 

packages [47]. PCA was conducted using the “factoextra” 

and “FactoMineR” packages [49]. ROC analysis was 

performed using the “timeROC” package [47]. 

 

Correlation between clinical characteristics and the 

prognostic model 

 

We used the Wilcoxon test to evaluate the  

differences in ARL scores among patients with different 

clinicopathological features. Correlation analysis was 

performed using the Spearman method. The “maftools” 

package was utilized to explore the somatic variants 

between individuals with low and high ARL scores 

[50]. 

 
Construction of the nomogram for predicting the 

prognosis of IBC 

 

Univariate Cox analysis was carried out using the 

“survival” package [47]. The calibration analysis and 

nomogram construction were carried out using the 

“rms” and “survival” packages [47]. The “timeROC” 

package was employed for ROC analysis [47]. The 

decision curve analysis (DCA) was carried out using the 

“survival” and “survminer” packages [51]. 

 
Function enrichment analysis 

 

We conducted Gene Ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) enrich-
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ment analyses using the “clusterProfiler” package [52]. 

Gene set enrichment analysis (GSEA) was performed 

using the GSEA software available on the GSEA web-

site (http://software.broadinstitute.org/gsea/index.jsp) 

and the “h.all.v2022.1. Hs.symbols.gmt” gene sets were 

sourced from the Molecular Signatures Database. 

Furthermore, Gene Set Variation Analysis (GSVA)  

was carried out using the “GSEABase” and “GSVA” 

packages, along with the “c2.cp.kegg.v2022.1. 

Hs.symbols.gmt” gene set [53, 54]. A false discovery 

rate (FDR) of less than 0.25 and a P-value cutoff of less 

than 0.05 were used to evaluate statistical significance. 

 

Immune infiltration characteristics of the TME 

 

The analysis of immune cell infiltration and  

immune-related pathway enrichment was conducted 

using the “GSVA” and “GSEABase” packages  

[53, 54]. Marker genes of immune cells identified  

by Bindea et al. [54] were used in this analysis. 

Moreover, we employed the “estimate” package to 

calculate immune and stromal scores in both the  

low ARL score group and the high ARL score  

group. [55]. The Shapiro–Wilk normality test and 

Wilcoxon test were used to examine the differences 

between groups. 
 

Immunotherapy response and chemotherapy 

sensitivity 
 

We retrieved immunogenomic examination data  

from TCIA website (https://tcia.at/home) [56]. We  

used TIDE (http://tide.dfci.harvard.edu/) to evaluate the 

predictive effect of anoikis-related lncRNAs signatures 

on immunotherapy response. We used the Shapiro–
Wilk normality test and Wilcoxon test to assess the 

disparity between the two clusters. The evaluation of 

drug susceptibility was executed by applying the 

“oncopredict” package [57]. We employed the Spearman 

approach for correlation analysis. 

 

qRT-PCR 
 

The study utilized tissue samples from the biobank of 

Shanghai First Maternity and Infant Hospital and was 

conducted with the exemption of informed consent by 

the Ethics Committee of the same hospital. Total RNA 

was obtained from 15 breast cancer samples and 12

 

 
 

Figure 9. Flowchart. 

http://software.broadinstitute.org/gsea/index.jsp
https://tcia.at/home
http://tide.dfci.harvard.edu/
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nearby normal breast tissues using Total RNA 

Extraction Reagent (TRIzol®) (RK30129, ABclonal, 

USA), according to the guidelines provided by the 

manufacturer. With the assistance of ABScript III RT 

Master Mix (RK20428, ABclonal), we performed the 

reverse transcription using 1 μg of total RNA. qRT-PCR 

analysis was conducted utilizing Genlous 2× SYBR™ 

Green PCR Fast qPCR Mix (Low ROX Premixed) 

(RK21206, ABclonal). The evaluation of the comparative 

expression of the genes of concern was carried out 

utilizing the 2−ΔΔCT methodology, with beta-actin serving 

as the reference gene. The primer sequences used are 

listed in Supplementary Table 1. 

 

Pan-cancer analysis 

 

To conduct a pan-cancer differential analysis  

of AL133467.1, we obtained a standardized  

and consolidated dataset called TCGA Pan-Cancer 

(Pancan, N = 10535, G = 60499) from the UCSC 

database (https://xenabrowser.net/). From this dataset, 

we specifically extracted the expression data of 

AL133467.1 for every individual sample. Samples 

were selected specifically from healthy solid tissues 

and cancerous peripheral blood derived from primary 

tumors. Samples with no expression levels were 

excluded, and all expression values were converted 

using the log2(x+1) transformation. The expression 

data for 26 cancer types were obtained after excluding 

those with fewer than three samples. The Wilcoxon 

test was used to determine the differences between two 

groups. 

 

For the survival analysis, in addition to obtaining 

survival data from the UCSC, we procured a high-

quality prognostic dataset from TCGA using an 

integrated TCGA pan-cancer clinical data resource [47]. 

Samples with zero expression levels were excluded,  

as were samples with a follow-up time of less than  

30 days. All expression values were transformed  

by log2(x+1). Cancers with fewer than 10 samples  

were excluded, and 39 cancer types were included 

(Supplementary Figure 6B). We employed the coxph 

function of the R software survival package to perform 

the Cox regression analysis [58]. The significance of the 

prognosis was determined through a statistical test with 

the Logrank test. 

 

To analyze immune checkpoint markers, we obtained an 

identical comprehensive pan-cancer dataset from the 

UCSC database. From each sample, we extracted the 

expression of 60 genes related to immune checkpoint 

pathways, consisting of 24 inhibitory and 36 stimulatory 
genes [59]. The association between AL133467.1 and 

immune checkpoint marker genes was investigated by 

Pearson correlation analysis. 

For immune infiltration analysis, we extracted the gene 

expression profiles of each cancer type from the UCSC 

pan-cancer dataset, mapped the expression profiles to 

the gene symbol, and employed the R software package 

“IOBR” [60] and deconvo_xCell method [61] to 

estimate the infiltration scores of 67 tumor micro-

environment cell types in 39 cancer types, based on 

gene expression data. The “psych” package was used  

to examine the relationship between AL133467.1 and 

levels of immune cell infiltration in various tumor types. 

 

Cell culture and plasmid transfection 

 

The human breast cancer cell lines MCF-7 and MDA-

MB-231 were sourced from Wuhan Procell Life 

Science and Technology Co., Ltd., (Wuhan, China).  

We propagated MCF-7 cells in minimum Eagle’s 

medium (MEM), supplemented with 10% fetal bovine 

serum (Gibco, USA), 0.01 mg/mL insulin, 100 U/mL 

penicillin G, and 100 μg/mL streptomycin. MDA-MB-

231 cells were grown in Dulbecco’s modified Eagle’s 

medium (DMEM), supplemented with 10% fetal bovine 

serum (Gibco, USA), 100 U/mL penicillin G, and 100 

μg/mL streptomycin. Both cell lines were incubated  

in a 5% CO2 atmosphere at 37°C. To assess the  

effect of AL133467.1, Lipofectamine™ 3000 (Invitrogen, 

USA) was used to transfect pcDNA-AL133467.1/pcDNA 

(negative control) into MCF-7 and MDA-MB-231 cells 

according to the Lipofectamine™ 3000 reagent protocol. 

Functional assays were performed, and RNA was 

collected 48 h after transfection. 

 

Cell phenotype assays 

 

The proliferative behavior of breast cancer cells  

was investigated by CCK-8 assay. Following digestion,  

cells from different treatment sets were seeded into 96-

well plates (Corning, USA) at a cell density of 2,000 

cells/well. The CCK-8 assay was performed as per the 

manufacturer’s guidelines, and the absorbance was 

measured at 450 nm using a microplate reader. 

 

To examine the migratory capacity of breast  

cancer cells, wound-healing and Transwell assays  

were performed. For the wound-healing assay, digested 

cells from various treatment groups were placed  

in a Culture-Insert 2 Well (Ibidi, Germany) in 24-well 

plates (Corning, USA). Following a 24-hour incubation 

period, the Culture-Insert 2 Well was meticulously 

removed, generating a cell-free zone of roughly 500 μm. 

An inverted microscope (Nikon Ts2R, Japan) at 40× 

magnification was used to capture images of the gap 

area at 0 and 36 h. 
 

For the Transwell assay, 800 μL of medium 

supplemented with 10% fetal bovine serum (Gibco) was 

https://xenabrowser.net/
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deposited in the lower chamber of a Transwell™ insert, 

and the upper chamber was filled with 200 μL of serum-

free medium containing 50,000 cells. After a 48-hour 

incubation phase, cells that had crossed the membrane 

were fixed using 4% paraformaldehyde, rinsed with 

phosphate-buffered saline, stained with 0.3% crystal 

violet, and imaged with an inverted microscope at 100× 

magnification. 

 
Anoikis assay 

 
Cells from different treatment groups were digested 

and seeded in anchorage-resistant 96-well plates of an 

Anoikis Assay Kit (Abcam, UK) at a density of 2,000 

cells per well to simulate the state of anoikis. After 24 

h of incubation, the culture medium was supplemented 

with calcein AM and ethidium homodimer from the 

Anoikis Assay Kit (Abcam, UK), followed by an 

additional incubation period of 30–60 min. After 

observing the cells under a fluorescence microscope, 

fluorometric signals were detected. For flow cytometric 

analysis, cells from the various treatment groups  

were digested and seeded in ultra-low-attachment 6-

well plates (Corning, USA) at a density of 100,000 

cells/well. Following incubation for 24 or 48 h, the 

cells from the respective treatment groups were 

collected and subjected to flow cytometry to detect 

apoptosis. This analysis was performed using an 

Annexin V-Alexa Fluor 647/PI Apoptosis Detection 

Kit (Yeasen, China) following the manufacturer’s 

instructions. 

 
Statistical analysis 

 

The process of data analysis and visual representation 

was executed using R software (versions 3.6.3 and 4.2.1) 

and GraphPad Prism software (version 9.0). Unless 

otherwise indicated, the Wilcoxon test was utilized to 

discern differences between two groups, the Spearman 

test was employed to probe correlations between  

two groups, and Kaplan–Meier survival analysis was 

applied to evaluate survival differences between two 

sets. Statistical significance was set at p < 0.05. 

 

CONCLUSION 
 

Our study constructed and validated a suite of lncRNA 

models based on ARL scoring, thereby offering a 

powerful prognostic tool for breast cancer. Furthermore, 

a comprehensive nomogram was created employing 

both clinicopathological parameters and the ARL score 

to predict overall survival in a clinical setting. We 

demonstrated a significant inverse relationship between 

TP53 and PIK3CA mutation frequencies relative to  

the ARL score. Intriguingly, pathways associated with 

the cell cycle, energy metabolism, and biosynthesis 

demonstrated increased activation in the high  

ARL score group. We found a robust correlation 

between the ARL score and the extent of immune cell 

infiltration, TMB, expression of immune checkpoints, 

and predictive IC50 values of chemotherapy agents. 

Moreover, lncRNA AL133467.1 affected both breast 

cancer cell proliferation and migration, as well as 

possibly resistance to anoikis. In conclusion, the ARL 

signature, as a holistic prognostic tool, facilitates the 

assessment of risk stratification and informs the  

clinical decision-making processes for patients with 

breast cancer. Further investigation is required to 

elucidate the broader clinical implications of these 

findings. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Kaplan–Meier survival analysis results of 14 prognostic lncRNAs. 

 



www.aging-us.com 425 AGING 

 
 

Supplementary Figure 2. Survival analysis of patients with high and low ARL scores across various clinicopathological 
characteristics in the entire set. (A) Kaplan–Meier survival analysis stratified by age, T stage, N stage, M stage, and pathological stage. 

(B) Survival analysis across PAM50 molecular subtypes of breast cancer. 
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Supplementary Figure 3. Univariate and multivariate Cox regression analyses of clinical characteristics and ARL scores. 
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Supplementary Figure 4. The relationship between the ARL score and immune cell infiltration in breast cancer subtypes.  

Statistical significance symbols: ns, p ≥ 0.05; *p < 0.05; **p < 0.01; ***p < 0.001. 
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Supplementary Figure 5. Expression levels of the seven core prognostic lncRNAs in normal and tumor tissues. (A) Comparison 

of expression levels of the seven core prognostic lncRNAs between normal versus unpaired tumor tissues. (B) Comparison of expression 
levels of the seven core prognostic lncRNAs between normal versus paired tumor tissues. (C) Validation of the expression of the seven 
core prognostic lncRNAs in normal and tumor tissues using qRT-PCR. Statistical significance symbols: ns, p ≥ 0.05; *p < 0.05; **p < 0.01; 
***p < 0.001. 
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Supplementary Figure 6. Pan-cancer analysis of AL133467.1. (A) Expression levels of AL133467.1 across various cancer types. 

(B) Univariate Cox analysis results showing the prognostic significance of AL133467.1 in pan-cancer. (C) Correlation analysis of AL133467.1 
with immune regulation-related genes in pan-cancer. (D) Association between immune cell infiltration and AL133467.1 expression in pan-
cancer. Statistical significance symbols: ns, p ≥ 0.05; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. 
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Supplementary Table 
 

Supplementary Table 1. Primer sequences. 

Genes Forward primer Reverse primer 

C6orf99 CCACTCGAAGCCGGTGTCTG AAGAGCAGATGGACAGCACGAC 

LINC01614 GTGCCCTCACATGCCTCCAAG GAAGACATCCTCAGCCCACCAC 

LINC02613 CTGCGTGCCAAACTTGCTGAC CCTGCCCTGGAAGTGCTTCG 

AC055854.1 GGGAGAGTGGGGAGCAAACAG AGGCAGAGGAGAGGCAGAAGG 

AL133467.1 CTCCCCACCAGCAGAAACATCC GCACAGGCACAGAGGCAGATAC 

AC004585.1 TCTCTGGGACTGACCTGACTGC CCCGCCCTGGTGCTCATTG 

MAPT.IT1 TGGCTTGGCTCTTGGGTTCAC AAAGTCACGCCCTTCCAGCAG 

 

 


