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INTRODUCTION 
 

Sepsis is a heterogeneous disease with life-threatening 

organ dysfunction and a high fatality rate that is brought 

on by a dysregulated host response to infection [1]. 

Around 20% of deaths worldwide yearly are attributed 
to sepsis [2], which continues to be the leading cause of 

death globally. Despite accumulated tough attempts 

involving rapid control of infection, hemodynamic 

stabilization and organ support to treat septic patients, 
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ABSTRACT 
 

Objective: Compelling evidence has demonstrated that Xuebijing (XBJ) exerted protective effects against SIMI. 
The aims of this study were to investigate whether TLR4/IKKα-mediated NF-κB and JAK2/STAT3 pathways were 
involved in XBJ's cardio-protection during sepsis and the mechanisms. 
Methods: In this study, rats were randomly assigned to three groups: Sham group; CLP group; XBJ group. Rats 
were treated with XBJ or sanitary saline after CLP. Echocardiography, myocardial enzymes and HE were used to 
detect cardiac function. IL-1β, IL-6 and TNF-α in serum were measured using ELISA kits. Cardiomyocyte 
apoptosis were tested by TUNEL staining. The protein levels of Bax, Bcl-2, Bcl-xl, Cleaved-Caspase 3, Cleaved-
Caspase 9, Cleaved-PARP, TLR4, p-NF-κB, p-IKKα, p-JAK2 and p-STAT3 in the myocardium were assayed by 
western blotting. And finally, immunofluorescence was used to assess the level of p-JAK2 and p-STAT3 in heart 
tissue. 
Results: The results of echocardiography, myocardial enzyme and HE test showed that XBJ could significantly 
improve SIMI. The IL-1β, IL-6 and TNF-α levels in the serum were markedly lower in the XBJ group than in the 
CLP group (p<0.05). TUNEL staining's results showed that XBJ ameliorated CLP-induced cardiomyocyte 
apoptosis. Meanwhile, XBJ downregulated the protein levels of Bax, Cleaved-Caspase 3, Cleaved-Caspase 9, 
Cleaved-PARP, TLR4, p-NF-κB, p-IKKα, p-JAK2 and p-STAT3, as well as upregulated the protein levels of Bcl-2, 
Bcl-xl (p <0.05). 
Conclusions: In here, we observed that XBJ's cardioprotective advantages may be attributable to its ability to 
suppress inflammation and apoptosis via inhibiting the TLR4/ IKKα-mediated NF-κB and JAK2/STAT3 pathways 
during sepsis. 
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clinical trials of intervention therapies have failed to 

yield promising results [3–5]. Sepsis induced 

myocardial injury (SIMI) is a common and severe 

complication of the multi-organ dysfunction followed 

by sepsis, although it is rarely the first to manifest. In 

the intensive care unit (ICU), septic cardiomyopathy 

continues to be a challenging obstacle to surmount; 

patients typically present with ventricular dilatation, 

decreased ventricular contractility, and right and left 

ventricular dysfunction [6, 7]. Of note, SIMI is the 

leading cause of death in ICU. A meta-analysis of 

clinical cases revealed that SIMI was significantly 

correlated with higher 1-month mortality in sepsis 

patients and increased in-hospital mortality in patients 

with hospital stays longer than 10 days [8]. Currently, a 

significant problem in the clinical management of sepsis 

is that there is no viable preventative and therapy 

method for SIMI. In order to find appropriate clinical 

treatment options, we need to better comprehend  

the pathophysiological mechanisms relating to the 

occurrence and management of SIMI. 

 

Apoptosis is thought to play an important role in sepsis-

induced organ failure and immune dysregulation [9, 

10]. Previous researches on SIMI have confirmed the  

cardio-protection effects of anti-apoptosis in sepsis,  

too [11, 12]. As a result, it is imperative that 

cardiomyocyte apoptosis is one element of the 

promising therapeutic strategies for patients with SIMI. 

It is shown that the activation of TLR4/NF-κB and 

JAK2/STAT3 pathways induced apoptosis and 

inflammation during sepsis [13]. Researches have also 

suggested that inhibiting the TLR4/NF-κB and 

JAK2/STAT3 pathways protects the heart in septic  

rat model [14, 15]. Therefore, resisting apoptosis  

by inhibiting the activation of TLR4/NF-κB and 

JAK2/STAT3 signaling pathways may have clinical 

benefits for patients who suffer from sepsis induced 

myocardial dysfunction. 

 

The Chinese Food and Drug Administration (Beijing, 

China, Number Z20040033) approved XueBiJing 

(XBJ), a Chinese herbal remedy, in 2004 for the clinical 

treatment of sepsis [16]. The four primary biological 

functions of immunity, apoptosis, inflammation, and 

coagulation have been found in XBJ, a drug used to 

treat sepsis [17, 18]. In clinical settings, XBJ has been 

shown to improve pneumonia severity index and severe 

community-acquired pneumonia [19], as well as 

complications in patients with sepsis [16, 20]. 

Furthermore, XBJ was found to ameliorate the organ 

dysfunction caused by sepsis in the septic rat model [21, 

22]. Currently, it can be established that XBJ has a 
potentially protective effect on SIMI [23]. However, it 

is unknown whether XBJ can prevent SIMI by blocking 

the activation of the TLR4/NF-B and JAK2/STAT3 

pathways, which provoke apoptosis. Despite the fact 

that finding a cure for SIMI is a nearly insurmountable 

job, we have been striving towards one since the disease 

was discovered. In this study, we sought to explore 

whether XBJ influences apoptosis in septic rat exposed 

to CLP through the TLR4/IKKα-mediated NF-κB and 

JAK2/STAT3 pathways, which may be considered as a 

prospective molecular target for prevention and therapy 

of SIMI. The study workflow is illustrated in Figure 1. 

 

RESULTS 
 

XBJ alleviated the myocardial damage in CLP-

induced sepsis rat model 

 

First, the cardiac functional state of CLP-induced sepsis 

rat model was evaluated by echocardiography (Figure 

2B), and the results of the analysis were used to derive 

the two cardiac function indexes, LVFS (Figure 2C) and 

LVEF (Figure 2D), respectively. When compared to the 

Sham group, the CLP group's ejection fraction and 

shortening fraction were both significantly lower 

(p<0.05). While XBJ markedly enhanced cardiac 

function in the CLP-treated rat, as evidenced by 

increased LVFS and LVEF (p<0.05). In addition, HE 

staining of heart tissues was performed for exploring the 

role of XBJ in preventing the CLP-mediated myocardial 

injury. The CLP group had loose and light staining 

(interstitial edema) in the myocardium of the CLP-

treated rat as opposed to the normal morphology of 

myocardial cells in the Sham group, and XBJ alleviated 

these pathological abnormalities in the myocardium of 

the CLP-treated rat (Figure 2A). To measure the 

concentrations of LDH (Figure 2E), CK (Figure 2F), 

and cTnI (Figure 2G) in rat serum, biochemical analysis 

was carried out. These three myocardial injury markers 

changed in a way that was consistent with the findings 

of the HE staining. As shown in our results, the LDH, 

CK, and cTnI levels in the serum were significantly 

higher in the CLP group than in the Sham group 

(p<0.05), whereas they were markedly lower in the XBJ 

group than in the CLP group (p<0.05). These results 

suggested that XBJ developed a protective role on 

myocardial damage in CLP-treated rat. 

 

XBJ reduced the inflammation in CLP-induced 

sepsis rat model 

 

There are a lot of pro-inflammatory cytokines in the 

blood circulation when the body is subjected to sepsis. 

To assess the effect of XBJ on inflammatory responses 

in CLP-treated rat, the levels of TNF-α (Figure 2H), IL-

1β (Figure 2I) and IL-6 (Figure 2J) in the peripheral 

blood were detected by ELISA. Relative to Sham group, 

CLP group had remarkable increased TNF-α, IL-1β and 

IL-6 serum levels, with the differences being of 
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statistical significance (p<0.05). Furthermore, the serum 

levels of TNF-α, IL-1β, and IL-6 in the CLP-treated rat 

were remarkably decreased under the therapy of XBJ 

(p<0.05). These results revealed that XBJ reduced the 

excessive inflammatory response in CLP-treated rat. 

 

XBJ interacted with JAK2/STAT3 signaling pathway 

directly 

 

XBJ injection is known to have five key pharmacological 

components: Paeoniae Radix Rubra, Angelicae Sinensis 
Radix, Carthami Flos, Salviae Militiorrhizae Radix et 

Rhizuma and Chuanxiong Rhizuma. We selected the 

monomers corresponding to these five pharmacological 

components for molecular docking with JAK2/STAT3 

signaling pathway through the Autodock Vina docking 

procedure. As our docking results suggested, the binding 

energies of complexes for paeoniflorin-JAK2, Succinic 

acid-JAK2, Quercetin-JAK2, Naringenin-JAK2, Ferulic 

acid-JAK2, paeoniflorin-STAT3, Succinic acid-STAT3, 

Quercetin-STAT3, Naringenin-STAT3, and Ferulic acid-

STAT3 were -7.9 kcal/mol, -4.2 kcal/mol, -7.4 kcal/mol, 

-8.3 kcal/mol, -6.3 kcal/mol, -6.9 kcal/mol, -4.2 kcal/mol, 

-7.3 kcal/mol, -7.7 kcal/mol and -5.9 kcal/mol, 

respectively. We also presented the molecular structure 

of the monomers corresponding to the five components 

of XBJ in Figure 3A–3E. Furthermore, the 3D binding 

conformational structure for the paeoniflorin-JAK2 

complex showed that a total of 3 hydrogen bonds were 

formed of paeoniflorin with ARG-938, ASN-981 and 

GLY-996 of JAK2 (Figure 3F). There are 5 hydrogen 

 

bonds that were formed of Succinic acid with ARG-980, 

ASN-981, ASP-994, GLY-996 and LEU-997 of JAK2 in 

the 3D crystal structure for the Succinic acid-JAK2 

complex (Figure 3G). There are 5 hydrogen bonds that 

were formed of Quercetin with THR-998, TYR-1021, 

ARG-980, ARG-938 and LEU-997 of JAK2 in the 3D 

crystal structure for the Quercetin-JAK2 complex (Figure 

3H). There are 4 hydrogen bonds that were formed of 

Naringenin with ARG-938, LEU-855, LEU-997 and 

THR-998 of JAK2 in the 3D crystal structure for the 

Naringenin-JAK2 complex (Figure 3I). There are 4 

hydrogen bonds that were formed of Ferulic acid with 

ARG-938, LEU-997, THR-998 and ASN-981 of JAK2 in 

the 3D crystal structure for the Ferulic acid-JAK2 

complex (Figure 3J). There are 3 hydrogen bonds that 

were formed of paeoniflorin with ASN-647, LYS-658 

and GLN-644 of STAT3 in the 3D crystal structure for 

the paeoniflorin-STAT3 complex (Figure 3K). There 

are 5 hydrogen bonds that were formed of Succinic 

acid with LYS-370, ASP-369, HIS-437, LEU-438 and 

ASP-371 of STAT3 in the 3D crystal structure for the 

Succinic acid-STAT3 complex (Figure 3L). There are 

4 hydrogen bonds that were formed of Quercetin with 

PRO-333, GLN-326, GLN-247 and ASN-257 of 

STAT3 in the 3D crystal structure for the Quercetin- 

STAT3 complex (Figure 3M). There are 3 hydrogen 

bonds that were formed of Naringenin with SER-540, 

TYR-539 and THR-526 of STAT3 in the 3D crystal 

structure for the Naringenin-STAT3 complex (Figure 

3N). There are 4 hydrogen bonds that were formed of 

Ferulic acid with ASP-334, GLN-326, GLU-324 and 

 
 

Figure 1. Workflow of the present study in a graphical manner. 
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Figure 2. Effects of XBJ on myocardial damage and inflammation in rat after CLP. (A) Pathological changes of myocardial tissues 

under HE staining (200×). (B) Representative echocardiographic images. (C, D) Quantification of LVFS and LVEF via echocardiography. (E–G) 
XBJ improved myocardial dysfunction in rat after CLP: Serum levels of LDH (E), CK (F) and cTnI (G) detected by automated biochemical 
analyzer. (H–J) XBJ alleviated the myocardial inflammation in rat after CLP: Serum levels of TNF-α (H), IL-1β (I) and IL-6 (J) detected by ELISA. 
Data are expressed as mean ± SD (n = 6/group), # indicates p<0.05 (vs. Sham group), * indicates p<0.05 (vs. CLP group). 
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GLN-247 of JAK2 in the 3D crystal structure for the 

Ferulic acid-JAK2 complex (Figure 3O). In this study, 

JAK2 and STAT3's protein-ligand binding sites were 

found in the inhibitor-binding domain. These results 

supported the interaction between XBJ and 

JAK2/STAT3 signaling pathway. 

 

XBJ inhibited the expression of phosphorylated 

JAK2 and STAT3 proteins in CLP-induced sepsis 

rat model 

 

After verifying that XBJ protects against cardiac injury, 

and excessive inflammation in rat after CLP condition, 

we looked into how XBJ influences the activation of 

JAK2/STAT3 pathways. On the one hand, western 

blotting was performed to detect phosphorylation levels 

of proteins in the JAK2/STAT3 pathways. p-JAK2 

(Figure 4A, 4B), and p-STAT3 (Figure 4A, 4C) 

expression levels in the CLP group were obviously 

higher than those in the Sham group, however the 

application of XBJ blocked the high expression 

(p<0.05). On the other hand, immunofluorescence was 

subjected to pinpoint where the JAK2/STAT3 pathway 

was phosphorylated in the heart tissue. p-JAK2 (Figure 

4D) and p-STAT3 (Figure 4E) mainly accumulated on 

cardiomyocyte in the CLP group, whereas the 

pretreatment with XBJ lessened their levels (p<0.05). 

These results demonstrated that XBJ repressed the 

phosphorylation levels of JAK2/STAT3 pathways in 

CLP-treated rat. 

 

 
 

Figure 3. The interaction between the five monomer components of XBJ and JAK2/STAT3 signaling pathway. (A–E) The 
molecular structure of the monomers corresponding to the five components of XBJ: paeoniflorin (A), Succinic acid (B), Quercetin (C), 
Naringenin (D) and Ferulic acid (E). (F–O) 3D crystal structure for paeoniflorin-JAK2 complex (F), Succinic acid-JAK2 complex (G), Quercetin-
JAK2 complex (H), Naringenin-JAK2 complex (I), Ferulic acid-JAK2 complex (J), paeoniflorin-STAT3 complex (K), Succinic acid-STAT3 complex 
(L), Quercetin-STAT3 complex (M), Naringenin-STAT3 complex (N), and Ferulic acid-STAT3 complex (O). 
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XBJ inhibited the expression of phosphorylated 

TLR4, NF-κB and IKKα proteins and suppressed 

the cardiomyocyte apoptosis in CLP-induced sepsis 

rat model 

 

We looked further into how XBJ influences the activation 

of TLR4/NF-κB/IKKα pathways. Western blotting was 

performed to detect phosphorylation levels of proteins in 

the TLR4/NF-κB/IKKα pathways. TLR4 (Figure 5A, 

5B), p-NF-κB (Figure 5A, 5C) and p- IKKα (Figure 5A, 

5D) expression levels in the CLP group were obviously 

higher than those in the Sham group, however the 

application of XBJ blocked the high expression (p<0.05). 

Activation of apoptosis plays an important role in 

myocardial injury in sepsis. The expression of 

proapoptotic proteins (Bax, Cleaved-Caspase 3, Cleaved-

Caspase 9, and Cleaved-PARP) and antiapoptotic 

proteins (Bcl-2 and Bcl-xl) was tested using western 

blotting to evaluate the impact of XBJ on CLP-mediated 

cardiomyocyte apoptosis. In the CLP group, apoptosis-

related proteins Bax (Figure 5A, 5E), Cleaved-Caspase 3 

(Figure 5A, 5H), Cleaved-Caspase 9 (Figure 5A, 5I), and 

Cleaved-PARP (Figure 5A, 5J) had dramatically higher 

expression levels, but Bcl-2 (Figure 5A, 5F) and Bcl-xl 

(Figure 5A, 5G) had sharply lower expression levels 

(p<0.05). However, injection of XBJ reversed changes of 

these apoptosis-related proteins in the myocardium of 

CLP-treated rat (p<0.05). Additionally, we used TUNEL 

staining (Figure 5K) to observe that the CLP group's 

cardiomyocyte apoptosis was clearly apparent when 

compared to the myocardial structure of the Sham group. 

However, treatment with XBJ significantly improved 

CLP-induced cardiomyocyte apoptosis. These results 

indicated that XBJ suppressed the cardiomyocyte 

apoptosis brought on by CLP in rat. 

 

DISCUSSION 
 

One of the main illnesses that represent a grave hazard 

to people's health all around the world is sepsis, a 

potentially lethal host reaction to infection that results in 

organ failure. Myocardial injury is one of the most 

common side effects and a key factor of fatalities in 

septic patients. It was reported that apoptosis and

 

 
 

Figure 4. Effects of XBJ on JAK2/STAT3 signaling pathway. (A) Representative images of western blotting for p-JAK2, JAK2, p-STAT3 

and STAT3 in vivo (GAPDH was used as the internal reference protein). (B, C) Relative intensity of p-JAK2/JAK2 (B) and p-STAT3/STAT3 (C) 
was analyzed by western blotting. (D, E) Representative images of the protein expressions of p-JAK2 and p-STAT3 in myocardial tissue were 
detected by immunofluorescence localization. Positive p-JAK2 (D) and p-STAT3 (E) cells were stained green, with the sections 
counterstained with DAPI to visualize nuclei (blue). Data are expressed as mean ± SD (n=3/group), # indicates p<0.05 (vs. Sham group), * 
indicates p<0.05 (vs. CLP group). 
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inflammatory storms have a role in the patho-

physiological mechanisms of SIMI [24]. Compelling 

evidence from clinical or basic research has 

demonstrated that XBJ exerted protective effects against 

sepsis. So, we designed this experiment to explore the 

underlying mechanisms of XBJ protects against SIMI. 

CLP is known to be the gold standard for simulating 

sepsis models in in vivo experiments [25]. In our study, 

we induced sepsis in rats with CLP to mimic the clinical 

context of patients with sepsis. There is one highlight: 

The protective effect of XBJ on SIMI may play an anti-

apoptotic and anti-inflammatory role by regulating 

TLR4/IKKα-mediated NF-κB and JAK2/STAT3 

signaling pathways. Figure 6 illustrates these three 

components, which will serve as the central concepts of 

this article. 

Sepsis is an inflammatory condition that associates with 

the initialization of exogenous pathogen-associated 

molecular patterns (PAMPs) and endogenous damage-

associated molecular patterns (DAMPs) [26]. Similarly, 

Potential candidates responsible for septic cardio-

myopathy include PAMPs and DAMPs [27]. 

Furthermore, DAMPs may contribute to myocardial cell 

and tissue injury during sepsis [28]. The action of 

inflammatory factors (such as TNF-α, IL-1β, IL-6, etc.), 

mitochondrial dysfunction, reactive oxygen species 

mediated oxidative stress and cardiomyocyte apoptosis 

are some of the plausible explanations in the 

progression of SIMI [29–32]. The pathogenesis of SIMI 

is extremely intricate. By reviewing previous studies, 

Wang, Jie et al. proposed to classify cardiac dysfunction 

in sepsis patients based on hemodynamic alterations: 

 

 
 

Figure 5. Effects of XBJ on apoptosis-related proteins and TLR4/NF-κB/IKKα signaling pathway. (A) Representative images of 
western blotting for TLR4, p-NF-κB, NF-κB, p-IKKα, Bax, Bcl-2, Bcl-xl, Cleaved-Caspase 3, Cleaved-Caspase 9 and Cleaved-PARP in vivo (GAPDH 
was used as the internal reference protein). (B–J) Relative intensity of TLR4 (B), p-NF-κB/NF-κB (C), p-IKKα (D), Bax (E), Bcl-2 (F), Bcl-xl (G), 
Cleaved-Caspase 3 (H), Cleaved-Caspase 9 (I) and Cleaved-PARP (J) was analyzed by western blotting. Data are expressed as mean ± SD 
(n=3/group), # indicates p<0.05 (vs. Sham group), * indicates p<0.05 (vs. CLP group). (K) Representative images show apoptosis of heart 
tissue was detected with TUNEL staining. 
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left ventricular systolic insufficiency, left ventricular 

diastolic insufficiency, right ventricular systolic 

insufficiency, right ventricular diastolic insufficiency, 

or mixed cardiac alterations [33]. In this way, it seems 

like SIMI is characterized by a compromised left 

ventricular systolic function. The advantage of echo-

cardiography is that it is relatively simple to assess 

cardiac function with noninvasive techniques [34]. So, 

to assess the status of rats' cardiac function, we choose 

to use LVEF in combination with LVFS. Consistent 

with previous study [35], our findings suggested that 

CLP-induced septic rats had significantly impaired left 

ventricular systolic function as evidenced by decreased 

LVEF and LVFS. Additionally, the cut-off threshold for 

aberrant LVEF has been established by numerous 

research to range between 40% and 50% [34]. In our 

study, the decrease of LVEF level in the CLP group was 

statistically significant when compared to the Sham 

group even though it was not below the lower limit of 

normal (50%). One theory to support this result is that, 

due to drastically diminished afterload during sepsis, 

when septic shock develops, LVEF can remain to be 

normal despite severely compromised intrinsic left 

ventricular contractility [36, 37]. Two XBJ components, 

paeoniflorin and hydroxy saffron yellow A, have 

reportedly been shown to lessen sepsis-caused cardiac 

dysfunction in previous research [38], which is in line 

with the results of the present study. Our data revealed 

that LVEF and LVFS dramatically increased after 

treatment with XBJ as compared to the CLP group, 

indicating that XBJ restored cardiac function in sepsis-

affected rats. Taken together, XBJ was effective in 

preventing cardiac dysfunction brought on by sepsis. 

 

Additionally, the pathophysiological processes of SIMI 

also involve injured cardiomyocytes and cardiomyocyte 

inflammatory storms. One of the gold standards for 

determining myocardial damage in clinical settings is 

the serological examination of cTn [39]. It has been 

proposed that cTn have the potential to assess cardiac 

function in patients with SIMI [40]. Serum cTnI is also 

a highly specific and sensitive biomarker of myocardial 

injury [41]. In addition to the feedback given by serum 

cTnI levels, the severity of myocardial injury is also 

reflected by the serum activity of cardiac enzymes. It is 

known that cardiac enzymes are mostly located in heart 

muscle cells. When heart muscle is injured, proteins 

from heart muscle cells termed cardiac enzymes, like 

those of AST, LDH, CK, and CK-MB, are released into 

the bloodstream [42]. Numerous studies have shown 

that increased LDH, CK, and cTnI concentrations may 

reflect not only ischemic heart disease but also 

myocardial injury in non-cardiogenic diseases such as 

sepsis [43–45]. Therefore, in this study, we detected the

 

 
 

Figure 6. The potential protective mechanisms of XBJ in SIMI caused by CLP. 
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cardiac biomarkers LDH, CK, and cTnI in rat serum to 

determine sepsis-mediated myocardial damage. The 

activation of DAMPs in rats that indicates the structural 

damage to cardiac myocytes may be the reason why we 

discovered that serum levels of LDH, CK, and cTnI 

were significantly higher in rats after CLP; but when 

XBJ was administered to septic rats, the levels of LDH, 

CK, and cTnI in the serum greatly reduced, thereby 

lessening the myocardial injury. DAMPs perpetuate 

organ damage, the cytokine storm, and the 

inflammatory response in sepsis [46]. The potential of 

TNF-α, IL-1β, and IL-6 as biomarkers for patients with 

sepsis has been proposed, and the combined test of the 

three has an excellent predictive value in individuals 

with sepsis-induced cardiomyopathy [47, 48]. Several in 

vivo research have revealed that CLP is an intervention 

that induces the release of significant amounts of TNF-

α, IL-1β, and IL-6 into the bloodstream [49, 50]. In our 

study, the same conclusion was drawn. These results 

suggest that sepsis-induced myocardial suppression may 

be closely related to the stimulation of inflammatory 

factors leading to cardiomyocyte inflammation. In 

addition, we discovered that XBJ treatment significantly 

decreased TNF-α, IL-1β, and IL-6 serum levels in septic 

rat when compared to the CLP group. Jiang et al. 

demonstrated that XBJ had an anti-inflammatory impact 

in sepsis [22], which accounts for the discrepancy in our 

data between the CLP and XBJ groups. Thus, we 

hypothesize that XBJ's suppression of myocardial cell 

inflammatory outbreak may be responsible for its 

improvement in SIMI. 

 

Apoptosis is a major step of sepsis-induced multiple 

organ failure, which is involved in the development and 

progression of lethal sepsis [51]. One of the main 

features in the pathophysiological process of SIMI is the 

sepsis-induced cardiomyocyte apoptosis. According to 

existing reports, myocardial apoptosis has been 

observed in CLP-induced sepsis models with patho-

physiological changes of cardiac dysfunction and 

myocardial injury [11, 35, 52]. Bax, a member of the 

Bcl-2 family proteins, is a pro-apoptotic protein. A 

relatively new hypothesis regarding apoptosis was put 

forth in a recent article: forcible interplay of Bax with 

DRP1 causes it to relocate to the mitochondria, 

accumulate in apoptotic foci, activate the permeability 

of the mitochondrial outer membrane, and undergo 

mitochondrial remodeling that results in apoptosis [53]. 

Furthermore, Cytochrome c is released from mito-

chondria when Bax is located there, which triggers the 

induction of apoptosis [54]. Bcl-2 and Bcl-xl, other 

members of the Bcl-2 family proteins, are anti-apoptotic 

proteins. When activated Bax and Bak's BH3  
structural domains are bound by anti-apoptotic proteins, 

heterodimers are created that decrease the permeability 

of the mitochondrial membrane and prevent apoptosis 

[55]. The primary mediator of programmed cell death is 

caspases. Foremost, caspase-3 is a death protease that is 

regularly activated and catalyzes the precise cleavage of 

numerous essential cellular proteins [56]. Of note, 

Caspase-3 is activated and triggers apoptosis under the 

direct control of apoptotic stimulators or the indirect 

control of mitochondrial cytochrome c release [56]. As 

an upstream signal for Caspase-3, Caspase-9 is 

activated by stimulation of cytochrome C and apoptotic 

vesicles [57]. Interestingly, Caspase-9 is required to 

activate Bax, which induces apoptosis during infection 

[58]. The apoptotic process is similarly mediated by 

Caspase-3's cleavage of PARP [59]. In vivo studies have 

proven the cardioprotective role of anti-apoptosis during 

sepsis and highlighted the engagement of Bax, Bcl-2, 

Bcl-xl, Caspase 3, and Caspase 9 in sepsis-induced 

cardiomyocyte apoptosis [11, 60]. In rat cardiac tissue 

following CLP, we noticed high expression of Cleaved-

Caspase 3, Cleaved-Caspase 9, and Cleaved-PARP and 

low expression of Bcl-2 and Bcl-xl. XBJ treatment, 

however, prevented this myocardial apoptosis. 

Therefore, XBJ's suppression of myocardial cell 

apoptosis also may be responsible for its improvement 

in SIMI. Although we discovered that sepsis-mediated 

cardiomyocyte damage may be mostly caused by 

inflammation and apoptosis in the present study, the 

regulatory mechanisms need to be further investigated. 

 

Nuclear factor-kappa B (NF-κB)-regulated down-

stream genes have been found, such as cytokines, 

chemokines, and immune receptors that regulate 

apoptosis, immune cell differentiation, proliferation, 

antioxidant stress response, and signal transduction 

[61–63]. It is well discussed that the regulation of NF-

κB pathway and how this pathway is involved in 

immune response and as the potential therapeutic 

target for inflammation-related disease and cancers 

[64]. In recent years, a growing number of studies 

have found that the TLR4/NF-B signaling pathway is 

involved in the pathogenic mechanisms of sepsis [65, 

66]. NF-κB is known to exhibit pro-apoptotic effects 

in certain stimulated cell environments [67]. Inhibition 

of cardiomyocyte apoptosis mediated by NF-κB 

signaling pathway has a potential protective effect on 

sepsis induced cardiomyopathy [68]. Additionally, it 

has been suggested that the surge of inflammatory 

response during sepsis is dependent on the activation 

of NF-κB signaling pathway [50]. TLRs are expressed 

by cells of the innate immune system, monitor and 

recognize a variety of different disease-associated 

molecular patterns (PAMPs), and are the body's initial 

barrier against infectious diseases. TLR4 is a trans-

membrane protein that recognizes Gram-negative 
lipopolysaccharide (LPS). The LPS/TLR4 signaling 

pathway may induce massive inflammation and lead to 

sepsis [69]. The absence of TLR4, a classic upstream 
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target of phosphorylated NF-κB signaling pathway, 

ameliorates sepsis-induced organ damage by down-

regulating activated inflammatory and apoptosis-

associated proteins [70]. The TLR4-mediated NF-κB 

signaling pathway has been extensively reported to be 

involved in the pathophysiological mechanisms of 

SIMI [14, 71]. Phosphorylation of IKKα is critical for 

activation of the non-canonical NF-κB signaling 

pathway [64]. Meanwhile, phosphorylated IKKα 

signal has the potential to regulate the canonical NF-

κB signaling pathway. In addition, the activation of 

TLR4-mediated NF-κB signaling pathway was 

suggested to be positively correlated to inflammation 

and apoptosis during sepsis induced organ dysfunction 

[13]. As a result, it is crucial to emphasize the 

potential molecular mechanisms of the TLR4/IKKα-

mediated NF-κB signaling pathway that may be 

involved in the inflammatory response and apoptosis 

during the pathophysiology of sepsis. Finally, the 

efficacy and pharmacological mechanisms of XBJ for 

the treatment of sepsis have been demonstrated, with 

the anti-inflammatory effects of XBJ on sepsis through 

targeting the TLR4/NF-κB signaling pathway being 

particularly well elaborated [20]. And XBJ can protect 

cardiac function from CLP challenges [38]. Thus, the 

findings revealed that XBJ can mitigate SIMI by 

suppressing the TLR4/IKKα mediated NF-κB 

signaling pathway, which is in accordance with our 

data.  

 

Janus kinase 2 (JAK2)/signal transducer and the 

activator of transcription 3 (STAT3) pathway are 

widely engaged in inflammation, immune regulation, 

cell differentiation, apoptosis and proliferation [72–74]. 

After acute or chronic systemic inflammation, the 

JAK2/STAT3 pathway is closely associated with 

regeneration of the heart, lung, liver, and kidney tissues 

in lipopolysaccharide (LPS)-induced mice [75]. In 

addition, the JAK2/STAT3 pathway plays a role in the 

onset and progression of sepsis [76]. JAK2, a member 

of the intracellular non-receptor tyrosine kinase family, 

transmits signals for cytokine production via the 

JAK2/STAT3 signaling pathway. The JAK2/STAT3 

signaling pathway mediates IL-6 during sepsis and 

delivers it to particular effector cells, which are 

ultimately destroyed [77]. STAT3 is a transcriptional 

activator that responds to cytokines and growth factors 

and plays a key role in many cellular processes, such as 

cell growth and apoptosis [78]. Previous studies have 

shown that the activated JAK2/STAT3 signaling 

pathway can trigger the release of pro-inflammatory and 

pro-apoptotic proteins during sepsis [13, 74]. The 

inactivation of JAK2/STAT3 signaling pathway is a 

therapeutic target for sepsis through regulating 

inflammation [79]. In the cardiac tissue of septic rat 

exposed to CLP, the JAK2/STAT3 signaling pathway 

was frequently highly upregulated together with 

cardiomyocyte apoptosis and inflammation [15]. Our 

study demonstrates that JAK2/STAT3 signaling is 

essential for the development of SIMI, as evidenced by 

the high expression of p-JAK2 and p-STAT3 in CLP 

group. Also, as previously mentioned, XBJ can improve 

sepsis via reducing cardiomyocyte apoptosis and 

inflammation. Hence, it’s well established that XBJ can 

mitigate SIMI by blocking the activation of 

JAK2/STAT3 signaling pathway from this study. 
 

The research presents a few constraints in addition to 

above results. Initially, we examined the efficacy of 

XBJ for SIMI at a single time point (at 5d after CLP); 

however, whether this is the most appropriate time span 

for therapy is still up for debate. Furthermore, as XBJ 

has a variety of pharmacological effects, it is yet 

unknown if there are any other mechanisms that could 

shield it from SIMI caused by CLP. Lastly, our 

experimental model mostly uses adult rats (6-8 weeks), 

whereas clinical patients with sepsis have a wide range 

of ages and are primarily elderly. As a result, our 

findings may only provide certain tips for the treatment 

of young clinical patients. 

 

CONCLUSIONS 
 

In here, we enriched the potential molecular 

mechanisms of XBJ in SIMI. In our study, XBJ was 

observed to improve cardiac function and myocardial 

injury in rats suffering from CLP challenge, which was 

associated with inhibition of cardiomyocyte apoptosis 

and inflammation. Meanwhile, our findings elucidate 

the underlying mechanisms of XBJ on sepsis-induced 

cardiomyocyte apoptosis and inflammation based on 

NF-κB and JAK2/STAT3 pathways. Our experiment 

once again demonstrated the clinical value of XBJ in 

the application of SIMI from the molecular level. 

However, rat’s CLP-incurred sepsis model can’t 

completely simulate the clinical condition of patients. 

So, the positive treatment of XBJ for SIMI in our study 

needs further experimental investigations associated 

with clinical trials.  

 

MATERIALS AND METHODS 
 

Animals 
 

All animal procedures followed the guidelines 

established by the Ningxia Medical University Animal 

Protection Committee and were approved by the 

General Hospital of Ningxia Medical University's 

Ethics Committee (Yinchuan, China). Adult (6 - 8 
weeks) male Sprague Dawley (SD) rats (weight 220 ± 

20 g) were purchased from and housed at the Ningxia 

Medical University laboratory animal center. Rats 
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were raised in plastic cages with temperature and 

humidity-controlled room (22.8 ± 2.0° C and 50%  

~ 60%, respectively) with a 12/12 hours light/dark 

cycle for 7 days to adjust to the environment. The rats 

were kept in groups (3 per cage), supplied tap water, 

and supplied a standard rat chow diet, unlimited. All 

experimental procedures in this study were in 

accordance with the National Institutes of Health's 

Guide for the Care and Use of Laboratory Animals. 

 

Molecular docking 

 

The main monotone components of each drug in XBJ 

were selected for molecular docking. First, Succinic 

acid, Quercetin, Ferulic acid, paeoniflorin and 

Naringenin of the 2D structure were obtained from the 

PubChem database (https://pubchem.ncbi.nlm.nih.gov/), 

then the 2D structure import Chem3D software for 3D 

structure, and saved as mol2 format, and used Autodock 

Vina docking procedure (http://autodock.scripps.edu/) 

into PDBQT format. Then, high-resolution protein 

crystal structures of JAK2 and STAT3 were selected as 

the ligand, and its PDB format was downloaded from 

the RCSB PDB database (https://www.rcsb.org/), 

imported PYMOL software to remove water molecules 

and heteromolecules, then imported Autodock Vina 

software to add hydrogen atoms and saved as pdbqt 

format. Finally, with the drug structure as ligand and the 

protein structure as receptor, the docking box was 

formed by using Autodock Vina software and the 

results with the lowest docking energy were saved. 

PYMOL software was used to visualize the docking 

results with the lowest energy. 

 

Experimental protocols 

 

Eighteen rats were randomly divided into 3 groups (n = 

6/group): (1) Sham group; (2) CLP group; (3) XBJ 

group. Before the experiment, all rats were fasted for 12 

hours. Subsequently, 40 mg/kg of 4% phenobarbital was 

given intraperitoneally to make the rats unconscious. 

The lower quadrant of the rats' abdomens was then 

shaved with an electric razor, cleaned with iodine volt, 

and placed on a special rat fixation plate (supine 

posture) before the experimental surgery towel was set 

out. No ligation or puncture of the intestine was 

performed on the rats in the Sham group; only a 

straightforward abdominal incision was made. For rats 

in the CLP and XBJ groups, a longitudinal skin incision 

was made along the abdominal white line with a scalpel, 

and a 3-4 cm incision was cut with surgical scissors to 

expose the abdominal cavity, and the cecum was 

separated using blunt dissecting forceps and removed, 
leaving the remaining small and large intestine in the 

peritoneal cavity. The cecum was ligated with 3-0 wire 

at 1/3 of the ileocecal flap, and a small amount of feces 

was extruded from it by puncturing the hole at the 

ligated end with an 18G needle to ensure patency. The 

cecum was then restored to its original position, and the 

peritoneum, rectus abdominis muscle and skin were 

closed layer by layer with 4-0 sutures. Postoperatively, 

all rats were placed on an electric blanket to maintain 

body temperature in the normal range. 

 

Drug treatment and sample collection 

 

After surgery, all rats were kept alone and 

subcutaneously injected with lactated Ringer's solution 

(30 ml/kg) for fluid resuscitation. Imipenem/Cilastin 

(20 mg/kg s.c.) and flurbiprofen axetil injection (5 

mg/kg i.v.) were used to alleviate postoperative pain. 

Rats in the XBJ group received XBJ (10 ml/kg s.c.) at 1 

hour after CLP, whereas rats in the sham or CLP groups 

received the same amount of sterile saline treatment, 

with repeated dosing every 24 h for 5 days. The cardiac 

function was evaluated at 5 days after CLP. And then 

the serum and heart tissues were harvested and stored at 

-80° C for further investigation. 

 

Echocardiography 

 

The cardiac function was evaluated at 5 days after CLP. 

The hair on the chest of the rats was removed using hair 

removal cream before they were put in the horizontal 

position after being anesthetized with 40 mg/kg of 4% 

phenobarbital. Echocardiographic images were recorded 

using the Ultra High Resolution Small Animal 

Ultrasound Imaging System (Vevo®2100 Imaging 

System, Visualsonics, Toronto, Canada) with a 15-MHz 

transducer. Parameters of cardiac function were 

measured on the 2-D mode in the parasternal long-axis 

view prior to M-mode imaging positioned perpendicular 

to the interventricular septum and posterior left 

ventricular wall. Heart rate was measured over 3 

consecutive cycles. The left ventricular ejection fraction 

(LVEF) and left ventricular fractional shortening 

(LVFS) parameters were calculated by the software of 

Vevo770TM imaging system. An investigator who was 

not familiar with the experiment carried out all of the 

procedures. 

 

Biochemical detection for assessment of cardiac 

function 

 

Heart punctures were used to swiftly collect blood 

samples. The blood samples were centrifuged at 3,000 

rpm for 10 minutes at room temperature after 30 

minutes of coagulation to extract the serum. Serum 

concentrations of lactate dehydrogenase (LDH), 
creatine kinase (CK) and cardiac troponin I (cTnI) were 

detected by an Automatic Biochemical Analyzer (Bio 

Majesty JCA-BM6010, JEOL Ltd., Japan). 

https://pubchem.ncbi.nlm.nih.gov/
http://autodock.scripps.edu/
https://www.rcsb.org/
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Enzyme-linked immunosorbent assay (ELISA) for 

inflammatory cytokine 

 

Inflammatory cytokines, tumor necrosis factor-α (TNF-

α), interleukin-1β (IL-1β) IL-6 and in serum were 

measured using ELISA kits, according to the 

manufacturer’s instructions (BioSwamp, Wuhan, 

China). The concentrations of the cytokines were 

quantified by referring to standard curves. 

 

Histopathological (HE) staining 

 

At 5 days after CLP, myocardial tissues from each group 

were collected and fixed for 48 hours at room temperature 

with 4% paraformaldehyde. The fixed cardiac tissues 

were sectioned into 4 μm-thick cross-sections after being 

dehydrated, paraffin-embedded. 4 μm sections were 

stained using a HE Staining Kit (Biotopped, Beijing, 

China), according to the manufacturer’s instructions. 

Morphological changes in myocardial tissues were stained 

with HE and observed at 200× magnification under a light 

microscope (Leica, USA). 

 

Immunofluorescence assay 

 

Immunofluorescence was used to assess the level of p-

JAK2 (Ser473) and p-STAT3 (Tyr607) in heart tissue. 

Fixed heart tissues were removed with 0.5% Triton X-100 

for 20 min. Tissues were blocked with 5% BSA blocking 

solution for 60 min at room temperature, following by 

washing with PBS. The tissues were then incubated with 

p-JAK2 (cat. AF3024, 1:300) and p-STAT3 (cat. AF3293, 

1:300) overnight at 4° C and further stained with Goat 

anti-Rabbit lgG H&L (AlexaFluor®594) (cat. ZF-0516, 

1:100) secondary antibody. Afterwards, heart tissue was 

stained with 4′, 6-diamidino-2-phenylindole (DAPI, 

C0060, Solarbio, China) and observed with a fluorescence 

microscope (MF43-N, Mshot, China) to obtain 

representative fluorescence images. 

 

TUNEL staining 

 

Extensive DNA degradation is the signature of the late 

stage of apoptosis. Visualization of apoptotic 

cardiomyocytes was performed on left ventricular tissue 

cross sections (4 μm thick) using One-step TUNEL 

Apoptosis Detection Kit (Beyotime, Beijing, China) and 

according to the manufacturer’s procedure. TUNEL 

staining changes in myocardial tissues were observed 

with a fluorescence microscope (MF43-N, Mshot, 

China) to obtain representative fluorescence images. 

 

Western blotting 

 

The heart tissues added to RIPA lysis buffer spiked with 

protease inhibitors and phosphorylated protease 

inhibitors (Servicebio, Wuhan, China) are crushed by 

adding magnetic beads in fully automatic sample freezer 

grinder (JXFSTPRP-CL, Shanghai Jing Xin, China). The 

protein concentration was measured using a BCA 

protein assay kit (Omni-Easy, Shanghai, China). Equal 

amounts of protein (5 µg/µl, 10 µl per lane) were 

separated by 7.5-12.5% SDS-PAGE and were 

transferred onto PVDF membranes using Bio-Rad 

western blotting analysis apparatus (CAVOY, Beijing, 

China). The membranes were then blocked with 5% 

skim milk powder at room temperature for 2 h and 

incubated at 4° C overnight with antibodies against 

TLR4 (cat. AF7071, 1:1000), phosphorylated (p)-NF-κB 

(cat. AF2006, 1:1000), NF-κB (cat. AF5006, 1:1000), p-

IKKα (cat. AF3013, 1:1000), Bax (cat. AF0120, 

1:2000), Bcl-2 (cat. AF6139, 1:2000), Bcl-xl (cat. 

AF6414, 1:1000), Cleaved-Caspase 3 (cat. AF7022, 

1:1000), Cleaved-Caspase 9 (cat. AF5240, 1:1000), 

Cleaved-PARP (cat. AF7023, 1:1000), GAPDH (cat. 

T0004; 1:10,000), p-JAK2 (cat. AF3024, 1:1000), JAK2 

(cat. AF6022, 1:1000), p-STAT3 (cat. AF3293, 1:1000) 

and STAT3 (cat. AF6294, 1:1000), followed by 

incubation at room temperature for 1h with goat anti-

rabbit secondary antibodies (cat. S001; 1:10,000) or goat 

anti-mouse secondary antibodies (cat. AS014; 1:10,000; 

Abclonal). Protein bands were detected with an 

enhanced chemiluminescence kit (KeyGen BioTECH, 

Jiangshu, China) using capturing light sources with an 

ultrasensitive multifunction imager (Amersham lmager 

680RGB) and were semi-quantified using ImageJ 

software (Rawak Software, Inc., Germany).  

 

Statistical analysis 

 

All values described in the text and figures are 

presented as mean ± standard deviation (SD). The 

Kaplan-Meier method was applied to assess survival 

followed by the log rank test. One-way analysis of 

variance (ANOVA) test was used to compare among 

multiple groups, followed by Tukey’s test after a 

homogeneity test for variance and Tamhane T2’s test 

after a heterogeneity test for variance. SPSS 24.0 

software was used to analyze the data. p<0.05 in two-

tailed testing was considered statistically significant. 
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