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SUPPLEMENTARY MATERIALS 
 

Supplementary Materials 
 

BE(2)-M17 cells with induced wild type or A53T 

SNCA-GFP expression 

 

Lentivirus containing in-frame wild type (WT) or  

A53T [1] green fluorescent protein-tagged α-synuclein 

(SNCA-GFP) (Supplementary Figure 1A) was  

used to transduce human neuroblastoma BE(2)-M17 

cells [2]. The selected blasticidin-resistance clones WT-

4, WT-5, A53T-8 and A53T-11 were expanded, 

differentiated with retinoic acid [3], and examined for 

induced SNCA-GFP expression after doxycycline 

treatment for 5 days (Supplementary Figure 1B). The 

expressed SNCA-GFP fusion proteins (50 kDa) were 

confirmed by GFP images (Supplementary Figure 1C) 

and immunoblotting using GFP and α-synuclein 

antibodies (Supplementary Figure 1D). Compared to the 

endogenous hypoxanthine phosphoribosyltransferase 1 

(HPRT1), 25–62 folds SNCA-GFP mRNA were 

induced by doxycycline in these clones (Supplementary 

Figure 1E). 

 

α-Synuclein aggregation and neurite outgrowth 

reduction in α-synuclein fibrils-treated wild type/ 

A53T SNCA-GFP BE(2)-M17 cells 

 

α-Synuclein aggregation and neurite outgrowth of 

retinoic acid-differentiated wild type and A53T 

SNCA-GFP BE(2)-M17 cells were examined after 

inducing α-synuclein expression in the presence or 

absence of preformed α-synuclein fibrils for five  

days (Supplementary Figure 2A). ProteoStat® [4]  

was used to measure α-synuclein aggregation by  

HCA. Addition of preformed α-synuclein fibrils 

significantly provoked aggregation of both wild type 

and A53T SNCA-GFP in BE(2)-M17 cells (from 7.1–

8.3% to 19.5–23.6%; p < 0.001) (Supplementary 

Figure 2B). When protein samples from these cells 

were subjected to filter trap assay using GFP antibody, 

both wild type and A53T α-synuclein-containing 

insoluble aggregates were greatly increased (from 7.4–

8.5% to 100.0–103.7%; p < 0.001) upon addition  

of preformed α-synuclein fibrils (Supplementary 

Figure 2C). 

 

α-Synuclein plays a vital role in regulating neurite 

outgrowth [5, 6]. We examined the neurite total length, 

process (primary neurite, a projection from the cell body 

of a neuron) and branch (an extension from primary 

neurite) of these cells. As shown in Supplementary 

Figure 2D, addition of preformed α-synuclein fibrils to 

BE(2)-M17 cells led to significant reduction of neurite 

total length (from 24.3 µm to 19.3 µm; p < 0.001). In 

addition, induction of wild type or A53T α-synuclein 

expression significantly reduced neurite total length 

(from 24.3 µm to 17.1–13.0 µm; p < 0.001) and branch 

(from 1.05 to 0.85–0.60; p = 0.036–<0.001) compared to 

BE(2)-M17 cells. Significantly reduced neurite total 

length (from 19.3 µm to 15.8–11.5 µm, p < 0.001) and 

branch (from 0.94 to 0.68–0.49; p = 0.003–<0.001) were 

also observed in α-synuclein-expressing cells with 

preformed α-synuclein fibrils addition compared to 

BE(2)-M17 cells with preformed α-synuclein fibrils 

treatment. Neuronal process was significantly reduced 

by induction of A53T α-synuclein in BE(2)-M17 cells 

(from 1.85 to 1.58–1.54; p = 0.009–0.002) or addition of 

preformed α-synuclein fibrils to A53T α-synuclein-

expressing BE(2)-M17 cells (from 1.79 to 1.56–1.49;  

p = 0.029–0.003). 

 

Neuroprotective effects LM-021 and NC009-1 in 

A53T-11 SNCA-GFP BE(2)-M17 cells 

 

To evaluate neuroprotective effects LM-021 and NC009-

1 in A53T-11 SNCA-GFP BE(2)-M17 cells, LDH, 

caspase-1 and ROS were examined (Supplementary 

Figure 3A). As shown in Supplementary Figure 3B, 3C, 

A53T α-synuclein overexpression plus preformed  

α-synuclein fibrils addition increased LDH release 

(120%, P = 0.005) and caspase-1 (117%, P = 0.044) 

activities, and LM-021 and NC009-1 treatments 

reduced LDH release (from 120% to 106–87%;  

P = 0.045–<0.001) and caspase-1 (from 117% to  

91–81%; P = 0.003–<0.001) in A53T-11 cells. In 

addition, A53T α-synuclein overexpression plus 

preformed α-synuclein fibrils addition increased 

cellular ROS (126%; P = 0.002), and both LM-021 

and NC009-1 treatments significantly reduced  

ROS (from 126% to 105–104%; P = 0.006–0.005) 

(Supplementary Figure 3D). 

 

The effects LM-021 and NC009-1 on α-synuclein 

aggregation were assessed by filter trap assay  

and ProteoStat® stain. Application of LM-021 and 

NC009-1 led to significant aggregation reduction 

(from 100% to 64–62%; P = 0.008–0.006) 

(Supplementary Figure 4A). Quantification of 

percentage of aggregated cells also revealed 6–7% 

reduction of aggregated cells (from 17% to 13–12%;  

P = 0.035–0.022) (Supplementary Figure 4B). In 

consistent with the effects on α-synuclein aggregation, 

LM-021 and NC009-1 treatments significantly 

promoted neurite outgrowth in A53T-11 SNCA-GFP 

BE(2)-M17 cells (length: from 9.7 µm to 13.8–14.5 

µm, process: from 1.45 to 1.69–1.75, branch: from 

0.32 to 0.65–0.69; P < 0.001) (Supplementary  

Figure 4C). 
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MATERIALS AND METHODS 
 

Real-time PCR assay 

 

To measure the induced SNCA-GFP expression in wild 

type and A53T SNCA-GFP BE(2)-M17 cells, total RNA 

was purified using TRIzol reagent (Invitrogen), treated 

with DNase I (Stratagene, La Jolla, CA, USA) to 

eliminate genomic DNA. Subsequently cDNA was 

synthesized using reverse transcriptase (Thermo Fisher 

Scientific). Relative SNCA-GFP mRNA was determined 

in 50 ng cDNA by real-time PCR (StepOnePlus™ Real-

time PCR system; Applied Biosystems, Foster City, CA, 

USA) with customized GFP primers (forward primer: 5’-

GAGCGCACCATCTTCTTCAAG-3’, reverse primer: 

5’-TGTCGCCCTCGAACTTCAC-3’) and FAM/NFQ 

probe (5’-ACGACGGCAACTACA-3’), and TaqMan 

HPRT1 (NM_000194) endogenous control (VIC/MGB 

probe, 4326321E) (Applied Biosystems). Fold change 

was determined using the formula 2ΔCt, ΔCT = CT 

(HPRT1) – CT (GFP), in which CT indicates cycle 

threshold. 
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