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INTRODUCTION 
 

Due to the increasing number of elderly people, stroke 

is a leading cause of death in recent years, which has 
brought a burden to society and economy [1]. Currently, 

a non-drug treatment has been used for the brain injury, 

primarily through interaction with the environment 

known as environmental enrichment (EE) [2–4]. 

EE promotes neuroplasticity through a combination of 

sensory, cognitive and motor stimuli, which is 

conducive to behavioral recovery after brain injury  

[5–7]. In EE, animals are housed in larger cages with a 

variety of new items that promote more physical 
activity, social interaction and exploration [8]. Over 

the past decade, impressive effects of EE have also 

been identified in other brain diseases such as 
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ABSTRACT 
 

Background and Purpose: Age is identified as a significant prognostic factor for poorer outcome after stroke. 
However, environmental enrichment (EE) has been reported to promote functional recovery after ischemic 
stroke. The purpose of this study was to investigate whether environmental enrichment was beneficial to 
ischemic stroke in aged rats. 
Methods: Aged rats were randomly assigned as control rats, rats subjected to cerebral ischemia, and rats with 
cerebral ischemia treated with EE for 30 days. Focal cortical ischemia was induced by intracranial injection of 
endothelin-1 (ET-1). EE housing began one day after focal ischemia and was maintained for the whole 
experimental period. We used immunofluorescence staining to analyze the neurogenesis in the subventricular 
zone (SVZ) and TdT-mediated dUTP-biotin nick-end labeling (TUNEL) assay to evaluate apoptosis. The 
expression of neuronal nuclei, glial fibrillary acidic protein (GFAP) and Iba-1 around the infarcted area were 
also measured by double immunohistochemistry. 
Results: EE enhanced the proliferation of newborn neurons in the SVZ, as well as increased the long-term 
survival of newborn neurons. EE also exerted effects on inflammation after stroke. Furthermore, EE suppressed 
apoptosis and improved the motor functions after stroke in the aged rats. 
Conclusions: EE improved post-stroke recovery on the basis of enhancing neurogenesis in aged rats. 
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Huntington’s disease (HD) [9], Alzheimer’s disease 

(AD) [10, 11] and various forms of brain injury. 

Besides, many studies have shown that EE has a 

positive effect on the stroke [12–14]. For instance, EE 

increased the proliferation of hippocampal and cortical 

endothelial cells [15], improved the survival rate of 

newborn astrocytes [16], decreased growth inhibitory 

molecules [17], induced neural plasticity [18] and 

promoted the formation of neovascularization in 

cerebral ischemia rats [19]. 

 

Altogether, the beneficial effects of EE after weaning 

and at adulthood have been well documented for 

ischemic stroke. However, age differences may affect 

neurogenesis, angiogenesis, inflammatory factors, and 

cerebral blood flow, thus affecting the accuracy of 

experimental results in ischemic animals. This may 

explain why drugs that work well in animal models do 

not show efficacy in stroke survivors [20]. Therefore, it 

is more appropriate to simulate ischemia model with old 

animals from the perspective of clinical transformation. 

In our study, we tested the hypothesis that EE can 

promote neurogenesis in older stroke rats, thereby 

promoting behavior recovery. 

 

MATERIALS AND METHODS 
 

Animals 

 

Aged (18–20 months) male Sprague–Dawley rats (600–

800 g) were used in the study. The rats were randomly 

assigned to three groups: sham-operated rats (n = 6, 

SHAM), rats subjected to cerebral ischemia (n = 8, 

ISC), and rats with cerebral ischemia treated with EE 

(n = 8, EE). Anesthesia was induced using a mixture of 

3% isoflurane in 30% oxygen and 70% nitrous oxide 

and animals were maintained with 1.5% isoflurane for 

the surgeries [21, 22]. The study was reported according 

to the Animal Research: Reporting of In Vivo 

Experiments (ARRIVE) guidelines. All animal 

experiments were approved by the Use Committee and 

Animal Protection of China Medical University and 

carried out in accordance with the National Institutes of 

Health Guide for the Care. 

 

Endothelin-1 (ET-1) stroke model 
 

The rat model of cerebral infarction was established by 

intracranial injection of ET-1. The vasoconstrictive 

peptide, ET-1 (Sigma, USA), was dissolved in sterile 

saline at a concentration of 0.5 μg/μL, and 4.5 μL was 

slowly injected (0.5 μl/min) at the following three 

stereotaxic coordinates: 1) AP +3.5 mm, ML +2.8 mm, 

DV −1.0 mm (1.5 μl); 2) AP +2 mm, ML +2.8 mm, DV 

−1.0 mm (1.5 μl); and 3) AP +0.5 mm, ML +2.8 mm, 

DV −1.0 mm (1.5 μl) [23]. The needle was left in situ 

for 3 min after injection before being slowly removed to 

avoid aspirating the ET-1 back through the needle tract 

[24]. The sham animals were injected with saline 

instead of ET-1. 

 

Environmental enrichment (EE) 

 

The groups of sham-operated rats and ischemia rats 

were housed in standard cages (550 × 350 × 200 mm, 

3 to 4 rats in each cage). For the EE group, aged rats 

were placed in a large cage equipped with a running 

wheel, catwalk, playing toys and hiding tunnel. The 

purpose was to offer the animals an opportunity to 

have complex sensorimotor stimulation and motor 

training. Enriched-environment housing began one day 

after ischemia. 

 

5-Bromo-2-deoxyuridine (BrdU) labeling 

 

To label newly generated cells, all rats received two 

intraperitoneal injections of BrdU (100 mg/kg, Sigma–

Aldrich, St. Louis, MO, USA) every day on 

postoperative days 5–6 [25] (Figure 1). 

 

Tapered/ledged beam-walking test 

 

Changes in forelimb function were assessed using a 

tapered/ledged beam [26]. The rats were pre-trained for 

3 days to traverse the beam before ischemia induction. 

Performance in the beam walking test was videotaped 

and later analyzed by calculating the slip ratio of the 

impaired (contralateral to lesion) forelimb (number of 

slips/number of total steps) [22] (postoperative day  

31–32, Figure 1). 

 

Tissue preparation 

 

After the 33 day follow-up, the rats were perfused 

through the heart, and then the brains were dissected 

and fixed. A series of consecutive 40 μm thick sections 

were cut from the anterior brain mass on a cryoknife 

(Thermo Electron, Waltham, MA, USA) for 

immunostaining. 

 

Measurement of infarct volume 

 

Remove from the coronal sections (40 μm) at 1 mm 

intervals from +4.5 to 2.5 mm from the bregma. 

Sections were mounted on slides, air dried, and stained 

with cresol violet (Sigma, St. Louis, MO, USA) [27]. 

Contralateral and ipsilateral hemispheric areas were 

measured using NIH Image J. The complete area of the 

ipsilateral (damaged) hemisphere was subtracted from 
the contralateral hemisphere area of each section, and 

the area was multiplied by the distance between sections 

to obtain the total infarct volume. 



www.aging-us.com 9455 AGING 

Immunohistochemistry 

 

NeuN/BrdU, GFAP/BrdU and Iba-1/BrdU positive 

cells around the infarcted area, DCX/BrdU positive 

cells in the subventricular zone (SVZ) were observed 

by immunofluorescence staining. Immunofluorescence 

staining was performed by free floating method [22]. 

Immunofluorescence staining antibody concentrations 

were as follows: BrdU was detected using sheep anti-

BrdU (1:500), anti-doublecortin (DCX) (1:800), 

mouse anti-neuronal nuclei (NeuN) (1:500), rabbit 

anti-Iba-1 (1:500) or rabbit anti-glial fibrillary acidic 

protein (GFAP) (1:1000). Cell apoptosis was detected 

by TUNEL method according to the instructions of 

Roche apoptosis Kit (In situ cell death detection kit; 

Roche). 

 

Image processing and analysis 

 

Brain sections from +0.96 mm to −0.24 mm at the 

bregma level were taken from each rat, with an 

interval of 6. A total of 5 slices were taken from each 

rat. DCX/BrdU positive cell images were collected in 

the SVZ of the infarcted side with a confocal 

microscope (Leica SP2, FV-1000, Germany) at 20 

times magnification, and counted with NIH Image J 

software. Brain sections from + 1.92 mm to 0.6 mm at 

the bregma level were taken from each rat, with an 

interval of 6. A total of 5 slices were taken from each 

rat. BrdU/NeuN, BrdU/GFAP and BrdU/Iba-1 

positive cells were collected in the cortex around the 

infarct with a confocal microscope (Olympus FV-

1000, Japan) at a magnification of 100 times and 40 

times respectively, and counted with NIH Image J 

software. Brain sections from −3.0 mm to −3.96 mm 

at the level of bregma were taken from each rat, with 

an interval of 6. A total of 4 slices were taken from 

each rat. Brain sections from + 1.92 mm to 0.6 mm at 

the bregma level were taken from each rat, with an 

interval of 6. A total of 5 slices were taken from each 

rat. TUNEL positive cell images were collected in the 

cortex around the infarct with a microscope at a 

magnification of 20 times, and counted with NIH 

Image J software. The results were expressed as the 

mean per high power field (HPF). 

 

Statistics 

 

SPSS version 25.0 was used for the statistical  

analysis. Data were presented as the mean ± SD. All 

data were analyzed using one-way ANOVA. Use the 

least significant difference (LSD) post hoc test to 

analyze statistical differences between groups. P < 

0.05 was considered a statistically significant 

difference. 

 

Availability of data and materials 

 

The original contributions proposed in the study are 

included in the articles/supplementary materials and can 

be further inquired from the corresponding authors. 
 

RESULTS 
 

Operation 

 

Four rats (25%) died after ET-1 lesions, which were 

excluded from further evaluation. All survived rats 

show the symptoms of neurological impairment which 

were observed for circling behavior if pulled gently by 

the tail. All sham-operated rats survived. So there were 

6 rats in each ISC and EE group. 

 

Infarct volumes measurement 

 

Typical ET-1 induced ischemic infarction includes 

extensive cortical damage. There was no significant 

difference in cerebral infarction volume between ISC 

group (58.2 ± 6.2 mm3) and EE group (53.4 ± 7.2 mm3) 

(P > 0.05). 

 

 
 

 

Figure 1. Study design. The arrows indicate the timing of pre-training, induction of stroke, BrdU labeling, environmental enrichment 

treatment, behavioral testing and sacrifice. 
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Effect of EE on the proliferation and survival of new 

cells in the SVZ of the aged rats after cerebral 

ischemia 

 

EE enhanced the proliferation of newborn neurons in 

the SVZ. DCX is a marker of neural precursor cells, and 

BrdU is a marker of cell proliferation. BrdU+/DCX+ 

double labeled cells represent neural precursor cells 

born after ischemia (Figure 2). There was a significant 

overall group effect in the number of the BrdU+/ 

DCX+ cells in the SVZ (F(2,15) = 131.27; P < 0.01). 

BrdU+/DCX+ cells in the SVZ were significantly 

increased in the ISC group compared with the SHAM 

group (18.0 ± 3.5 vs. 8.7 ± 1.4/HPF, P < 0.01). The 

number of BrdU+/DCX+ cells in EE group was higher 

than that in ISC group (33.0 ± 2.6/HPF, P < 0.01). 

 

EE enhanced the long-term survival of newborn 

neurons. NeuN is a marker of mature neural cells, and 

BrdU+/NeuN+ double labeled cells represent mature 

neural cells born after cerebral ischemia. The number of 

cells by BrdU+/NeuN+ double staining can be used to 

observe the survival of newborn neural cells (Figure 3). 

There was a significant overall group effect in the 

number of BrdU+/NeuN+ cells around the infarcted area 

(F(2,15) = 149.33; P < 0.01). The number of 

BrdU+/NeuN+ cells around the infarcted area in the ISC 

group was significantly higher than that in the SHAM 

group (12.3 ± 2.6 vs. 1.7 ± 1.2/HPF, P < 0.01). EE 

further increased the number of BrdU+/NeuN+ cells 

(33.7 ± 4.9/HPF, P < 0.01) around the infarcted area 

after cerebral ischemia. 

 

Effect of EE on the proliferation of GFAP and Iba-1 

in the infarcted area of the aged rats after cerebral 

ischemia 

 

GFAP is a marker of astrocytes and Iba-1 is a marker of 

microglia. The expression of Iba-1 and GFAP can be 

used to observe the effect of EE on microglia and 

astrocytes after cerebral ischemia (Figure 4). EE also 

exerted effects on inflammation after stroke. 

 

There was a significant overall group effect in the 

number of BrdU+/GFAP+ cells around the infarcted area 

(F(2,15) = 192.74; P < 0.01). The number of 

BrdU+/GFAP+ cells around the infarcted area in the ISC 

group was significantly higher than that in the SHAM 

group (23.5 ± 1.6 vs. 4.8 ± 1.5/HPF, P < 0.01). EE 

decreased the number of BrdU+/GFAP+ cells (10.2 ± 

1.9/HPF, P < 0.01) around the infarcted area after 

cerebral ischemia. 

 

 

 
Figure 2. Proliferation of newborn neurons in the SVZ. (A) Representative confocal images for BrdU+/DCX+ cells in the SVZ. Scale bar 

= 100 μm. (B) Quantification of BrdU+/DCX+ cells in the SVZ (n = 6). Statistical significance: *P < 0.01 vs. SHAM, **P < 0.01 vs. ISC.  
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There was a significant overall group effect in the 

number of BrdU+/Iba-1+ cells around the infarcted area 

(F(2,15) = 66.27; P < 0.01). The number of BrdU+/Iba-1+ 

cells around the infarcted area in the ISC group was 

significantly higher than that in the SHAM group (20.7 

± 1.6 vs. 3.7 ± 0.8/HPF, P < 0.01). EE decreased the 

number of BrdU+/Iba-1+ cells (12.5 ± 4.0/HPF, P < 

0.01) around the infarcted area after cerebral ischemia. 

 

EE can significantly inhibit apoptosis of infarcted 

area in aged rats after cerebral ischemia 

 

TUNEL method was used to detect apoptosis around the 

infarcted area (Figure 5). There was a significant overall 

group effect in number of the TUNEL-positive cells 

around the infarcted area (F(2,15) = 305.8; P < 0.01). The 

number of TUNEL positive cells in ISC group was 

higher than that in SHAM group (17.3 ± 1.2 vs. 4.8 ± 

0.8/HPF, P < 0.01). After 4 weeks of EE, TUNEL 

positive cells decreased (7.2 ± 0.8/HPF, P < 0.01). 

 

EE can promote the recovery of motor function in 

aged rats after cerebral ischemia 

 

We also used the beam walking test to detect the 

recovery of motor function in aged rats (Figure 6). In 

the beam-walking test, there was a significant overall 

group effect in slip ratio with the impaired forelimb 

(F(2,15) = 67.22; P < 0.05). The beam walking test 

showed that ischemia could cause significant motor 

function damage in the aged rats in the ISC group (32.3 

± 4.1% vs. 13.5 ± 1.1%, P < 0.01). However, EE could 

reduce the error rate of the forepaw passing through the 

balance beam in aged rats after cerebral ischemia (14.5 

± 3.5%, P < 0.05). 
 

DISCUSSION 
 

In our present study, we found that after intracerebral 

injection of ET-1 induced cerebral infarction, neuroblast 

generation was increased in the SVZ region in aged rats. 

After stroke, EE promoted the production of more 

neuroblasts in SVZ and improved the survival of 

newborn neurons in the peri-infarct area while reducing 

apoptosis. Furthermore, post-stroke rats displayed more 

severe neuroinflammation than those treatment of EE in 

aged rats, implying that EE have anti-inflammation 

properties. More importantly, behavioral assessments 

showed that improved beam walking performance may 

be related to the proliferation of newborn nerve cells. 

Consistent with previous studies, EE did not reduce 

infarct volume in ischemic aged rats [28]. 

 

 

 
Figure 3. The survival of neuroblasts in the peri-infarct cortex. (A) Representative confocal images for BrdU+/NeuN+ cells in the peri-

infarct cortex. Scale bar = 40 μm. (B) Quantification of BrdU+/NeuN+ cells in the peri-infarct cortex (n = 6). Statistical significance: *P < 0.01 
vs. SHAM, **P < 0.01 vs. ISC. 
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Figure 4. Differentiation of neuroblasts in the peri-infarct cortex. (A) Representative confocal images for BrdU+/GFAP+ cells in the 

peri-infarct cortex. Scale bar = 100 μm. (B) Quantification of BrdU+/GFAP+ cells in the peri-infarct cortex (n = 6). Statistical significance: 
*P < 0.01 vs. SHAM, **P < 0.01 vs. ISC. (C) Representative confocal images for BrdU+/Iba-1+ cells in the peri-infarct cortex. Scale bar = 100 μm. 
(D) Quantification of BrdU+/Iba-1+ cells in the peri-infarct cortex (n = 6). Statistical significance: *P < 0.01 vs. SHAM, **P < 0.01 vs. ISC.  

 

 
 

Figure 5. Apoptosis in the peri-infarct cortex. A Representative images for TUNEL-positive cells in the peri-infarct cortex. (A) 
Representative images for TUNEL-positive cells in the peri-infarct cortex. Scale bar = 50 μm. (B) Quantification of TUNEL-positive cells in the 
peri-infarct cortex (n = 6). Statistical significance: *P < 0.01 vs. SHAM, **P < 0.01 vs. ISC. 
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Recent study points that EE upregulated BDNF 

expression in the MCAO rats [29], which may contribute 

to increase dendrite branching [30], enhance synapto-

genesis [31], and increase the number of synapses with 

perforated postsynaptic densities [32]. However, those 

studies showed that the positive effects of EE on dentate 

gyrus. To the best of my knowledge, this is the first 

study demonstrated that the number of newly generated 

nerve cells in the SVZ was increased in the aged rats 

after EE compared with ischemic rats. These results 

suggested that newborn neurons after stroke are directed 

to the site of brain injury and participated in brain repair 

and functional recovery. In addition, our study showed 

there were BrdU+/NeuN+cells in the peri-infarct area of 

the aged rats one month after infarct, accompanied by 

more TUNEL-positive cells. The apoptosis of aged brain 

is faster than that of adult brain after stroke, which 

confirms that the apoptosis of new neurons after stroke 

is related to the increase of age [33]. These results 

support the idea that implementing an enriched 

environment after stroke may induce a favorable 

microenvironment for the development of the ischemic 

brain in old age. These results supported the idea that  

EE after stroke may induce a favorable micro-

environment for the development of the aged ischemic 

brain. 

 

Astrocytes are the most abundant of all brain cells [34]. 

In astrocytes, the expression of GFAP and vimentin 

increases with age [35, 36]. Moreover, the astrocytes 

had obvious hypertrophic morphological changes, and 

the cell bodies and protrusions were enlarged. After 

cerebral ischemia, the astrocytes and activated microglia 

around the lesion form glial scars, preventing the 

formation of new axons and blood vessels in the infarct 

area [37]. Histologically, microglia and astrocytes were 

gradually activated in young rats, peaking at days 14 to 

28 and forming glial scars, whereas in older rats they 

responded more quickly, peaking in the first week after 

stroke. However, in terms of behavior, stroke injury was 

more severe in aged rats than in younger rats, and 

functional recovery was weaker [38]. Oligodendrocytes 

are strongly activated during early stage post-infarct 

remodelling in all rats, but this activation persists in 

aged rats [39]. The higher inflammatory response in the 

acute phase of ischemic stroke in aged mice is related to 

more serious neuronal damage and long-term behavioral 

dysfunction [40]. Therefore, the abnormal development 

of glial scar accelerates in aged rats, which is consistent 

with the stagnation of recovery in these animals. These 

results suggest that the transient abnormal neuroglial 

reaction after cerebral ischemia may lead to premature 

formation of scar tissue and hinders the recovery of 

nerve function after cerebral ischemia in aged rats 

[41, 42]. However, the treatment of EE in aged rats can 

reduce the proliferation of microglia and astrocytes and 

promote behavioral rehabilitation, which is consistent 

with previous studies [43, 44]. 

 

 
 

Figure 6. Performance in behavioral tests. Forelimb slip ratio in the beam-walking (n = 6). Statistical significance: *P < 0.01 vs. SHAM, 
**P < 0.05 vs. ISC. 
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The significance limitation of the study is that there is 

no discussion on mechanism. Recently, the MAPK 

pathway has been confirmed to be closely related to the 

inflammatory response in nervous system diseases. 

Studies have confirmed that EE preconditioning can 

have a protective effect on acute ischemic stroke by 

inhibiting p38 MAPK/STAT1 pathway [45]. In 

addition, EE promotes functional recovery after stroke 

by inhibiting calpain 1 activity [46]. Another result 

revealed that the NF-κB/IL-17A signaling pathway 

plays an important role in EE-mediated a favorable 

microenvironment after ischemic stroke [47]. The 

underlying molecular mechanisms would have to be 

determined in our future research. In addition, one 

limitation of this study is that we did not analyze fMRI 

imaging results in elderly ischemic rats, it will analyze 

the role of EE in the recovery of elderly stroke from a 

radiological perspective in terms of structural changes, 

making the research results more meaningful and 

convincing, and can be also used as a longitudinal 

research observation EE in the occurrence and 

development of acute stroke in elderly rats. Another 

limitation of this study is the small number of aged rats 

used in this study. In our future research, it is necessary 

to increase the sample size and the results are likely to 

be more reliable. 

 

In conclusion, this study shows that EE improved post-

stroke recovery on the basis of enhancing neurogenesis 

in aged rats. Overall, these results indicated that EE is a 

practical and effective method to improve post-stroke 

recovery in aged rats. This may clarify the relevant 

mechanisms of modulation of brain plasticity after 

stroke in the elderly at the cellular level, and further 

understand stroke rehabilitation from the perspective of 

transformation. In addition, there are a number of 

clinical trials with stroke survivors that provide initial 

support for implementing EE in terms of increased 

sensory, motor and cognitive function. In the future, 

large sample size clinical studies should be conducted to 

confirm that the efficiency of EE in promoting stroke 

rehabilitation in elderly patients. 
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