
www.aging-us.com 6361 AGING 

INTRODUCTION 
 
Atherosclerosis (AS) is a local chronic inflammatory 
disease of the artery wall [1]. In AS, the inflammatory 
response is maintained for decades by the inflow, 
proliferation, and activation of immune cells [2, 3]. 
Among the many types of immune cells, macrophages 
have attracted great interest in AS because of their 

complex functions and numerous subtypes [4, 5]. Under 
the stimulation of the atherosclerotic microenvironment, 
macrophages can polarize into different types of 
macrophages, which involves changes in gene expression 
profile and cell functions [6]. In previous studies, 
polarized macrophages were mainly divided into M1 
macrophages and M2 macrophages according to their 
phenotype and functions [7, 8]. M1 macrophages, as 
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ABSTRACT 
 
Background: Macrophages play an important role in the occurrence and development of atherosclerosis. 
However, few existing studies have deliberately analyzed the changes in characteristic genes in the process of 
macrophage phenotype transformation. 
Method: Carotid atherosclerotic plaque single-cell RNA (scRNA) sequencing data were analyzed to define the cells 
involved and determine their transcriptomic characteristics. KEGG enrichment analysis, CIBERSORT, ESTIMATE, 
support vector machine (SVM), random forest (RF), and weighted correlation network analysis (WGCNA) were 
applied to bulk sequencing data. All data were downloaded from Gene Expression Omnibus (GEO). 
Result: Nine cell clusters were identified. M1 macrophages, M2 macrophages, and M2/M1 macrophages were 
identified as three clusters within the macrophages. According to pseudotime analysis, M2/M1 macrophages 
and M2 macrophages can be transformed into M1 macrophages. The ROC curve values of the six genes in the 
test group were statistically significant (AUC (IL1RN): 0.899, 95% CI: 0.764-0.990; AUC (NRP1): 0.817, 95% CI: 
0.620-0.971; AUC (TAGLN): 0.846, 95% CI: 0.678-0.971; AUC (SPARCL1): 0.825, 95% CI: 0.620-0.988; AUC (EMP2): 
0.808, 95% CI: 0.630-0.947; AUC (ACTA2): 0.784, 95% CI: 0.591-0.938). The atherosclerosis prediction model 
showed significant statistical significance in both the train group (AUC: 0.909, 95% CI: 0.842-0.967) and the test 
group (AUC: 0.812, 95% CI: 0.630-0.966). 
Conclusions: IL1RNHigh M1, NRP1High M2, ACTA2High M2/M1, EMP2High M1/M1, SPACL1High M2/M1 and TAGLNHigh 
M2/M1 macrophages play key roles in the occurrence and development of arterial atherosclerosis. These 
marker genes of macrophage phenotypic transformation can also be used to establish a model to predict the 
occurrence of atherosclerosis. 
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proinflammatory macrophages, can release a variety of 
chemokines and proinflammatory cytokines, including 
CCL2 (MCP-1), CCL3 and IL-1β, IL-6, IL-12, IL-23 and 
TNF, which can induce inflammatory reactions and can 
also secrete reactive oxygen intermediates (ROI), nitric 
oxide (NO) and lysosomal enzymes to kill and remove 
pathogens. However, ROS can induce tissue damage, 
leading to irreparable tissue damage, which may promote 
the formation of atherosclerosis and reduce the stability 
of atherosclerotic plaques [9]. In contrast, activated 
macrophages (M2) play a preventive role in the 
progression of human and mouse atherogenesis. M2 
macrophages, as anti-inflammatory macrophages, mainly 
secrete anti-inflammatory cytokines, typically including 
IL-10 and TGF-β [10, 11]. These factors counteract the 
proinflammatory effects caused by M1 macrophages, 
thus promoting tissue repair and reducing tissue damage. 
In atherosclerotic plaques, M2 macrophages can inhibit 
the formation of atherosclerosis and maintain plaque 
stability [12, 13].  
 
With the improved understanding of atherosclerosis  
by researchers, traditional lipid-lowering and anti-
inflammatory treatments are being replaced by 
targeted treatments [14]. Research on the prevention 
and treatment of atherosclerosis has also become 
refined in this era [14]. These technologies include 
nanotechnology drug treatment, regulation of the ratio 
of M1/M2 macrophages, control of macrophage 
phenotype conversion, and regulation of the plaque 
microenvironment [8]. 
 
In this study, we analyzed the phenotypic transformation 
of macrophages in atherosclerosis through pseudotime 
analysis. We identified a class of macrophages that 
simultaneously express M1 and M2 macrophage marker 
genes and can transform into M1 or M2 macrophages. 
Finally, we selected the genes with the most obvious 
differential expression to build an atherosclerosis 
prediction model based on the results of macrophage 
pseudotime analysis. These genes may provide new 
ideas for the targeted treatment of atherosclerosis. 
 
MATERIALS AND METHODS 
 
Bulk sequencing data processing 
 
We downloaded GSE43292 (training group) and 
GSE28829 (test group) from the GEO database 
(https://www.ncbi.nlm.nih.gov/). We used the “WGCNA” 
package [15] to screen disease-characteristic genes from 
GSE43292. We utilized the “limma” package and the 
“VennDiagram” package to identify 223 intersecting genes 
(Supplementary Table 5) obtained from macrophage cell 
trajectory analysis. We then took the intersection of these 
genes with the 1086 AS-characteristic genes 

(Supplementary Table 4) obtained from GSE43292, 
resulting in 50 macrophage-related genes (Supplementary 
Table 6). Next, we compared the residual value and AUC 
curve of random forest (RF) and support vector machine 
(SVM) models. Finally, we used the RF method to select 
disease-characteristic genes again. Independent heatmaps 
of intersecting genes were drawn in the training and test 
groups. We selected the important genes with an RF 
score>1 in the training group and drew the AUC (area 
under the curve) curve in the test group for verification. 
Next, we used these genes to construct a disease prediction 
model. The “rms” and “rmda” packages [16] were used to 
draw the nomogram, calibration curve, decision curve 
analysis (DCA) [17], and clinical impact curve of DEGs 
predicting atherosclerosis in patients.  
 
scRNA sequencing data processing 
 
We downloaded the GSE159677 single-cell dataset from 
the GEO database (https://www.ncbi.nlm.nih.gov/). We 
removed cells with fewer than 200 genes, more than 
7,000 genes, or more than 10% mitochondrial genes. 
Analysis was performed on 49576 filtered cells. Using 
the “LogNormalize” method, gene expression was 
normalized and scaled. In each sample, the top 2000 
highly variable genes (HVGs) were identified using the 
“vst” method after data normalization. After identifying 
significant principal components (PCs), PCA was 
applied. Batch correction was performed using the 
“Harmony” R package (version 0.1.0) to avoid batch 
effects resulting from sample identity that could disrupt 
downstream analysis. Finally, 50 PCs were selected for t-
distributed stochastic neighbor embedding (t-SNE) 
analysis. We set “FindClusters” with a resolution of 2.0 
to divide cells into 45 different clusters, which were 
divided into 9 cell types, and conducted manual 
inspection according to the results of “FindAllMarkers”. 
 
We used the same method to set “FindClusters” to 
divide macrophages into 13 different clusters with a 
resolution of 0.05, divided these clusters into three cell 
types with marker genes, and used the results of 
“FindAllMarkers” for manual inspection. The results of 
uniform manifold approximation and projection for 
dimension reduction (UMAP) were visualized, and a 
heatmap of macrophage subtypes was drawn. 
 
We analyzed the trajectory of M1 macrophages and M2 
macrophages with the “Monocle” package [18] and 
drew a heatmap. We used the same method to analyze 
M2 macrophages and M2/M1 macrophages, M1 
macrophages and M2/M1 macrophages. 
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Availability of data and materials 
 
The data for this study were derived from the GEO 
database (https://www.ncbi.nlm.nih.gov/geo/). 
 
RESULTS 
 
Analysis the heterogeneity of macrophages in the 
atherosclerotic single-cell transcriptome 
 
Forty-five clusters could be assigned to known cell 
lineages according to the marker genes defined in a 

previous study (Figure 1A and Supplementary Table 1). 
We used t-SNE analysis to visualize the 9 clusters 
(Figure 1B) and identify marker genes in the 9 cell-type 
populations (Supplementary Table 2). The expression of 
cell type marker genes is shown in the dot plot (Figure 
1C). We observed 9 cell clusters (CD4T/NK cells: 
clusters 2, 3, 6, 14, 16, 28, 30, 32 and 37, expressing 
CD3D [19], CD7 [20], and IL7R (interleukin 7 
receptor) [21]; CTLs: clusters 0, 4 and 20, expressing 
CD8A [22]; Endothelial cells: clusters 5, 15, 21, 22, 33, 
39, 43 and 44, expressing vWF and CLDN5 [23, 24]; 
Fibroblasts/vSMCs: clusters 7, 8, 13, 17, 18, 19, 23, 29, 

 

 
 

Figure 1. Single-cell transcriptome data: (A, B) The single cells were divided into 45 groups on the basis of their transcriptome data and then 
ultimately divided into 9 cell populations. (C) Circle chart: The X-axis represents the marker genes that define the cells, and the Y-axis 
represents the different cell populations. 
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31 and 35, expressing LUM (Lumican) [25] and 
ACTA2 (alpha actin 2, smooth muscle); vSMCs: 
clusters 2, 5, 14, 15, 21, 28, 30, 34, 41 and 42, 
expressing ACTA2 (alpha actin 2, smooth muscle) [26, 
27]; B/Plasma_B cells: clusters 9, 24 and 40, expressing 
CD79A [28]; Macrophages: clusters 1, 10, 11, 12, 25, 
36 and 38, expressing FCGR3A [29]; Mast cells: cluster 
27, expressing CPA3 [30]; Monocytes: clusters 34, 
expressing FCGR3B (https://panglaodb.se/); and DCs: 
clusters 26, 41 and 42, expressing CD1C [31], CLEC9A 
[32], LILRA4 (https://panglaodb.se/).  
 
Thirteen clusters could be assigned to known cell 
lineages on the basis of marker gene expression  
(Figure 2A). We used t-SNE analysis to visualize the 9 
clusters (Figure 2B) and identify marker genes in the 3 
cell-type populations (Supplementary Table 3). We 
observed 3 cell clusters (M1: clusters 0, 3, 4, 5, 8 and 12, 
expressing MACRO [33] and IL1B [34]; M2: clusters 2, 
7, expressing MRC1 [35, 36]; and M2/M1: clusters 1, 6, 
9, 10 and 11, expressing both MRC1 and IL1B. 
Difference expressed genes analysis of the macrophage 

subtypes indicated that M2/M1 macrophages may  
be more similar to M2 macrophages than to M1 
macrophages (Figure 2C, 2D). 
 
Macrophage trajectory analysis 
 
According to the trajectory analysis of M1 
macrophages and M2 macrophages, we found that M2 
macrophages can transform into M1 macrophages over 
time and that this trajectory can be divided into 5 states 
(Figure 3A–3C). By analyzing the cell trajectory (cell 
trajectory direction: from left to right), we divided the 
genes into two clusters. The expression of MRC1, the 
marker gene of M2 macrophages, decreased with time 
in cluster 2; MARCO and IL1B, the marker genes of 
M1 macrophages, increased with time in cluster 1 
(Figure 3D–3G). KEGG analysis was performed on the 
genes of cluster 1, and a total of 11 signaling pathways 
were obtained. Among them, the IL17 signaling 
pathway, HIF-1 signaling pathway, and PPAR signaling 
pathway were closely related to the formation of 
atherosclerosis. 

 

 
 

Figure 2. (A, B) The macrophage population was divided into 13 clusters, which were finally categorized into 3 cell populations (M1, M2, 
M2/M1). (C) Differential gene analysis among different subtypes of macrophages: The X-axis represents the macrophage subtypes, and the Y-
axis represents the differentially expressed genes. (D) Violin plot of macrophage marker genes. 
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According to the trajectory analysis of M1 macrophages 
and M2/M1 macrophages, we found that M2/M1 
macrophages can transform into M1 macrophages over 
time and that the trajectory could be divided into 5 
states (Figure 4A–4C). By analyzing the cell trajectory 
(cell trajectory direction: from left to right), we divided 
the genes into two clusters. The expression of MRC1, 
the marker gene of M2 macrophages, decreased with 

time in cluster 2; MARCO and IL1B, the marker genes 
of M1 macrophages, increased with time in cluster 1 
(Figure 4D–4G). KEGG analysis was performed on the 
genes of cluster 1, and a total of 11 signaling pathways 
were obtained. Among them, the IL17 signaling 
pathway, HIF-1 signaling pathway, PPAR signaling 
pathway and fluid shear stress and atherosclerosis were 
closely related to the formation of atherosclerosis. 

 

 
 

Figure 3. (A–C) Trajectory analysis of M1 macrophages and M2 macrophages. (D) The trajectory analysis of the heatmap of M1 
macrophages versus M2 macrophages: The X-axis represents the timeline of trajectory analysis, the left Y-axis represents the KEGG 
enrichment results, and the right Y-axis represents the differentially expressed genes between the two clusters. (E–G) Pseudotime analysis 
of genes (MRC1, IL1B, and MARCO): The X-axis represents the cell of trajectory analysis, and the Y-axis represents the relative expression of 
the gene. 
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According to the trajectory analysis of M2 macrophages 
and M2/M1 macrophages, we found that M2/M1 
macrophages can transform into M2 macrophages over 
time and that the trajectory could be divided into 5 states 
(Figure 5A–5C). By analyzing the cell trajectory (cell 
trajectory direction: from left to right), we divided the 
genes into two clusters. The expression of MRC1, the 
marker gene of M2 macrophages, decreased with time in 

cluster 2; IL1B, the marker gene of M1 macrophages, 
increased with time in cluster 1 (Figure 5D–5F). KEGG 
analysis was performed on the genes of cluster 1, and a 
total of 6 signaling pathways were obtained. These 
signaling pathways are mainly related to chemokines. In 
the single-cell transcriptome, IL1RN was upregulated 
during the transformation of M2 macrophages into M1 
macrophages; SPARCL1, TAGLN and EMP2 were 

 

 
 

Figure 4. (A–C) Trajectory analysis of M1 macrophages and M2/M1 macrophages. (D) The trajectory analysis of the heatmap of M1 
macrophages versus M2/M1 macrophages. The X-axis represents the timeline of trajectory analysis, the left Y-axis represents the KEGG 
enrichment results, and the right Y-axis represents the differentially expressed genes between the two clusters. (E–G) Pseudotime analysis 
of genes (MRC1, IL1B, and MARCO). The X-axis represents the cell of trajectory analysis, and the Y-axis represents the relative expression of 
the gene. 
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downregulated during the transformation of M2/M1 
macrophages into M1 macrophages; IL-1RN was 
upregulated during the transformation from M2/M1 
macrophages to M1 macrophages; NRP1 was 
upregulated during the transformation from M2/M1 
macrophages to M2 macrophages; and SPARCL1, 
TAGLN and ACTA2 were downregulated during the 
transformation of M2/M1 macrophages into M2 
macrophages. 

Disease prediction model results  
 
A total of 1086 AS-characteristic genes (module 
membership vs. gene significance cor=0.87, p<1e-200) 
from WGCNA and 223 DEGs in the macrophage 
trajectory analysis were obtained. Of these, we identified 
50 intersecting genes (Figure 6A–6C). The comparison 
of the accuracy of SVM and RF in screening disease-
characteristic genes indicated that the accuracy of RF 

 

 
 

Figure 5. (A–C) Trajectory analysis of M2 macrophages and M2/M1 macrophages. (D) The trajectory analysis of the heatmap of M2 
macrophages versus M2/M1 macrophages. The X-axis represents the timeline of trajectory analysis, the left Y-axis represents the KEGG 
enrichment results, and the right Y-axis represents the differentially expressed genes between the two clusters. (E, F) Pseudotime analysis 
of genes (MRC1, IL1B, and MARCO). The X-axis represents the cell of trajectory analysis, and the Y-axis represents the relative expression of 
the gene. 
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was higher (Figure 6D–6F). We used the RF analysis 
method to obtain a total of 6 disease-characteristic genes 
(IL1RN, TAGLN, SPARCL1, NRP1, EMP2, and 
ACTA2) (Figure 6G, 6H). 

The nomogram indicated that the probability of 
atherosclerosis increased to 90% when the total score of 
6 disease-characteristic genes reached 160 and 10% 
when it reached 120 (Figure 7A). The calibration curve 

 

 
 

Figure 6. (A) The leftmost color block represents the module, and the rightmost color bar represents the correlation range. In the heatmap 
in the middle part, the darker the color is, the higher the correlation. Red indicates a positive correlation, and blue indicates a negative 
correlation. The numbers in each cell indicate relevance and significance. The X-axis represents the sample type. (B) A scatterplot of gene 
significance (GS) for treat vs. module membership in the turquoise module. There is a highly significant correlation between GS and MM in 
the module. (C) The left circle represents the disease-characteristic genes screened using the WGCNA method, and the right circle represents 
the characteristic genes that change most clearly over time between macrophage subtypes. The intersection of the two circles represents the 
intersecting genes. (D, E) Boxplot of the residual and reserve cumulative distribution of the residual. (F) The ROC curve shows the difference 
between SVM and RF. (G, H) RF analysis results and screening for important genes. 
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suggested that the model had reasonable accuracy in 
predicting the incidence of atherosclerosis (Figure 7B). 
DCA once again proved that the model has clinical 
utility (Figure 7C). The clinical impact curve showed 
that the benefit rate of the model was higher when the 
number of high-risk factors for atherosclerosis was 
smaller (Figure 7D). 

The NRP1 and IL1RN genes were significantly 
upregulated in both the training group and test group, 
while TAGLN, SPARCL1, EMP2 and ACTA2 were 
significantly downregulated in both the training group 
and test group (Figure 8A, 8B). The ROC curve values of 
the six genes in the test group were statistically 
significant (AUC (IL1RN): 0.899, 95% CI: 0.764-0.990; 

 

 
 

Figure 7. (A) A nomogram was created to represent the disease model. It uses the X-axis to display the expression of a single gene, as well as 
the score scale of a single gene, the total score scale of all genes, and the disease incidence scale. Meanwhile, the Y-axis shows individual 
genes, points, total points, and risk of disease. (B) A graph was used to plot the predicted event rate (Predicted Probability) on the abscissa 
and the observed actual event rate (Actual Rate) on the ordinate, ranging from 0 to 1. This can be interpreted as the event rate in 
percentage. The diagonal dashed line serves as the reference line, representing the scenario where the predicted value equals the actual 
value. (C) The DCA graph employs the threshold probability (ThresholdProbability) on the abscissa and the net profit rate after subtracting 
the disadvantages on the vertical axis. (D) A graph was used to represent the high-risk threshold and benefit rate on the abscissa, and the 
number of high risks on the ordinate. 
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Figure 8. (A) Heatmap of intersecting genes in the training group. (B) Heatmap of intersecting genes in the test group. (C–H) ROC curves of 
disease signature genes in the test group. (I, J) The area under the curve of the AS prediction model in the train group and test group. 
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AUC (NRP1): 0.817, 95% CI: 0.620-0.971; AUC 
(TAGLN): 0.846, 95% CI: 0.678-0.971; AUC 
(SPARCL1): 0.825, 95% CI: 0.620-0.988; AUC (EMP2): 
0.808, 95% CI: 0.630-0.947; AUC (ACTA2): 0.784, 95% 
CI: 0.591-0.938) (Figure 8C–8H). We constructed an AS 
prediction model using these six genes, which showed 
significant statistical significance in both the train group 
(AUC: 0.909, 95% CI: 0.842-0.967) and test group 
(AUC: 0.812, 95% CI: 0.630-0.966). 
 
DISCUSSION 
 
Atherosclerosis plays an important role in cardiovascular 
disease. Its pathological mechanisms include dysfunction 
of the endothelial cell barrier, lipid accumulation, 
abnormal angiogenesis, and local chronic 
inflammatory reaction caused by immune cell 
infiltration (including T cells, B cells, myeloids), 
among others [37–39]. Among numerous immune 
cells, macrophages are undoubtedly the most 
important in the evolution of atherosclerosis, and their 
polarization acts as a double-edged sword in the 
occurrence and development of atherosclerosis [40]. 
The polarization of macrophages can also regulate the 
stability of plaques [41]. In our study, according to the 
results of pseudotime analysis, we found that M2 
macrophages can transform into M1 macrophages, and 
M2/M1 (MRC1(+) IL1B (+)) macrophages can 
transform into M1 or M2 macrophages. According to 
the RF method, a total of six disease-characteristic 
genes of atherosclerosis were identified: in the single-
cell transcriptome, IL1RN was upregulated during the 
transformation of M2 macrophages into M1 
macrophages; SPARCL1, TAGLN and EMP2 were 
downregulated during the transformation of M2/M1 
macrophages into M1 macrophages; IL-1RN was 
upregulated during the transformation from M2/M1 
macrophages to M1 macrophages; NRP1 was 
upregulated during the transformation from M2/M1 
macrophages to M2 macrophages; and SPARCL1, 
TAGLN and ACTA2 were downregulated during the 
transformation of M2/M1 macrophages into M2 
macrophages. The changes in these genes in the bulk 
transcriptome were consistent. 
 
The IL1RN gene has been found to have variable 
numbers of an 86 base pair (bp) tandem repeat in intron 2 
[42], and this polymorphism is associated with various 
inflammatory diseases (systemic lupus erythematosus 
[43], type 2 diabetes mellitus (T2DM) [44]) and ischemic 
stroke [45]. A recent study showed that in thoracic aortic 
dissection, IL1RNHigh macrophages, as a subtype of 
proinflammatory macrophages, are the main source of 
MMPs and inflammatory cytokines, which strengthens 
the formation of thoracic aortic aneurysm [46]. It was 
also predicted that these macrophages would be 

considered target cells for the treatment of patients with 
thoracic aortic aneurysm in the future. This is in line with 
our research results; in our study, M2 and M2/M1 
macrophages were transformed into IL1RNHigh M1 
macrophages. 
 
Neuron-1 (NRP1) belongs to the neurotransmitter family 
[47]. NRP1 is known to be overexpressed by 
macrophages in acute and chronic inflammation-related 
diseases (sepsis [48], type II diabetes [49, 50], and 
metabolic syndrome [51], etc.). Its function is mainly to 
act as a common receptor of Semaphorin 3A (Sema3A) 
and vascular endothelial growth factor a (VEGF-A165), 
thus regulating development and pathological 
angiogenesis, arteriogenesis and vascular permeability 
[52]. In atherosclerotic plaques, microvascular growth, 
or angiogenesis, destroys the stability of the plaque, thus 
increasing the risk of rupture [53]. In addition, some 
studies have proven (mainly in the context of cancer) 
that M2 macrophages can promote the formation of 
pathological microvessels [54, 55]. In our study, NRP1 
was identified as a disease-characteristic gene of 
atherosclerosis, which indicates that NRP1High M2 
macrophages may be a major risk factor for the 
formation and stability of atherosclerosis. 
 
According to previous studies, ACTA2 is a marker gene 
of vascular smooth muscle cells [56]. Some studies 
have shown that VSMCs can take up lipids and become 
foam cells [57], and undergo phenotypic transfer to 
macrophage like status in atherosclerotic plaques [58, 
59]. In this study, we obtained ACTA2High M2/M1 
macrophages and found that they can transform into M1 
and M2 macrophages and that the expression of ACTA2 
decreased significantly during this period. This 
indicates that ACTA2High M2/M1 macrophages may be 
involved in the development of atherosclerosis. 
 
EMP2 is expressed at a high level in a large number of 
human tissues, including adult ovarian, heart, lung and 
intestinal tissues and fetal lung tissues [60]. The protein 
produced by EMP2 is a four-transmembrane protein that 
has been found to mediate a variety of vascular reactions 
[61]. In cancer-related studies, we observed that the 
higher the expression level of EMP2 in various tumor 
models in vitro, the more obvious the expression of 
pathological angiogenesis-related pathways was [62–65]. 
Some studies have also shown that the proportion of M1 
macrophages in the placenta is significantly increased in 
EMP2 knockout rats [61]. Based on the above results, 
we boldly speculate that EMP2High M2/M1 macrophages 
can not only promote the formation of pathological 
blood vessels, resulting in the destruction of plaque 
stability, but also become proinflammatory macrophages 
(EMP2Low M1 macrophages) through phenotypic 
transformation. 
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Secreted acidic cysteine-rich protein-1 (SPARCL1) 
belongs to the matrix cell protein SPARC family and is 
an extracellular matrix (ECM) glycoprotein [66]. At 
present, research on SPARCL1 has mainly been 
performed in the context of cancers, including lung 
cancer [67, 68], prostate cancer [69], colon cancer [70], 
etc. Little is known about its function in the context of 
cardiovascular disease. One study showed that 
SPARCL1 can inhibit angiogenesis and support vascular 
morphogenesis and integrity [71]. We predict that 
SPACL1High M2/M1 macrophages may play a role in 
inhibiting the formation of carotid atherosclerosis and 
maintaining the stability of carotid plaques by inhibiting 
angiogenesis. 
 
It is well known that the smooth muscle cell marker 
TAGLN (SM22α) is downregulated in the pathogenesis 
of atherosclerosis, restenosis, abdominal aortic 
aneurysm and other arterial diseases [72]. Here, we 
speculate that TAGLNHigh macrophages (in the M2/M1 
macrophage subgroup) may be similar to ACTA2High 
macrophages and originate from vascular smooth 
muscle cells. TAGLNHigh M2/M1 macrophages can 
transform into TAGLNLow M1 and TAGLNLow M2 
macrophages, and the expression of TAGLN decreases 
significantly during this period. 
 
We identified 6 kinds of macrophages that may be related 
to the occurrence and development of atherosclerosis: 
IL1RNHigh M1, IL1RNHigh M1, NRP1High M2, ACTA2High 
M2/M1, EMP2High M1/M1, SPACL1High M2/M1 and 
TAGLNHigh M2/M1 macrophages. This study is the first 
to use these macrophage marker genes to construct a 
model for predicting atherosclerosis. The expression 
trend of these genes in bulk transcriptome data is 
consistent with the expression trend of macrophage 
pseudotime analysis, which again proves the accuracy  
of these genes as disease-characteristic genes in 
atherosclerosis. 
 
CONCLUSIONS 
 
IL1RNHigh M1 macrophages, NRP1High M2 macrophages, 
ACTA2High M2/M1 macrophages, EMP2High M1/M1 
macrophages, SPACL1High M2/M1 macrophages and 
TAGLNHigh M2/M1 macrophages play a key role in the 
occurrence and development of arterial atherosclerosis. 
These macrophages may become target cells for treating 
atherosclerosis in the future. These macrophage marker 
genes can also be used to build a model to predict 
atherosclerosis. 
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Supplementary Table 1. Marker genes of the 45 clusters. 

Supplementary Table 2. Marker genes of the 9 cell clusters. 

Supplementary Table 3. Marker genes of 3 cell clusters of macrophages. 
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Supplementary Table 5. The 223 DEGs in the macrophage trajectory analysis. 

Supplementary Table 6. The intersection of 50 macrophage-related genes. 
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