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ABSTRACT 
 

Colorectal cancer (CRC) is a malignancy that is both highly lethal and heterogeneous. Although the 
correlation between intra-tumoral genetic and functional heterogeneity and cancer clinical prognosis is well-
established, the underlying mechanism in CRC remains inadequately understood. Utilizing scRNA-seq data 
from GEO database, we re-isolated distinct subsets of cells, constructed a CRC tumor-related cell 
differentiation trajectory, and conducted cell-cell communication analysis to investigate potential 
interactions across cell clusters. A prognostic model was built by integrating scRNA-seq results with TCGA 
bulk RNA-seq data through univariate, LASSO, and multivariate Cox regression analyses. Eleven distinct cell 
types were identified, with Epithelial cells, Fibroblasts, and Mast cells exhibiting significant differences 
between CRC and healthy controls. T cells were observed to engage in extensive interactions with other cell 
types. Utilizing the 741 signature genes, prognostic risk score model was constructed. Patients with high-risk 
scores exhibited a significant correlation with unfavorable survival outcomes, high-stage tumors, metastasis, 
and low responsiveness to chemotherapy. The model demonstrated a strong predictive performance across 
five validation cohorts. Our investigation involved an analysis of the cellular composition and interactions of 
infiltrates within the microenvironment, and we developed a prognostic model. This model provides valuable 
insights into the prognosis and therapeutic evaluation of CRC. 
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INTRODUCTION 
 

Colorectal cancer (CRC) is a highly lethal and 

heterogeneous malignancy. The incidence of CRC has 

been increasing continuously in recent years, 

contributing a great deal to the global cancer burden. 

As one of the most common digestive tract tumors, 

CRC accounted for 9.4% of all cancer-related deaths 

and is estimated to represent 10% of all cancer 

diagnoses worldwide [1]. The current main treatment 

strategy for patients with CRC is surgical resection, 

combined with perioperative chemotherapy and 

radiotherapy. Nevertheless, the therapeutic effects are 

not completely satisfactory, especially when it comes 

to metastasis and resistance to chemotherapy [2]. With 

advances in bio-medicine and intensive studies on the 

pathogenesis of CRC occurrence and progression, 

several promising emerging therapies are being used in 

first-line treatments for CRC, including targeted 

therapy and immunotherapy. The current standard 

targeted therapy for CRC is anti‐vascular endothelial 

growth factor (anti-VEGF) and anti‐epidermal growth 

factor receptor (anti‐EGFR) such as cetuximab [3]. 

Nivolumab and pembrolizumab, both programmed 

death-1 (PD-1) inhibitors, are FDA-approved for the 

treatment of patients with deficient mismatch repair 

(dMMR) / microsatellite instability-high (MSI-H) 

metastatic CRC. The clinical trials results showed that 

the overall response rate (ORR) and disease control 

rate (DCR) of nivolumab was 55% and 80%, and the 

ORR and DCR of pembrolizumab were 50% and 89% 

for dMMR-MSI-H metastatic CRC respectively [4–6]. 

Nevertheless, there are still many limitations of 

targeted therapy and immunotherapy in colorectal 

cancer treatment. The use of anti-EGFR therapies is 

not beneficial to colorectal cancer patients with 

mutations in the KRAS, NRAS, or BRAF genes due to 

resistance that may occur during treatment [7]. PD-1 

inhibitors would not benefit the majority of CRC 

patients, as only 15% of all patients possess MSI-H 

[8]. It is clear that advances have been made over the 

last few decades in colorectal cancer treatment, but the 

long-term survival rate remains unsatisfactory [9].  

 

Over the past few years, the importance of tumor 

immune microenvironment (TIME) for tumor genesis, 

treatment resistance, and recurrence has become 

increasingly apparent. For targeted therapy to be more 

effective or for treatment strategies to be optimized, 

enhancing understanding of colorectal cancer 

heterogeneity and interaction with TIME is crucial to 

improve patient survival. Our understanding of the 

molecular events in colorectal cancer has improved 

considerably during the past decade with the rapid 

development of next-generation sequencing technolo-

gies. Nevertheless, most existing research on RNA is 

based on bulk RNA sequencing, which involves 

sequencing a mix of millions of cells at once and 

obscures individual cell properties. With the advent of 

single-cell RNA sequencing (scRNA-seq) techniques 

to analyze the entire mRNA transcriptome at single-

cell resolution, we can discern potential cellular 

heterogeneity and diversity from otherwise homo-

genous cells [10, 11]. This makes it possible to 

explore the unique transcriptomic profiles of each cell 

subpopulation in a large sample and the interactions 

between cells in the TIME. It is noteworthy that a 

comprehensive understanding of the TIME charac-

teristics underlying CRC by using scRNA-seq 

techniques will provide essential insights into the 

pathogenesis of CRC. Further, it also plays a critical 

role in the therapeutic response and prognosis of 

CRC. 

 

In this study, based on scRNA-seq data of CRC from 

the public database, we re-isolated distinct subsets of 

cells, constructed the CRC tumor-related cell 

differentiation trajectory, and investigated potential 

interactions across cell clusters by using cell-cell 

communication analysis. Ultimately, we integrate the 

scRNA-seq data with bulk RNA-seq data from the 

TCGA database to screen the key genes related  

to tumor cell subsets in CRC. Furthermore, the 

prognostic-related genes signature was identified using 

univariate Cox regression analysis, Lasso regression 

analysis, and multivariate Cox regression analysis 

based on the patient clinical information in the TCGA 

database and validated it in 5 independent GEO 

cohorts. As a result, we developed a nomogram based 

on the prognostic-related genes signature and other 

clinical parameters. 

 

MATERIALS AND METHODS 
 

Data collection 

 

Figure 1 summarizes our study workflow. A total of 

1558 CRC samples were included in this study, namely, 

6 samples with 10×genomics scRNA‐seq data were 

obtained from GSE161277, 521 mRNA sequencing 

samples and clinical information from the TCGA 

database, 1,031 CRC microarray samples for five 

independent cohorts were downloaded from the GEO 

database, including GSE39582 (n = 563), GSE14333 (n 

= 226), GSE17537 (n = 55), GSE38832 (n = 122), and 

GSE29623 (n = 65). More specifically, the 10× 

genomics scRNA‐seq data consists of three normal 

samples (N1, N2, and N3) and three CRC samples (T1, 

T2, and T3), which included 3638 cells, 6748 cells, 

4050 cells, 3611 cells, 6454 cells, and 2531 cells for 
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Figure 1. The workflow of the bioinformatic analysis. Part of the cartoon graphical was drawn by Figdraw. 
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each sample. The TCGA RNA-sequencing data was 

converted into transcripts per log2 (TPM + 1) values, so 

that they are more comparable with microarrays. 

 

Single-cell RNA analysis to determine dominant cell 

types and cell phenotypes 

 

‘Seurat’ package (v4.3.0) [12] was used to merge and 

analyze the raw gene expression matrix for each sample. 

Matrices were filtered by retaining cell barcodes with 

> 1000 UMIs, 500 < expressed genes < 5000 expressed 

genes or < 10% of reads mapping to mitochondrial RNA. 

There must be at least three cells expressing each gene, 

and at least 250 genes expressed in each cell. Normalizing 

the remaining cells to genes with expression normalized 

between 0.125 and 3 was performed. By using the 

‘FindVariableFeatures’ function, we extract the top 2000 

highly variable genes. After regression of confounders, all 

variable genes were applied in PCA implemented with 

‘RunPCA’. Using the ‘FindClusters’ function with 

dims.use = 1:40 and resolution = 0.1, clusters were 

identified and visualized with the UMAP [13] 

dimensional reduction method. Differential gene-

expression analysis was performed for each cluster by the 

Wilcoxon rank sum test using the ‘FindMarkers’ function 

and setting log2 [Foldchange (FC)] to 0.3 and min.pct to 

0.25. The obtained 11 clusters were annotated based on 

the expression of the marker genes. T cells ((cluster 0, 

2,13); CD3D, CD3E, and CD3G), fibroblasts ((cluster 9); 

COL1A1 and PDGFRB), Mast cells ((cluster 14); 

TPSAB1 and CPA3), B cells ((cluster 1, 10); CD79A and 

CD19), plasma cells ((cluster 5); JSRP1), Epithelial cells 

((cluster 4, 6, 7, 8); EPCAM), endothelial cells ((cluster 

11); EPCAM1), and Macrophages ((cluster 3, 12); 

CD163, CD68, CD14) (Supplementary Information, 

Supplementary Figure 1). We conducted Fisher's exact 

test to identify cell types that were significantly 

differentially expressed between tumor and normal 

samples with FC>4 or FC<0.25, p-value <0.05. 

 

Trajectory inference analysis 

 

Using the ‘Monocle (v2.26.0)’ algorithm, we identified 

potential differentiation trajectories among differential 

cell subpopulations [14]. The top 500 combinations of 

marker genes for each cluster (based on logFC values) 

were chosen for unsupervised sorting of cells, and the 

‘DDRTree’ algorithm was employed for trajectory 

reconstruction [15]. The BEAM test in Monocle was 

used to determine which genes have branch-dependent 

expression dynamics [16]. 

 

Cell-to-cell communication network analysis 

 

In order to uncover the communication interactions 

between cells and to reveal the mechanism by which 

molecules communicate, R package ‘CellChat’ [17] was 

applied. Infer the communication probability at the 

signaling pathway inferred by calculating the 

communication probability for all ligand-receptor pairs 

interactions relevant to each signaling pathway. The 

ligand–receptor interactions between the epithelial cells, 

fibroblasts, mast cells, and B cells, Endothelial cells, 

macrophage, plasma cells, and T cells were mapped 

using the ‘CellPhoneDB’ R package. 

 

Functional and pathway enrichment analysis 

 

In order to obtain a deeper understanding of the 

functional attributes of cell types identified in 

colorectal cancer, we utilized the ‘ReactomeGSA’ 

package to perform enrichment analysis on the 

identified marker genes of eight distinct cell types 

[18]. Subsequently, we calculated the enrichment 

scores for each pathway and ranked them based on the 

difference between the maximum and minimum 

values of the same pathway across the eight cell types. 

Ultimately, we conducted further analysis on the top 

20 pathways exhibiting the greatest differences. To 

further characterize the pathway and functional 

differences between the high and low-risk groups 

identified by the prognostic signature, we employed 

the 'ClusterProfiler' package for conducting GO and 

KEGG enrichment analysis, which is based on all 

differentially expressed genes [19].  

 

Prognostic signature construction and validation 

 

Transcriptomic data from the CRC cohort were used for 

joining with single cell data to construct risk prognostic 

models. Gene expression differences between tumor 

tissue and adjacent normal tissue are identified using the 

‘limma’ package. The intersection of DEGs and marker 

genes of differential cell subsets to construct the 

prognosis risk model. A univariate Cox regression 

analysis was performed to identify prognostic value 

genes with p-value < 0.01. Next, we applied the LASSO 

regression analysis to select key genes [20] using 

‘glmnet’ R package. Finally, a multivariate Cox 

proportional regression model was used to construct  

a prognostic model. A risk score can be calculated as 

follows: Risk score = (expression of gene1 × β1) 

 + (expression of gene2 × β2) + … (expression of genen × 

βn). The “β” represents the coefficient of selected genes 

and “expression” represents their expression level. The 

prognostic model was validated by five independent 

cohorts of external validation from GEO. Risk scores 

were normalized using the Z-score method in the 

training and validation cohort. Using a median risk 
score, patients were classified into low-risk and high-

risk groups. We visualized the DEGs using the R 

package ‘ggplot2’. The Kaplan-Meier survival curve 
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(KM) was used to assess the difference in survival 

between the two risk groups using the ‘survminer’ R 

package. Receiver operating characteristic curves (ROC 

curves) were used to evaluate model performance.  

 

Analysis of clinical features and independent 

prognostic  

 

To detect differences in clinical features between  

the two risk groups, Wilcox. tests and Kruskal- 

Walli’s analysis were performed. Clinical features 

including age, gender, T stage, N stage, M stage, and 

clinical stage. To determine the prognostic value of 

risk scores and clinicopathological factors, we 

performed univariate and multivariate Cox regression 

analyses. 

 

Immune cells infiltration and immune function 

analysis 

 

To characterize the TME in different risk groups, we 

made a comparison of the expression levels of immune 

cells and immune-related pathways. The activity of 

immune-related pathways from ‘MSigDB C2 gene set’ 

(c2.cp.kegg.v7.0.symbols.gmt) was used as a reference 

for ssGSEA, performed using implementation by 

‘GSVA’ and ‘GSEABase’ R package. The 

‘CIBERSORT’ was used to estimate the immune cell 

expression, based on 22 types of flow-purified immune 

cells [21].  

 

Drug susceptibility analysis 

 

To provide insight into the impact of risk scores on drug 

sensitivity in prognostic model, the R package 

‘pRRophetic’ was employed to evaluate response to 

chemotherapeutic agents based on the 50% maximum 

inhibitory concentration (IC50) using data from the 

Genomics of Drug Sensitivity in Cancer (GDSC) 

database. 

 

Immunohistochemistry and protein level validation 

 

To further validate the protein expression levels of 

prognostic signatures in normal tissues and colorectal 

cancer, immunohistochemistry (IHC) staining images 

were downloaded from the Human Protein Atlas [22] 

(HPA version 22.0, http://www.proteinatlas.org) which 

included proteome analysis based on 27397 antibodies 

targeting and 17291 unique proteins. 

 

Statistical analysis 

 
We used R software version 4.2.0 to analyze and 

generate figures. P-value < 0.05 was considered 

significant, unless otherwise noted. 

Data availability statement 

 

The datasets supporting the conclusions of this article are 

available in the GEO repository, [https://www.ncbi.nlm. 

nih.gov/geo/]. The names of the repository/repositories 

and accession number(s) can be found in the article. 

 

RESULTS 
 

Single-cell atlas of CRC 

 

We obtained 27,034 single-cell gene expression profiles 

from 6 samples (CRC samples (n = 3) and normal samples 

(n = 3)). We retained 16,626 single cells for downstream 

analysis after quality control (Supplementary Figure 2A, 

2B). Principal component analysis (PCA) was performed 

after normalization to assign all cells to different clusters 

based on their expression of 2000 variable genes 

(Supplementary Figure 2C, 2D). Finally, 15 clusters were 

found (Figure 2A). Figure 2B shows a summary of single 

cells from six types of samples. Cells originating from 

tumour tissues and normal control tissues are shown in 

Figure 2C. In addition, significant expression marker 

genes were identified using logFC > 0.3 and adj Pval < 

0.05 as thresholds, and the top 5 significant differential 

markers for each cluster were shown by heatmap (Figure 

2D). According to the Uniform Manifold Approximation 

and Projection (UMAP) analysis and canonical markers 

expression, eight distinct cell populations were identified 

(Figures 2E and Supplementary Figure 1), including the T 

cells, B cells, Macrophage, epithelial cells, Plasma cells, 

Fibroblasts, Endothelial cells, and Mast cells. A total of 

9569 differential expression genes between these clusters 

(Supplementary Table 1). The above results reveal the 

heterogeneity of CRC tumor microenvironment. 

 

Functional enrichment analysis of cell types 

identified in CRC 

 

‘ReactomeGSA’ functional enrichment revealed that the 

eight cell types are predominantly positively enriched 

biological processes including Synthesis of Hepoxilins 

(HX) and Trioxilins (TrX), Metabolism of serotonin, 

Transfer of LPS from LBP carrier to CD14, Proton-

coupled neutral amino acid transporters. Epithelial cells, 

Mast cells, Macrophage, T cells, B cells, and Plasma 

cells were negatively enriched in Sterols are 12-

hydroxylated by CYP8B1, FGFR1c and Klotho ligand 

binding and activation, and Activation of Na-permeable 

kainate receptors (Figure 2F). 

 

CRC have different patterns of cell-cell 

communication 

 

Recent studies have emphasized the importance of 

intercellular communication in the progression of 

http://www.proteinatlas.org/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/


www.aging-us.com 13804 AGING 

various tumors. We have carried out a cell-cell 

communication analysis between the cell subgroups. 

This approach maps the expression of ligand-receptor 

pairs between different immune cells in TME and 

allows inference of potential cell-cell interactions. Of 

them, we noted several trends in T cells showed 

strong communication with B cells, Endothelial cells, 

Epithelial cells, Fibroblasts, Macrophage, Mast  

cells, and Plasma cells (Figure 3A). Macrophage, 

Fibroblasts, and Mast cells were second. These 

pathways, including MIF signaling pathway, 

GALECTIN signaling pathway, VISFATIN signaling 

pathway, and MHC−I signaling pathway, might play a 

role in the cell-cell communication (Figure 3B–3E). 

CD74-CXCR4 has crucial roles in the MIF signaling 

pathway. NAMPT_INSR, LGALS9_CD45, and HLA-

A_CD8A play crucial roles in the VISFATIN signaling 

pathway, GALECTIN signaling pathway, MHC−I 

signaling pathway, respectively (Supplementary  

Figure 3). The results of this study demonstrate that 

CRC's unique TME may be shaped by TME-specific 

cellular communication. 

 

CRC have different patterns of cell trajectory 

 

We identified three significant cell types and 

performed pseudotime analysis, which implied that 

fibroblasts were located at the beginning of cellular 

evolution on this map. The trajectory of the Epithelial 

cells yields five levels of development (states 1-5). 

Mast cells were located at the state 1 and state 2 

(Figure 4A). Our next step was to calculate the 

contribution of genes to cell development, and the top 

100 genes were selected for visualization (Figure 4B). 

Accompanying the cellular trajectory of three cells, 

GO enrichment analysis revealed that the processes 

including response to regulation of innate immune 

response and immune response-activating signaling 

pathway were increased, whereas leukocyte differen-

tiation and growth factor receptor binding were 

reduced (Figure 4C).  

 

RNA-Seq data analysis to identify differentially 

expressed genes 

 

In TCGA datasets, we identified 2600 differential 

expression genes (DEGs) between adjacent normal and 

tumor tissues (Figure 5A). There were 1455 genes that 

were up-regulated, and 1145 that were downregulated. 

Based on GO analysis, the DEGs were enriched 

primarily in biological processes of DNA replication, 

collagen-containing extracellular matrix, and 

glycosaminoglycan binging (Figure 5B). Analysis of 

KEGG data revealed that DEGs were predominantly 

enriched for Vital protein interaction with cytokine and 

cytokine receptor and Bile secretion (Figure 5C). 

Finally, 741 gene expression matrices were obtained by 

taking the intersection using marker genes and DEGs 

(Figure 5D). 

 

Prognostic model construction and validation 

 

Using 741 gene expression profiles, we conducted 

univariate Cox regression analysis to identify potential 

 

 
 

Figure 2. A Single-cell atlas of CRC. (A) UMAP representation of scRNA-seq from CRC cells reveals 15 distinct clusters. (B) UMAP 
dimensional reduction visualizations single cells from tumour tissues and normal control tissues. (C) UMAP dimensional reduction 
visualizations single cells from six types of samples. (D) The heatmap showed the relative expression of genes in 15 clusters. The color yellow 
represents genes that are highly expressed, and the color purple represents genes that are lowly expressed. (E) Eight major cell types 
identified in CRC. (F) Pathway gene set enrichment analysis of the expression profiles for each cell-type. 
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Figure 3. Cell-cell communications in CRC. (A) Integrated cell-cell communications network plotted by interaction weighted. (B–E) Cell-

cell interaction signaling pathways. 

 

 
 

Figure 4. Developmental trajectory of cells in CRC. (A) Cell trajectory and pseudo-time analysis for the identified hub cell types. (B) 

Heatmap of gene expression profiles according to pseudotime trajectory. (C) The top annotated GO biological processes terms in each cluster 
were provided. 
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prognostic genes. Ten genes were identified as 

prognostic. Through LASSO regression analysis, eight 

genes were identified in the risk model (Figure 6A, 6B). 

An eight-genes prognostic signature was constructed 

using Multivariate Cox regression analysis, including 

ETS2, SEZ6L2, TRIP6, ATOH1, CXXC5, CLDN23, 

PCOLCE2, and DPP7. Our risk score was calculated 

using the following formula in TCGA cohort based on 

their coefficients. risk score = expression level of ETS2 

* (-0.172) + expression level of SEZ6L2* 0.332 + 

expression level of TRIP6* 0.203 + expression level of 

ATOH1* (−0.163) + expression level of 

CXXC5*(−0.319) + expression level of CLDN23 * (-

0.261) + expression level of PCOLCE2*0.201 + 

expression level of DPP7 *0.258. Patients were divided 

into high- and low-risk groups according to their 

median risk scores. The survival curve showed that 

high-risk patients had a shorter OS than low-risk ones 

(Figure 6C). The time-dependent ROC curve analysis 

demonstrated that the model has precise predictive 

ability, with areas under curves (AUCs) of 0.71, 0.77, 

and 0.72 for 3, 5, and 8 years, respectively (Figure 6D). 

A single-factor and multi-factor Cox analysis was 

performed to determine whether the risk score could 

predict the outcome of CRC patients. Risk scores could 

be used as independent prognostic factors (Figure 6E). 

As a result, we developed a nomogram based on other 

independent prognostic factors to predict overall 

survival of CRC patients (Figure 6G), which was 

subsequently validated using calibration plots (Figure 

6F). Afterwards, we examined the clinicopathological 

characteristics of the patient and the risk score. There 

are substantial differences in T stage, N stage, M stage, 

and stage between the two groups (Figure 6H). 

 

External validation of the robustness of the risk 

model 

 

Five independent GEO cohorts were included in this 

study to validate the robustness of the risk model. Using 

the same method, risk scores were calculated for each 

patient in five GEO cohorts. According to Kaplan-

Meier analysis, each of the five cohorts had a worse 

prognosis than each of the low-risk groups. namely, 

 

 
 

Figure 5. Differential gene analysis of in TCGA datasets. (A) A volcano plot showing the DEGs in the TCGA cohort that are up-regulated 

and down-regulated. (B, C) GO and KEGG enrichment analysis of the identified DEGs. (D) Venn diagram analysis of DEGs and marker genes. 
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Figure 6. Prognostic model establishment and validation for patients with CRC. (A) Cross-validation for eight OS-related genes in 
the LASSO regression. (B) Partial likelihood deviance for the LASSO regression for eight candidate genes. (C) The Kaplan-Meier curve was used 
to analyze the OS of two risk groups of patients with CRC. (D) ROC curves evaluate the predictive ability of the constructed risk model.  
(E) The results of univariate independent prognostic analysis and multivariate independent prognostic analysis. (F) The nomogram’s 
calibration curves for predicting 3-, 5-, and 8-year OS in TCGA-CRC cohorts. (G) Based on independent prognostic factors, a nomogram was 
developed to predict overall survival. The survival rate at 3-, 5-, and 8-year survival rate is predicted according to the total score. (H) The 
relationship between risk score and common clinicopathological characteristics. 
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GSE14333 (Figure 7A, P = 0.004), GSE17537 (Figure 

7B, P = 0.028), GSE29623 (Figure 7C, P = 0.036), 

GSE38832 (Figure 7D, P = 0.002), and GSE39582 

(Figure 7E, P < 0.001). A good performance was also 

shown by the ROC curves of the risk model. There is a 

maximum area under ROC curve of 0.82. There can be 

more than 0.7 area under the ROC curve. It is evident 

that the model is well-regularized by the validation 

performance, which is consistent with the training 

performance. 

 

 
 

Figure 7. Validation of the gene signature in five independent GEO cohorts. (A) GSE14333 (n = 226). (B) GSE17537 (n = 55). (C) 

GSE29623 (n = 65). (D) GSE38832 (n = 122). (E) GSE39582 (n = 563). 
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The immune function between high- and low-risk 

groups 

 

Further research was conducted on the relationship 

between two risk groups and TME. We identify 

pathways that were significantly enriched in low-  

and high- risk groups using GSEA. Genes in the high-

risk group were significantly enriched in notch 

signaling pathways, glycosaminoglycan biosynthesis 

chondroitin sulfate, and ecm receptor interaction. 

However, genes in the low-risk group were 

significantly enriched in terpenoid backbone bio-

synthesis, olfactory transduction, and peroxisome 

(Figure 8A). The expression of LAG3 and PDCD1 

was higher in the low-risk group (Figure 8B), 

suggesting that this group was more responsive to 

 

 
 

Figure 8. Characteristics of tumor immune microenvironment. (A) Heatmap showed the relationship between risk score and immune 

functions. (B) Immune checkpoint expressed differently between low-risk and high-risk groups. (C) Tumor-infiltrating immune cells expressed 
differently between low-risk and high-risk groups. 



www.aging-us.com 13810 AGING 

immune checkpoint inhibitors. For the exploration of 

CRC's immune landscape, we chose 22 different types 

of immune cells. The percentage of T cells CD8, 

Macrophages M0, Plasma cells, NK cells activated, 

dendritic cells activated, and eosinophils in both 

groups differed significantly (p < 0.05) (Figure 8C). 

 

Drug sensitivity analysis 

 

In order to investigate the differences in efficacy 

potential between high-risk and low-risk groups, we 

used the R package ‘pRRophetic’. Patients with low-

risk had lower IC50 values and were more sensitive to 

anticancer drugs including Bexarotene, Dasatinib, 

Elesclomol, Gefitinib, Lenalidomide, Midostaurin, 

Nilotinib, Parthenolide, Pazopanib, Rapamycin, 

Shikonin, Sunitinib, Temsirolimus, Vinblastine, and 

Vorinostat (Figure 9). Based on these results, risk model 

may be an effective predictor of anticancer drug efficacy. 

 

Validation of genes in terms of protein expression 

 

We found complete protein expression data of 5 genes 

(TRIP6, CXXC5, PCOLCE2, and DPP7) and the 

protein expression of SEZ6L2 in the normal colon and 

CRC tissue in Human Protein Atlas. The IHC staining 

images were analyzed to compare the protein 

expression level between normal and tumor tissues 

(images available from https://v22.proteinatlas.org), the 

results showed that the expression levels of SEZ6L2, 

TRIP6, PCOLCE2, and DPP7 in tumor tissues were 

higher than in normal tissues, while the expression 

levels of CXXC5 was lower than in normal tissues 

(Figure 10). 

 

DISCUSSION 
 

Based on scRNA-seq and bulk RNA-seq data, we 

identified 8 cell types and 3 significant cell types 

(Epithelial cells, Fibroblasts and Mast cells) were 

significantly different between tumor and control 

samples. In addition, based on marker genes and 

DEGs, we developed a prognostic model that can be 

used to stratify CRC patients into high- and low-risk 

groups in the TCGA and GEO cohorts. The clinical 

relevance, TIME and drug sensitivity of the various 

groups were also investigated. As a result of these 

findings, we are better able to understand the 

intratumoral heterogeneity in CRC and provide new 

directions for cancer therapy. 

 

The heterogeneity of fibroblasts played an important 

role in modulating tumor immune microenvironment 

[23]. Histologically and biologically, fibroblasts play a 

key role in CRC initiation, progression, and metastasis 

[24, 25]. Fibroblasts contribute to carcinogenesis by 

secreting growth factors, cytokines, and proangiogenic 

factors [24, 26]. Cancer-associated fibroblasts transfer 

exosomal lncRNA H19 to promote stemness and 

chemoresistance [27]. The activation of STAT3 by IL-

6/IL-11 in fibroblasts promotes the development of 

colorectal cancer [28, 29]. As cancer promoters, Mast 

cells participate in immunosuppression, release pro-

angiogenic and mitogenic factors [30, 31]. Mucosal 

mast cells activated by inflammation recruit and 

modulate inflammatory CD11b (+) Gr1(+) cells to 

promote colon cancer development [32]. The Mast cells 

activity inhibited CD8+ cell infiltration in CRC tumors, 

promoting cell engraftment [33]. By secreting Cystatin 

C, mast cells inhibit colorectal cancer development 

[34]. Several studies have demonstrated the importance 

of Fibroblasts and Mast cells in the development of 

CRC. 

 

The prognostic signature was consisted of 8 marker 

genes, including ETS2, SEZ6L2, TRIP6, ATOH1, 

CXXC5, CLDN23, PCOLCE2, and DPP7. It is known 

that ETS2, a proto-oncogene belonging to the 

erythroblastosis virus E26 family, is overexpressed in a 

wide range of human cancers, which include colorectal 

cancer. It has been shown in vitro that the over-

expression of ETS2 increases malignant cell behavior 

(growth, migration, invasion, and resistance to L-OHP) 

[35]. Seizure-related 6 homolog (mouse)-like 2 

(SEZ6L2) belongs to the seizure-related gene 6 family 

(SEZ6), which is mainly expressed in the brain. In 

CRC, knockdown of SEZ6L2 promotes the apoptosis of 

tumour cells, indicating that it might serve as a potential 

target for therapy [36]. TRIP6 is an adapter protein that 

binds to thyroid hormone receptors, through its LIM 

domain, TRIP6 interacts with a wide variety of proteins 

and act as transcriptional adapters and auxiliary 

activators [37]. Colorectal cancer cells are regulated by 

Trip6, a miR-7 target, through regulating proliferation 

and metastasis [38]. TTPAL activates Wnt by 

stabilizing TRIP6/ β- Catenin signal promotes colorectal 

cancer [39]. ATOH1 regulates intestinal progenitors 

downstream of Notch signaling and activates MUC2 

transcription in goblet cells [40, 41]. It was found that 

SCF/c-KIT signaling promotes the production of MUC2 

and Mucinous Colorectal Adenocarcinoma (MCA) 

tumorigenesis by maintaining the expression of ATOH1 

[42]. CXXC5, also known as retinoid-induced nuclear 

factor, belongs to the CXXC zinc-finger protein family 

[43]. The role of CXXC5 in colorectal cancer will 

require further study. CLDN23 encodes a claudin 

family member, and claudins are known to play a 

crucial role in cancer growth and progression [44, 45]. 

Several studies have demonstrated that CLDN23 
expression is significantly decreased in CRC tissue, 

which correlates with a shorter overall survival  

rate [46]. It has been shown that CLDN23 expression 

https://v22.proteinatlas.org/
https://v22.proteinatlas.org/
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Figure 9. Evaluation of drug sensitivity. The comparisons in IC50 value between low-risk and high-risk groups. The ordinate shows the 

IC50 value of anticancer drug target sensitivity. Lower IC50 values are associated with higher sensitivity to the anticancer drug. (A) Bexaroten. 
(B) Dasatinib. (C) Elesclomol. (D) Gefitinib. (E) Lenalidomide. (F) Nilotinib. (G) Parthenolide. (H) Pazopanib. (I) Rapamycin. (J) Shikonin.  
(K) Sunitinib. (L) Temsirolimus. (M) Vinblastine. (N)  Vorinostat. 
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is epigenetically controlled. The PCOLCE2 gene 

encodes a functional procollagen c-protease enhancer. 

Activating PCOLCE2 allows type I procollagen to be 

cleaved to produce mature fibrils [47]. In a previous 

study, patients with rectal cancer were found to have 

mutations in PCOLCE2 [47, 48]. It was found that 

DPP7/2 correlated significantly with poor prognosis in 

CRC patients [49]. Therefore, these genes play an 

important role in the prognosis and progression of 

colorectal cancer. 

 

Based on the 8 signatures, we generated a risk model 

and divided patient into two groups (high- and low-risk 

groups). The predictive ability of this model was also 

confirmed using five external validation cohorts, where 

consistent results were observed. TME plays an 

important role in the antitumor response and can 

influence the prognosis in a significant way [50], we 

investigated the immune function and relationship 

between risk groups and 22 immune cells. First, we 

assessed immune function and drug sensitivity among 

different risk groups. In high-risk group the Notch 

signaling pathway is aberrantly activated. The 

activation of the NOTCH signaling has been proved to 

promote colorectal cancer invasion and metastasis [51–

56] and is associated with poor prognosis. In colorectal 

cancer, enhanced anti-PD-1 response with microsatellite 

stability through remodeling Chondroitin-6-Sulfate-

Mediated Immune Exclusion [57]. In a model of a 

highly malignant colorectal tumor, chondroitin sulfate 

chains are increased to promote epithelial-mesenchymal 

transition and chemoresistance [58]. The ECM interacts 

with receptors on the cellular surface and regulates cell 

behavior, cell proliferation, adhesion, and migration 

[59, 60]. In a recent study, Nersisyan S et al. revealed 

that ECM and cellular receptors interact to contribute to 

the progression and metastasis of colorectal cancer [61, 

62]. In low-risk group, terpenoid backbone biosynthesis 

is activated. CRC occurrence can be influenced  

by CUBN via its ability to regulate terpenoid backbone 

biosynthesis [63]. In addition, some studies suggest 

polymorphisms of the peroxisome proliferators-

activated receptor gamma and the risk of colorectal 

cancer [64]. Pathways' mechanistic role in colorectal 

cancer deserves further investigation. Next, the high-

risk group had a higher proportion of CD8+ T cells 

resting, NK cells, dendritic cells and Macrophages, 

indicating this group may be in an active state of 

antitumor immunity. The high-risk group showed 

greater immune infiltration and an increased immune 

response, suggesting they would benefit from 

immunotherapy. 

 

In order to better guide the treatment of CRC, risk 

groups of patients were analyzed for drug sensitivity. 

We investigated 14 anticancer drugs, including 

 

 
 

Figure 10. Immunohistochemical stains of the five prognostic genes analyzed from HPA online database.  
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Bexarotene, Dasatinib, Elesclomol, Gefitinib, 

Lenalidomide, Midostaurin, Nilotinib, Parthenolide, 

Pazopanib, Rapamycin, Shikonin, Sunitinib, 

Temsirolimus, Vinblastine, and Vorinostat. In the 

low-risk group, 14 anticancer drugs were found to be 

sensitive, which provided guidance for deciding 

which chemotherapy drugs to use. Further 

investigation of these drugs' clinical significance for 

CRC patients will be conducted in the follow-up 

study. 

 

CONCLUSIONS 
 

In this study, scRNA-seq and bulk RNA-seq data were 

combined to construct and validate a CRC prognostic 

model. We identified three significant cell types. 

Additionally, we identified two risk groups with 

different prognoses, clinical characteristics, and 

immune characteristics. High riskscore was associated 

with poor survival outcomes, high-stage tumors, 

metastasis, and low sensitivity to chemotherapy. We 

provide new theoretical insights into the prognosis and 

precision therapy of CRC patients using scRNA-seq 

markers. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Violin diagram displaying the expression of representative markers across the 15 clusters identified 
in CRC. The y axis shows the normalized read count. 
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Supplementary Figure 2. Analysis of single-cell RNA sequencing from 6 CRC tissues. (A) Sequencing depth of single cell data from 6 
patients with colorectal cancer. The plots show the total number of expressed genes (nFeature_RNA), number of transcripts (nCount_RNA), 
percentage of mitochondrial transcript expression ratio (percent.mt), and Ribosome transcript expression ratio (percent.Ribo) from CRC and 
HC samples in unfiltered single cell data. (B) The plots of filtered single cell data show the total number of expressed genes (nFeature_RNA), 
number of transcripts (nCount_RNA), percentage of mitochondrial transcript expression ratio (percent.mt), and Ribosome transcript 
expression ratio (percent.Ribo) from CRC and HC samples. (C) PCA plot of single-cell sequencing profiles from 6 samples. (D) The standard 
deviation of 1–5 PCs calculated using ElbowPlot function. 
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Supplementary Figure 3. Ligand-receptor interaction atlas within four pathways. (A) CD74-CXCR4 interaction atlas within MIF 

signaling pathway. (B) LGALS9-CD45 interaction atlas within GALECTIN signaling pathway. (C) NAMPT-INSR interaction atlas within VISFATIN 
signaling pathway. (D) HLA-A-CD8A interaction atlas within MHC−I signaling pathway.  
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Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Differentially expressed genes between 15 clusters. 


