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INTRODUCTION 
 

DNA methylation is a persistent covalent modification 

that defines the identity of post-mitotic cells for the 

duration of their existence. Approximately 4% of one 

billion cytosines in the mammalian genome are methylated 

[1]. Methylated cytosines are almost exclusively identified 

in the palindromic CpG dinucleotides, occur in both 

DNA strands via symmetric cytosine methylation,  

and are precisely copied from the parent to the daughter 

strands during DNA replication. This heritability of 

DNA methylation patterns gives an epigenetic marking 

of the genome that is stable across multiple cell 

divisions and hence develops a cellular memory,  

which makes DNA methylation represent the prototype 

method of epigenetic inheritance [2]. The methylation 
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ABSTRACT 
 

Age-associated DNA-methylation drift (AMD) manifests itself in two ways in mammals: global decrease 
(hypomethylation) and local increase of DNA methylation (hypermethylation). To comprehend the principle 
behind this bidirectional AMD, we studied methylation states of spatially clustered CpG dinucleotides in 
mouse splenic DNA using reduced-representation-bisulfite-sequencing (RRBS). The mean methylation levels 
of whole CpGs declined with age. Promoter-resident CpGs, generally weakly methylated (<5%) in young mice, 
became hypermethylated in old mice, whereas CpGs in gene-body and intergenic regions, initially 
moderately (~33%) and extensively (>80%) methylated, respectively, were hypomethylated in the old. 
Chromosome-wise analysis of methylation revealed that inter-individual heterogeneities increase with age. 
The density of nearby CpGs was used to classify individual CpGs, which found hypermethylation in CpG-rich 
regions and hypomethylation in CpG-poor regions. When genomic regions were grouped by methylation 
level, high-methylation regions tended to become hypomethylated whereas low-methylation regions tended 
to become hypermethylated, regardless of genomic structure/function. Data analysis revealed that while 
methylation level and CpG density were interdependent, methylation level was a better predictor of the 
AMD pattern representing a shift toward the mean. Further analysis of gene-expression data showed a 
decrease in the expression of highly-expressed genes and an increase in the expression of lowly-expressed 
genes with age. This shift towards the mean in gene-expression changes was correlated with that of 
methylation changes, indicating a potential link between the two age-associated changes. Our findings 
suggest that age-associated hyper- and hypomethylation events are stochastic and attributed to 
malfunctioning intrinsic mechanisms for methylation maintenance in low- and high-methylation regions, 
respectively. 
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status at each CpG site is a flexible substrate for 

epigenetic modification that can be varied by cellular 

activity [3, 4]. Changes in DNA methylation have  

thus been linked to a variety of biological processes 

including gene regulation and differentiation [5], silencing 

of transposable elements [6], genomic imprinting [7],  

and X-chromosome inactivation [8]. DNA methylation 

patterns normally change dramatically during develop-

ment, from differentiation of pluripotent stem cells  

to lineage-restricted stem cells to somatic cells [9]. 

Once established in somatic cells, methylation patterns 

are largely fixed and transmitted into daughter cells [1]. 

In contrast to the biologically regulated and essential 

DNA methylation changes in early development, the 

late-life events of DNA methylation change in adult 

somatic tissue, which gradually occur as environmental 

components and/or stochastic factors erode the global 

methylation states [10], do not appear to be programmed 

or controlled and may be suggestive of age-related 

pathologies [11].  

 
Epigenetic drift, a process that alters the genomic 

landscape of DNA methylation as a function of age, 

impacts the majority of the genome, indicating a 

widespread dysregulation of DNA methylation patterns 

with age [12]. This random but continuous event in the 

genome consequently affects and weakens the highly 

structured gene regulation frameworks. Thus, DNA 

methylation can be a molecular culprit behind the age-

associated decline in physiological activities and the 

increasing deterioration of organ and tissue function. 

Changes in DNA methylation levels with age have been 

discovered at both the global and local levels. DNA 

methylation level globally declines with age in various 

animals and tissues [13–17], which reflects the age-

related decrease in DNA methylation of a variety of 

CpG-rich repetitive sequences [18, 19]. In addition  

to this global methylation loss (hypomethylation),  

a methylation gain (hypermethylation) event happens 

preferentially in CpG-dense gene promoters, especially 

those of critical developmental genes [20–24]. Many 

age-hypermethylated genes, including Polycomb group 

target genes (PCGTs [25]), are also hypermethylated  

in malignancies and other age-related illnesses [26–28].  

 
We here revisit age-related DNA methylation change 

using reduced representation bisulfite sequencing 

(RRBS)-derived methylome of mouse splenic DNA  

to see if the bidirectional pattern of epigenetic drift 

appears in spatially clustered (neighboring) CpGs, 

rather than selective singleton CpG sites, in different 

categories of genome structure/gene function (promoter, 

gene-body, and intergenic regions) and if so, what 

principle underpins the bidirectional methylation change. 

We further divide the genomic regions either by the 

density of neighboring CpGs or by methylation level 

and then examine which one is more closely related to 

the methylation drift. Finally, to explore the functional 

repercussion of the bidirectional methylation drift, we 

investigate the expression levels of 175 epi-driver genes 

(285 exonic sequences) using the spiking-in a neighbor 

genome for competitive PCR amplicon sequencing (SiNG-

PCRseq [29]) that is specialized for quantification of 

low-set expression level gene transcripts. Hopefully, our 

findings will lay the groundwork for future studies 

studying the significance of epigenetic drift and its 

effects on cellular physiology as well as establishing a 

causal role for epigenetic mechanisms in aging. By 

understanding the epigenetic underpinnings of aging, 

researchers can begin to uncover the intricate pathways 

and patterns that are associated with the aging process 

and develop new interventions to potentially slow the 

progression of age-related diseases. 

 

RESULTS 
 

Age-related decrease in global DNA methylation 

level in mouse spleen 

 

To investigate age-associated methylation drift (AMD), 

we performed RRBS (Supplementary Figure 1) on 

genomic DNA extracted from the spleens of 2-, 6-, 12-, 

and 23-month-old mice (2m, 6m, 12m, and 23m, 

respectively; n = 3 per group). We expected a genome-

wide methylation change with age in the spleen because 

it is known that the function and microarchitecture of 

the spleen gradually deteriorate in older mice, leading  

to age-dependent impairments in functional immunity 

[30]. RRBS generated approximately thirty million 

reads per sample (Supplementary Figure 2A), of which 

59% and 23% were uniquely and multiply mapped, 

respectively, after Bismark alignment (Supplementary 

Figure 2B). Supplementary Figure 2C depicts the 

quantitative profile of RRBS-captured MspI fragments  

to the number of inherent CpG sites in those fragments, 

highlighting the prevalence of MspI fragments nesting 

2-7 CpGs as well as a proportional quantitative re-

presentation of the reads aligned to them. A significant 

proportion (>80%) of individual CpG sites had 10x 

coverage, which we set to the minimum acceptable 

depth for methylation ratios (Supplementary Figure 

2D). 

 

The mean methylation levels of whole CpG sites in 

samples decreased in older samples (Figure 1A), 

indicating a decline in global methylation level with 

age. The intra-group variation of mean methylation 

level was found to be at its minimum in the 6-month 

group and increased with age. The decrease was 

prominent in the 23m age group, which was in 

agreement with the principal component analysis (PCA) 

result using M-values (the log2 ratio of the frequencies 
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of methylated CpG versus unmethylated CpG [31]) that 

revealed the 23m samples far removed from the other 

younger samples (Figure 1B). Therefore, the results 

indicated a global, age-associated methylation changes 

in mice of 23 months of age.  

 

Region-based methylation analysis proves 

bidirectional AMD pattern 

 

Violin plot using the M-values revealed that while  

the distribution of methylation ratios and their mean 

value were largely even and similar among the 

samples, the interquartile range (IQR (%) = Q3 – Q1), 

which is a measure of statistical dispersion of data, 

was shrunk in the 23m samples (Figure 1C and see also 

Supplementary Figure 3A for their normal distribution), 

indicating that the spread of the M-values is reduced  

in older samples. The result suggested the presence  

of AMDs with competing modes of action operating on 

different CpG clusters, which prompted us to conduct  

a “region”-based study for AMD as opposed to a 

singleton CpG-based approach. The term ‘region’ here 

encompasses spatially grouped CpG sites within a 

defined area that share a structural chromatin setting; 

henceforth, when we mention a region’s methylation 

level, we refer to the mean methylation of all the CpGs 

present in that region. We did this by assigning RRBS 

CpGs to one of three regional categories with respect  

to genome structure/function: gene promoters, gene 

bodies, and intergenic regions. Every CpG that was 

 

 

 

Figure 1. A bidirectional pattern of DNA methylation drift in the splenic DNA of aged mice. (A) A global decline in CpG methylation 

level (β-value). RRBS data were obtained from splenic DNA of two-, six-, 12-, and 23-month-old mice (2m, 6m, 12m, and 23m, respectively; n 
=3 for each). (B) Principal component analysis (PCA). A dashed circle group samples of the same age together. (C) Distribution of methylation 
levels (M-value). Red triangles represent the mean methylation levels and the two horizontal lines in the violin plots indicate 25% (lower, Q1) 
and 75% (upper, Q3) quartile lines. The red triangles reflect the mean methylation levels, whereas the two horizontal lines in the violin plots 
represent the 25th (Q1) and 75th (Q3) quartiles. The red arrows depict the contraction of the 25% and 75% quartile lines within the 23m age 
group. (D) Histograms showing the distribution of pre-defined regions across successive intervals of methylation levels for different genomic 
structures/functions (promoters, gene bodies, and intergenic regions). (E) Box plots showing the methylation levels across the age groups. 
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associated with a gene promoter (transcription start  

site (TSS) ± 1 kb in length) or gene body (encompassing 

TSS to transcription end site (TES) minus promoter 

region) was assigned to the gene, and the mean 

methylation level of the gene-associated CpGs was 

obtained collectively. The “intergenic block/region”  

is defined in the Method section. The frequency of 

regions with varying CpG counts in the three genome 

categories is depicted in Supplementary Figure 3B.  

As shown in Figure 1D, the majority of promoters 

(74% of 15,292 regions with 5 CpGs or more)  

were weakly methylated (β-value, the proportion of 

methylated CpG at a given locus, <5%) in 2m samples, 

whereas intergenic regions (82.4% of 57,679) were 

highly methylated (>75%) and gene-body regions (n = 

16,554 genes with CpG >0.5 ea per kb) showed a 

mixed, bimodal methylation state. When the mean 

methylation levels were compared across ages, the 

promoters showed hypermethylation as age advanced, 

whereas the gene bodies and inter-genic regions 

showed hypomethylation (Figure 1E). The extent of 

AMD was noticeably high from 12 months to 23 

months. So, our region-based analysis proved a bi-

directional AMD pattern in the mouse spleen. The 

result suggests that the AMD may cluster spatially as 

seen in cancer [32], refuting the claim that AMD 

implicates a larger proportion of singleton CpGs that 

exhibit solitary DNA methylation changes and are 

hence less likely to have functional significance. 

 

Inter-individual heterogeneities in methylation level 

increase with age 

 

The mean levels of DNA methylation across different 

genomic categories, including promoters, gene bodies, 

and intergenic regions, were found to be variable across 

chromosomes in this study (Figure 2A). Importantly, 

the standard deviations of methylation levels between 

individuals appeared to be relatively similar across 

chromosomes for each genomic category. We calculated 

the coefficient of variation (CV, the ratio of the 

standard deviation to the mean) of methylation levels 

across each chromosome among samples from the 

same age group to assess the change of inter-

individual variability upon aging. The chromosome-

wise CVs were persistently low on average in younger 

samples but significantly higher in older samples, 

suggesting a rise in heterogeneity with age (Figure 

2B). It has been proposed that epigenetic drift, which 

leads to inter-individual epigenetic divergence, is 

determined by a lifelong accumulation of epimutations 

generated by environmental effects and/or intrinsic 

stochastic variables [33]. Our results with laboratory 

mice favor stochastic variables for AMD rather  

than environmental factors; clustered CpGs displaying 

epigenetic drift may undergo stochastic processes  

with aging, most likely due to the vulnerability of the 

region’s chromatin architecture to change.  

 

AMD pattern at a specific CpG site is related to the 

density of peripheral CpGs 

 

When promoters were classified by CpG density, those 

with thin CpGs (5-10 CpGs ea per 2 kb, n = 2,017) 

were relatively highly methylated (48.0%) at two 

months and became hypomethylated with age, whereas 

those with thick CpGs (>100 CpGs, n = 1,311) were 

lowly methylated (1.9%) and then hypermethylated 

with age (Figure 3A). It suggests that the AMD pattern 

is determined by the CpG density of the region. We 

 

 
 

Figure 2. Increase in inter-individual methylation variations in older spleens. (A) Chromosomal variation in methylation levels of 
genomic categories. The mean methylation level of each genomic category was determined for each chromosome and shown in the line 
chart. Error bars represent standard deviation. (B) Age-related increase in inter-individual methylation heterogeneity. It shows the 
distribution of the variance coefficient (CV) of methylation levels across 19 chromosomes (excluding sex chromosomes) for different genomic 
structures/functions within the same age group. The points on the box plot represent the CV values of each chromosome. The p-values 
between successive age pairs are shown and were calculated using a paired-sample t-test.   
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sought to see if there were different types of AMDs in 

different CpG-density settings, regardless of genomic 

structure/function. To determine the CpG densities of 

adjacent sequences, we counted the number of CpGs 

present in a 200-bp region on either side of a single 

CpG (Figure 3B, top). The DNA methylation levels at 

the same density CpG sites were box-plotted, which 

revealed three qualitatively distinct groups, one with  

Q1 quartile values larger than 50%, another with Q3 

values less than 50%, and the others otherwise (Figure 

3B, bottom). Based on this methylation level-based 

criterion, the density of each CpG site was classified as 

low (L, 0–5 CpGs), high (H, >12), or moderate (M, 6-

12), and each CpG could be assigned to one of nine 

classifications with two capitals: HH, HM, HL, MH, 

MM, ML, LH, LN, and LL. The H-labeled CpGs–HH, 

HM/MH, and HL/LH–were generally undermethylated 

whereas the L-labeled CpGs–LL and LM/ML–were 

heavily methylated (Figure 3C). It is commonly considered 

that HH-CpGs are primarily found in CpG islands 

(CGIs) and are typically weakly methylated, whereas 

LL-CpGs are located outside of CGIs (or in ‘open-

ocean,’ as the CGI-related description suggests) and  

are comparatively highly methylated. The HH and HL 

groups had the most and the fewest CpGs, respectively, 

of the 1.4 x 106 CpGs available in our RRBS data (n = 

487,612 and 8,822; Figure 3D). 

 

We noticed that CpG groups with different density 

labels exhibit different AMD patterns (Figure 3E). DNA 

methylation increased with age for the HH and HM/MH 

CpGs, but declined for the L-/M-labeled CpGs. In the 

 

 
 

Figure 3. Age-related methylation-change pattern is linked to the CpG density of the region. (A) Different types of methylation 

change in areas with varying CpG densities. Promoter regions were divided into five groups based on the CpG density: 5≤CpG<10, 
10≤CpG<20, 20≤CpG<50, 50≤CpG<10, or 100≤CpG<250. The number of corresponding promoter regions is denoted by each density category. 
The arrows represent the CpG-density-dependent increase (hypermethylation) or decrease of methylation (hypomethylation).  
(B) CpG density-based classification of chromosomal CpG sites as low (L, 0–5 CpGs; Q1 >50% methylation), high (H, >12; Q3 <50%), and 
moderate (M, 6-12; the remainder), respectively. CpG density was determined by counting the number of CpG dinucleotides within 200 bp of 
a single CpG (top). Box plots show the distribution of methylation levels for CpG sites with identical CpG density. (C) Distribution of 
methylation levels of CpGs in the CpG-density classification groups. Each CpG site is classified as one of the following: HH, HM, HL, MH, MM, 
ML, LH, LN, or LL. The red dots indicate the average methylations. (D) The number of CpG sites assigned to each classification. (E) Different 
patterns of age-linked methylation changes at differently classified CpG sites.  
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classifications exhibiting a hypomethylation-type AMD, 

2m samples were slightly but consistently less methy-

lated than 6m samples, which may indicate that global 

DNA methylation patterns in mice are still being 

established at two months of age [34]. Interestingly, the 

HL/LH group differed from the other H-labeled groups 

such as MH/HM group and resembled the non-H-

labeled (L/M) group. We guess that the methylation 

level difference at two months between the HM/MH 

and HL/LH groups (13.7% vs. 27.7%, respectively) 

could explain the different AMD patterns. Scatter plots 

of 6m, 12m, and 23m versus 2m samples demonstrated 

that while the HH and LL classifications were 

equivalent until 12 months of age, they split into two 

distinct subsets at 23 months of age, hypermethylation 

(HH-CpGs) and hypomethylation groups (LL-CpGs; 

Supplementary Figure 4).  

 

AMD pattern is determined by the region’s 

methylation level  
 

While the bulk of promoters were undermethylated,  

a minor percentage was considerably methylated.  

We wondered if these highly methylated promoters 

experienced the same hypermethylation with age as  

the lowly methylated promoters. We classified the 

promoters based on their methylation level (0.1 β-

value intervals). Ten % (n = 1,508) of promoters were 

quite substantially methylated (>50%) and showed  

a hypomethylation rather than hypermethylation with  

age (Figure 4A). A similar result was observed from  

the analysis of gene-body regions (Supplementary  

Figure 5). The result indicates that when certain  

regions are initially substantially methylated, they  

tend to be hypomethylated regardless of the genome 

 

 
 

Figure 4. The pattern of age-associated methylation drift is determined by regional methylation level. (A) Relationship of age-
linked methylation change pattern with regional methylation level. Promoters were categorized based on their methylation levels (0.1 
intervals of β-values, y-axis) as indicated in different colored lines with their counts. (B) Changes in relative methylation levels in promoters 
with low methylation (<10%, orange) and high methylation levels (>90%, blue) as a function of age. R values indicate Pearson correlation.  
(C) The inverse relationship between the age-versus-methylation correlations (AMR) and the methylation levels of the regions. AMR is a 
Pearson correlation (R) between regional methylation levels and sample ages, with values approaching +1 and -1 indicating hyper- and 
hypomethylation, respectively. With the generated AMRs, the areas were grouped (0.1 intervals, totaling 20 intervals ranging from -1.0 to 
+1.0) and their mean methylation levels (± standard deviation) at two months of age were measured. The R2 value on the plot is the 
determination coefficient between methylation levels and AMRs. (D) Prevalence of hypermethylation in promoters with two conflicting 
variables for age-associated methylation change: low CpG density (<15 ea) favoring hypomethylation, and low methylation level (<10%) 
favoring hypermethylation (left). Hypomethylation predominates at promoters with both low CpG density and heavy methylation (>90%, 
right). The regions are counted on the bar. (E) The prevalence of hypermethylation in low-methylation promoters (<10%, n = 13,076), 
regardless of CpG density.  
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structure/function (Figure 4B), indicating that the AMD 

pattern is methylation level dependent. 

 

The regions in each genomic structure/function were 

grouped based on the correlation of their methylation 

levels with sample ages (R; 0.1 intervals each, a total of 

20 intervals ranging from -1.0 to +1.0). As shown in 

Figure 4C, there was a negative relationship between 

the groups’ R-values and their mean methylation levels 

at 2 months; as the groups had higher methylation 

levels, their R-values were more negative (or hypo-

methylated), whereas as the groups had lower methylation 

levels, they were more positive (or hypermethylated).  

It indicates that the pattern of AMD is more closely 

related to the region’s methylation level. This was  

most noticeable in the intergenic group (coefficient  

of determination, R2, = 0.982). The promoter category 

groups with positive R-values showed an exceptionally 

poor correlation (R2 = 0.087) with the methylation 

levels, probably due to their overall low-lying methylation 

levels with a marginal difference (~5% difference in the 

intervals of 0.3 to 1.0) between the intervals.  

 

We then looked into promoters that had an unusual 

pairing of CpG density and methylation level, such as 

the one with low CpG density and low methylation 

level and the one with high CpG density and high 

methylation level. The incidence of hypermethylation 

was three times that of hypomethylation (454 vs. 141 

promoters; |R-value| >0.8; Figure 4D) for promoters 

with a low CpG density (15>CpG>4) and a low 

methylation level (<10%). There were only a few 

promoters (7 of 1258 promoters) with a high CpG 

density (>100 CpGs) and high methylation level 

(>20%), insufficient for a reciprocal analysis. On  

the other hand, for promoters with a low methylation 

level (<10%, n = 13,076), hypermethylation prevailed  

over hypomethylation in all CpG-density intervals  

(Figure 4E). Together, our results indicate that the 

methylation level of the area is more important than 

CpG number in determining AMD.  

 
Age-associated transcriptional drift reduces the 

gene-to-gene disparity of transcriptional activity 

 

The steady expansion of an epigenomic disorder 

impairs transcriptome homeostasis and increases trans-

criptional noise. The SiNG-PCRseq approach, which 

reliably measures transcript levels, particularly of low-

set expression level genes [29], was used to investigate 

the transcriptional activity of genes in the aged spleen. 

In addition to the spleen samples used for methylation 

analysis, we included additional spleen samples of ages 

2m (n=2), 6m (n=3), and 12m (n=2) for gene expression 

analysis. We also used a reference sample, consisting of 

a mixture of mouse and rat genomic DNAs, to correct 

amplification biases. We used a set of primer pairs  

that can amplify 424 target exonic sequences from  

257 genes of both mouse and rat, including 175 genes 

identified as epi-drivers [35]. Rat genomic DNA  

was utilized as a spike-in in multiplexed SiNG-PCRseq 

to accurately quantify mouse cDNA sequences 

compared to matched rat gDNA sequences. To ensure 

equal amplification and to establish detectable flags 

between the cDNA-derived reads and the rat genomic 

DNA reads after sequencing, each primer pair was 

designed to contain one or more nucleotide differences 

between the amplicons of different species. After SiNG-

PCRseq, we acquired 2.2×108 reads from triplicate 

libraries of 20 samples (3.7×106 ±0.6×106 reads/ 

library), with around 76% of them mapping perfectly  

to our amplicon reference. The M/R ratio of each  

exonic target, comparing mouse read counts to rat 

counts, underwent quality filtering for low read 

numbers and extensive amplification biases, resulting in 

a set of 288 exonic targets from 206 genes. After 

filtering, the data were processed for amplification bias 

correction and normalization, allowing us to evaluate 

the expression level of each exonic sequence across all 

samples (Supplementary File 1). For instance, among 

DNA methyltransferases (Dnmt) genes, Dnmt1 was less 

expressed with age whereas Dnmt3b and Dnmt3l  

were more expressed at 23 months (Supplementary 

Figure 6).  

 
The violin plots revealed that the distribution of 

expression levels among the genes was the broadest  

in the 6m group, then shrunk significantly in the  

12m group, and finally narrowed in the 23m group  

(Figure 5A). As a result, the 6m group had the largest 

variance in the mean gene expression levels, but  

it was decreased to less than one-fifth in the 23m  

group (Figure 5B). Furthermore, as shown by the 

lowered slope of scatter plot in Figure 5C, those  

genes that were weakly expressed in young spleen 

became more transcribed in old, whereas those genes 

which were relatively well expressed in young tended 

to diminished in old. We also observed a strong 

correlation between the third quartile values of CpG 

methylation levels and the first quartile values of  

gene expression levels across all samples analyzed  

(R2 = 0.62; Figure 5D, left). This suggests a potential 

link between the global loss of methylation in highly 

methylated regions and the increase in transcription  

of lowly expressed genes. We also found that the 

number of CpG sites with no methylation decreased 

with age and was moderately correlated with the  

first quartile values of gene expression (R2 = 0.57; 

Figure 5E). This implies another link between 

methylation gain in lowly methylated regions and  

the decrease of expression levels. We previously 

identified a similar age-associated bidirectional change 
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in transcriptional activity in mouse CD4-positive  

T cells [36]. Together, our results suggest that age-

associated bidirectional transcriptional drift occurs, 

resulting in a reduction in disparities in expression  

levels between strongly and weakly expressed genes.  

This age-associated transcriptional drift pattern mirrors  

the AMD pattern, in that genes with a lower-level 

transcript experience ‘hyper-transcription’ whereas those 

with a high-level transcript show ‘hypo-transcription’. 

Meanwhile, there was no obvious association (R2 = 

0.04) between methylation alteration and expression 

change (23m/2m) in the epi-driver genes (Figure 5F, 

see Discussion).  

DISCUSSION 
 

The mean methylation levels of all CpG sites available 

in RRBS decreased from 41% to 38% as age 

advanced. The overall decrease in DNA methylation, 

however, does not necessarily imply a decrease in  

DNA methylation at every CpG site. Individual CpG 

methylation levels do fluctuate, but these fluctuations 

are predictable: rising for CpGs with low methylation 

levels or lowering for CpGs with high methylation 

levels, both moving towards the mean level. The change 

is not restricted to singleton CpGs but also extends to 

genomic areas with clustered CpGs, and it is influenced 

 

 
 

Figure 5. Age-related diminution in the gene-to-gene disparity of transcriptional activity. (A) A comparison of the expression 

levels of 285 exonic sequences from 175 epi-driver genes in 2m, 6m, 12m, and 23m individual samples. The Q1 and Q3 quartile-level lines 
along with the mean levels are shown (dots in red). (B) A comparison of expression levels of 285 exonic sequences by age group. Variances 
are shown below. The expression level was assessed by comparing the PCR amplicon counts of mouse cDNA and rat gDNA (M/R ratio; see 
text for details). (C) Patterns of transcriptional drift for genes with low and high transcriptional activity. The expression levels of target genes 
in 2m samples were compared to those in 6m, 12, or 23m samples. The thick black arrows denote the direction of change in expression levels 
in low-expressing genes (left, ‘hyper-transcription’) and high-expressing genes (right, ‘hypo-transcription’) with age. Grey and blue lines 
represent the reference and trend lines, respectively. (D) Correlation between methylation loss and gene expression increase. The third 
quartile (Q3) methylation level, which decreases upon hypomethylation, was plotted against the first quartile (Q1) expression level in the 
same sample. The regression curve shows a significant negative correlation between these two variables (R2=0.72). (E) Correlation between 
methylation gain and gene expression decrease. The number of zero methylation sites, which decreases upon hypermethylation, was plotted 
against the Q3 expression level in the same sample. The regression curve shows a significant positive correlation between these two variables 
(R2=0.43). (F) No relationship between methylation change and expression change (23m/2m) in the epi-driver genes.  
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by the CpG density and methylation level of the region, 

both of which are inversely correlated: hypermethylation 

in promoters with low methylation levels and dense 

CpGs, and hypomethylation in gene-body and intergenic 

regions with high methylation levels and sparse CpGs. 

This age-associated, bidirectionally occurring methylation 

drift exhibits the “regression toward the mean” tendency, 

indicating that the global methylation shift during  

aging is driven by two opposing, antithetical forces. 

Recent methyl-binding protein capture and sequencing 

(MBD-seq) of aged skeletal muscle DNA in mice revealed 

a regression-to-the-mean pattern of methylation drift 

[37]. Unlike our RRBS methylome, this study includes 

DNA methylation data on various genomic repeats and 

demonstrates that a variety of genomic transposable 

elements (TE) such as endogenous retroviruses (ERVs), 

long and short interspersed elements (LINE1s and 

SINEs, respectively) undergo hypermethylation in lowly 

methylated repeated copies and hypomethylation in 

highly methylated repeated copies as a function of  

age. According to current and previous studies, this 

“regression toward the mean” trend occurs globally and, 

as a result, diminishes the region-to-region variance in 

the genomic landscape of DNA methylation in aged 

tissues.  

 

This regression-toward-the-mean pattern of epigenetic 

drift could be the result of a relaxation of epigenetic 

control over the genome caused by chaotic cellular 

conditions that increase with age. During adolescence, 

methylation states are closely maintained at a high cost 

of cellular energy to ensure chromatin stability and 

transcriptional equilibrium of adjacent genes. However, 

as energy resources dwindle and age-associated dys-

regulation accumulates across the chromosomes, the 

genome gradually releases itself from the high-energy 

tension required to maintain the extremely sophisticated 

epigenomic architecture and thus fails to keep the status 

quo, displaying a genome-wide regression-toward-the-

mean drift of DNA methylation. As a result, preexisting 

methylation disparities between genomic regions formed 

during ontogenesis may gradually diminish with age 

[37]. 

 

An important topic concerns the functional repercussions 

of regression-to-the-mean epigenetic drift. A few papers 

reported that the link between age-driven DNA methy-

lation and gene expression changes is, at best, tenuous 

[20, 38–40]. In this study, we did not investigate specific 

gene promoters or loci implicated in the regulation  

and maintenance of splenic function. Our result may 

therefore not be applicable when discussing the specific 

effect of the methylation drift and transcriptional drift 
on the function and physiology of spleen. Nevertheless, 

we can envision that, as a result of global on-going 

hypo- and hypermethylation events, a large number of 

genes in the spleen tissue, either transcriptionally 

permissible or not, may face continuously changing 

circumstances; gene promoters may be gradually more 

accessible to transcriptional activators and repressors, 

resulting in a regression-to-the-mean transcriptional 

drift across the genes. Related genes with increasing 

expression variability in old tissue may be drivers to 

phenotypic diversity, elevating the heterogeneity within 

cell populations [41, 42], and likely contribute to disease 

vulnerability, diversion to and exacerbation of aging 

symptoms, and alterations in gene networks in the 

spleen tissue. Notably, we previously showed that the 

transcriptional drift was not observed in muscle or brain 

tissues whereas splenic T cells isolated from the same 

old mice clearly proved the occurrence [36]. Moreover, 

the shift was amplified in the splenic T cells derived 

from the Huntington model mice (YAC128) that exhibit 

symptoms of accelerated aging [36]. According to the 

findings, the transcriptional drift starts early or late, 

depending on the tissues/organs, and increases with  

age. Similarly, the splenic epigenetic/transcriptional drift 

may broaden its effect with age. However, the stochastic 

nature of the changes leads to unpredictable differences 

in the methylome/transcriptome among aging individuals 

[43] and makes it difficult to forecast which genes tend 

to be affected and what ramifications it may have in 

the spleen. 

 
To precisely delineate the expression changes driven by 

epigenetic drift, we have employed SiNG-PCRseq  

in our study. While RNAseq approaches have limitations 

in detecting expression changes for lowly expressed 

genes due to their dependence on read depth,  

SiNG-PCRseq overcomes this by utilizing competitive 

amplification of targets and competitors. This enables 

quantitative analysis of all target genes with robust 

enrichment and high sensitivity across expression levels. 

Our study focuses on uncovering subtle expression 

changes during aging, specifically in genes with low 

expression profiles. Despite the limited number of  

genes analyzed, we have chosen this targeted approach 

as it aligns better with our study objectives. From the 

result of SiNG-PCRseq, we observed such a bimodal 

transcriptional activity change, with the upregulation  

of low expression level genes and the downregulation  

of high expression level genes. However, as in the 

previous studies above [20, 38–40], we failed to detect a 

link between age-associated DNA methylation changes 

and gene expression changes. Given that multiple layers 

of the epigenetic system are involved in gene trans-

criptional control, it is not surprising that a change  

in DNA methylation alone is insufficient to affect 

transcription activity [22, 23, 44, 45]. If this is the case, 

the bimodal transcriptional drift could be understood as 

the outcome of a regression-toward-the-mean movement 

orchestrated by numerous epigenetic variables, including 
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histone modifications. In aged human and rodent tissues 

and cells, for instance, reduced levels of histone H3-

lysine 9 (H3K9) trimethylation, which is required for 

maintaining CpG methylation level in heterochromatin 

[46], have been found [47–49].  

 

Finally, failure to maintain epigenomic and 

transcriptomic homeostasis with age may lead to a 

global dysregulation of cell and tissue function. We 

were curious about how well and consistently the 

quantitative epigenome organization formed in young 

life is preserved in aged spleen. We demonstrated in this 

study that age-associated methylation drift is primarily 

determined by the region’s methylation level and CpG 

density milieu, each as a primary and secondary 

contributing factor, and follows the regression-toward-

the-mean tendency, resulting in a decrease in 

methylation-level disparity between highly and weakly 

methylated genomic regions. We anticipate that our 

findings in this work will open the way for future 

investigation into the significance of epigenetic drift 

and its effects on cellular physiology, as well as 

establishing a causal role of epigenetic mechanism in 

aging. 

 

MATERIALS AND METHODS 
 

Mouse and nucleic acid preparation 

 

Genomic DNAs and RNAs were simultaneously 

extracted from the spleen tissues using All Prep® DNA/ 

RNA Mini Kit (Qiagen, Germany) following the 

manufacturer’s instruction. 

 

Reduced representation bisulfite sequencing (RRBS) 

 

Bisulfite-converted MspI-restricted genomic fragments 

were molecularly indexed and sequenced using an in-

house developed RRBS method (Supplementary Figure 

1). In this method, we devised two different adaptors 

with a CpG overhang in one end. Adaptor-A carries a 

molecular barcode and the binding site for Illumina R1 

sequencing primer. Adaptor-B has the binding site for 

Illumina R2 sequencing primer. All the cytosines on the 

Illumina primer binding sites of two adaptors were 

protected from bisulfite conversion as they were priorly 

methylated during synthesis. Fragmented genomic 

DNAs (100ng) were purified using Zymo DNA  

clean-up Kit (Zymo Research, USA) and ligated with 

the adaptors (2 pmol/each) at 25° C for 30 min using 

Blunt/TA Ligase Master Mix (NEB, USA). The 

recessive part of the ligates was then filled in using Tag 

DNA polymerase (Solgent, Korea) at 72° C for 30 min, 

which concomitantly removes the unligated adaptor 

strand. In this Fill-in step, dCTP was replaced with 

methyl-dCTP. Bisulfite conversion was performed for 

the adaptor-attached MspI fragments using the EZ DNA 

Methylation-Gold™ Kit (Zymo Research, USA) 

following the manufacturer’s instructions. After 

bisulfite conversion, MspI fragments were subsequently 

amplified by two successive rounds of PCR to generate 

sequencing-ready libraries. First PCR was performed 

using primers, P1 and P2, for 10 cycles of 95° C for 

30sec, 60° C for 30sec, and 72° C for 30 sec. Second 

PCR was performed using index primers, idxP1, and 

idxP2, for 10 cycles of 95° C for 30 sec, 60° C for 30 

sec, and 72° C for 30 sec. Massive parallel sequencing 

was performed on Illumina Hiseq platform with 151 bp 

paired-end reading. 

 
SiNG-PCRseq 

 
Total RNA (1ug) was converted to cDNA using iScript 

cDNA Synthesis Kits (Bio-Rad, USA). SiNG-PCRseq 

was performed using the cDNA and the rat genomic DNA 

as a competitor array for the target genes as described 

previously. Briefly, we composed 10 primer pools using 

424 primer pairs and used each in multiplexed PCR with 

15 ng of mouse cDNA and 2 ng of rat gDNA as templates 

in the following conditions: 95° C for 15 min, 45 cycles of 

95° C/20 sec, 57° C /40 sec, 72° C/1 min, followed by a 

final extension at 72° C for 5 min. The Amplicons were 

pooled together for each sample and purified using Expin 

purification kit (GeneAll, Korea), 5’-end phosphorylated 

using T4 polynucleotide kinase (NEB) by incubating at 37 

for 30 min, ligated with NGS adapters using T4 ligase 

(NEB) at 25 for 2 hours and amplified using idxP1 and 

idxP2 to generate sequencing libraries with following 

conditions: after 98° C for 15 min, 20 cycles of 98° C/20 

sec, 68° C/30 sec, and 72° C/1 min, followed by a final 

extension at 72° C for 5 min. Three independent libraries 

were prepared for each sample to ensure reproducibility. 

Additionally, a library of genome mixture of mouse and 

rat was generated in triplicate and used to correct for any 

amplification biases in the target DNA. Massive parallel 

sequencing was performed on Illumina Nextseq platform 

with 151 bp single-end reading. 

 
Sequence analysis 

 
The read data from the RRBS sequencing were processed 

using trim_galore (version 0.6.6) to remove the adaptors. 

The cleaned reads were then aligned to the mouse 

reference genome (mm10) using the Bismark package 

(version 0.22.3). The methylation status of each CpG 

site was determined using ad hoc Perl scripts. Clonal 

copies were identified by the presence of the same 

molecular barcode and were removed by deduplication. 

The methylation levels of CpG sites were collected, and 
only those with at least 10 deduplicated reads in each 

sample were selected for further analysis. To compare 

the global and regional methylation patterns between 
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samples, only CpG sites with qualified methylation 

levels from at least 13 samples were used in the analysis. 

The promoter region was defined as the region of 2 

kilobases surrounding the transcription start site (TSS ± 

1 kilobase), the gene body region was defined as the 

region from the start to end described in the annotation 

files, and the intergenic region was defined as any  

other region. To capture the collective influence of 

neighboring CpG sites, the intergenic CpG block was 

operationally defined as the region where any two 

neighboring CpG sites are less than 1 kilobase apart from 

each other in the intergenic region.  

 

The read data from SiNG-PCRseq were analyzed 

essentially as described. Briefly, adaptor-trimmed 

sequences were identified for their target and species 

origin by aligning them to the target DNA sequences 

using the BLAST program. The count data for each 

target sequence from each sample were obtained and 

subjected to a quality filter. Targets were excluded if 

any reference library had fewer than 100 read counts or 

if any sample library had read 300 counts. The count 

data for each target amplicon from each sample were 

utilized to determine the mouse fraction. Targets with 

extensive amplification bias in the reference sample 

(<0.3 or >0.7) were excluded from the analysis. The 

amplification biases present in the mouse fractions of 

the remaining targets were corrected by employing the 

mouse fractions of the reference sample as previously 

described. The bias-corrected fractions were then 

converted to relative quantities of the rat amplicon and 

normalized by using the average relative quantities of 

the library. The final expression values of a sample 

were determined by averaging the relative quantities 

obtained from the triplicate libraries of the sample. 

 

Data availability 

 

Sequencing data were deposited under GSE203289.  
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Scheme for RRBS library construction. (A) Our RRBS method utilizes two adaptors, depicted schematically, 
both of which have a partially double-stranded DNA structure with a CG overhang in their duplex region. Adaptor-A and Adaptor-B both 
contain an Illumina sequencing primer binding site (R1 and R2, respectively). Additionally, Adaptor-A has an 8-nucleotide random barcode 
between the primer binding site and the duplex region. The cytosine residues in the primer binding sites are pre-methylated to prevent their 
conversion by bisulfite. The 5’ end of the strand with the CG overhang lacks a phosphate group, making it unable to participate in the ligation 
reaction. (B) The RRBS process is depicted in a schematic representation. After restriction by MspI, the DNAs are ligated with adaptors A and 
B, as shown in the figure. Only one form of ligation is depicted where both adaptors are attached to an MspI fragment, however, other forms 
of ligation are also possible, where the same adaptors are attached to both ends of a DNA fragment. These types of ligation can result in PCR 
suppression due to intra-strand duplex formation between the adaptor sequences. Following ligation, the fill-in reaction using dNTPs takes 
place, where dCTP is substituted with methyl-dCTP to make the nascent DNA resistant to bisulfite conversion. The double-stranded DNAs are 
then denatured and subjected to bisulfite conversion. Finally, the bisulfite-converted DNAs are amplified using primers for the Illumina 
sequencing platform and a sample index, generating the sequencing-ready library. 
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Supplementary Figure 2. RRBS data information. (A) The distribution of unique alignment sequences (Uniq_aln) across each sample is 

shown, along with the total number of sequencing reads (Tot_pair) and the fraction of methylated CpGs out of the total CpGs (Meth_rate)  
(B) The read profile following Bismark alignment is depicted in a box plot for total reads, uniquely aligned reads (Uniq_aln), reads aligned to 
multiple loci (Multi_aln), and unaligned reads (No_aln) on the left. The proportion of reads for each alignment pattern is illustrated in a pie 
chart on the right. (C) All mapped genomic loci were classified based on the number of CpG sites present in their sequences. The frequency of 
each category is displayed in a bar chart on the left axis, with the total number of deduplicated reads mapped on each category on the right 
axis. (D) The abundance of CpG sites with the given number of deduplicated read depths is plotted along with the accumulated fraction of 
CpG sites from low depth to high depth. 
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Supplementary Figure 3. (A) The normal distribution patterns of methylation levels (m-values) in 2m or 12m samples (blue) and 23m (red) 

samples. The sample means are represented by vertical lines. The sample means and the standard deviations are shown (blue for 2m or 12m 
and red for 23m). (B) The frequency of genomic regions across intervals of CpG numbers for different genomic structures/functions 
(promoters, gene bodies, and intergenic regions). 
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Supplementary Figure 4. Scatter plots of 6m (A), 12m (B), 23m (C), and combined samples (D) for methylation levels of HH (blue) and LL 

(yellow) labeled CpGs versus 2m samples. Each dot corresponds to a single CpG site. Dashed lines indicate the 1:1 reference line and thick 
lines denote the regression lines of given classifications. 
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Supplementary Figure 5. Dependence of the age-linked methylation-change pattern on the region’s methylation level. In (A) 

gene-body regions were grouped by methylation level (0.1 intervals of b-value, y-axis) as indicated by lines in different colors. The number of 
genebody regions in each methylation interval is shown. In (B) a contrasting pattern of age-associated methylation change is shown between 
the low-methylation (<10%, orange) and high-methylation (>90%, blue) groups. Pearson correlation (R) coefficient is indicated. 

 

 
 

Supplementary Figure 6. Expression level of DNA methyltransferase (Dnmt) genes. From the SiNG-PCRseq, the expression levels of 

Dnmt1, Dnmt3b, and Dnmt3l were determined by M/R ratio (see text for details). Two different Dnmt1 exonic sequences as indicated by 
Dnmt1_1 and Dnmt1_2 were chosen for analysis. Error bars indicate the standard deviation. 
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Supplementary File 
 

Please browse Full Text version to see the data of Supplementary File 1. 

 

Supplementary File 1. SiNG-PCR-seq count data. 

 


