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INTRODUCTION 
 
Brain tumors are the tenth most fatal human 
malignancy, accounting for around 3 percent of all 
cancer deaths, according to recent data from cancer 
centers [1]. Glioma is the most common malignant 

intracranial tumor [2, 3]. The World Health 
Organization (WHO) has classified gliomas by grades 
based on their pathological characteristics, with grades I 
and II representing low-grade glioma (LGG) and grades 
III and IV representing high-grade glioma (HGG). LGG 
accounts for approximately 15% of all gliomas. Most 
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ABSTRACT 
 
Background: Individuals with low-grade glioma (LGG) have a dismal prognosis, and most patients will 
eventually progress to high-grade disease. Therefore, it is crucial to accurately determine their prognoses. 
Methods: Seventy-nine NK cell genes were downloaded from the LM22 database and univariate Cox regression 
analysis was utilized to detect NK cell-related genes affecting prognosis. Molecular types were established for 
LGG using the “ConsensusClusterPlus” R package. The results from a functional enrichment analysis and the 
immune microenvironment were intensively explored to determine molecular heterogeneity and immune 
characteristics across distinct subtypes. Furthermore, a RiskScore model was developed and verified using 
expression profiles of NK cells, and a nomogram consisting of the RiskScore model and clinical traits was 
constructed. Moreover, pan-cancer traits of NK cells were also investigated. 
Results: The C1 subtype included the greatest amount of immune infiltration and the poorest prognosis among 
well-established subtypes. The majority of enriched pathways were those involved in tumor progression, 
including epithelial-mesenchymal transition and cell cycle pathways. Differentially expressed genes among 
distinct subtypes were determined and used to develop a novel RiskScore model. This model was able to 
distinguish low-risk patients with LGG from those with high-risk disease. An accurate nomogram including the 
RiskScore, disease grade and patient’s age was constructed to predict clinical outcomes of LGG patients. Finally, a 
pan-cancer analysis further highlighted the crucial roles of NK cell-related genes in the tumor microenvironment. 
Conclusions: An NK cell-related RiskScore model can accurately predict the prognoses of patients with LGG and 
provide valuable insights into personalized medicine. 
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LGGs eventually progress to HGGs, with poor 
prognosis [4]. At present, LGG tumors are often 
surgically resected, accompanied by radiotherapy and 
chemotherapy [5, 6]. Due to the invasive growth 
characteristics of gliomas, surgical resection or 
radiotherapy cannot avoid tumor recurrence [7]. 
Therefore, it is necessary to determine an efficient 
treatment plan. Currently, when treating LGG, it is best 
to surgically remove as much of the tumor as possible, 
but the treatment plan for individuals who have 
unresectable disease is highly controversial. Therefore, 
an in-depth understanding of the pathogenesis of LGG 
is essential to manage and treat patients with LGG to 
improve their prognoses. 
 
In order for cancer cells to form and spread, they need a 
specific environment known as the tumor 
microenvironment (TME) [8, 9]. The infiltration of 
immune cells into the TME has been shown to influence 
cancer progression and has strong prognostic value for 
LGG [10]. The onset and progression of LGG are 
inextricably linked to the dysfunction of the body’s 
immune system, particularly natural killer (NK) cells, 
which perform non-specific immune responses [11]. 
These cells preferentially eliminate major 
histocompatibility complex class I downregulated 
neoplastic tumors [12]. During homeostasis, NK cells 
reside in the brain parenchyma and circulate through the 
blood-brain barrier (BBB) [13]. The presence of NK 
cells in brain tumors and the surrounding brain 
parenchyma microenvironment has been previously 
identified [14, 15]. It is unclear, however, which factors 
facilitate NK cell passage across the BBB and 
subsequent activation in the brain. Further evidence 
suggests that NKp46, NKp44, and NKp3 can 
synergistically inhibit or activate the antitumor function 
of NK cells [16]. In addition, NK cells recognize a 
variety of cell- and tumor-associated surface ligands 
and may control tumor cell function in a positive or 
negative manner [17]. In vitro, glioma cell lines can be 
killed by NK cells [18]. LGG is a highly vascularized 
tumor that can alter the immune system and impair 
immune system function [19]. The relationship between 
NK cells and LGG is still not completely understood. 
Hence, for the development of new immunotherapies, 
understanding immune surveillance mechanisms in 
LGG patients with greater survival rates is critical. 
 
Through using the Chinese Glioma Genome Atlas 
(CGGA) and The Cancer Genome Atlas (TCGA) 
databases [20], this study carried out molecular typing 
of LGG based on LM22 data and transcriptomic data 
using NK cell-related genes [21]. In addition, a risk 
model was constructed, and immune cells in the LGG 
tumor microenvironment (TME) were also assessed. 
Discrepancies in drug sensitivity among different 

clusters were also predicted. Immune profiles and 
therapeutic sensitivities significantly differed among 
LGG molecular subtypes. Finally, this study 
summarized a pan-cancer overview of NK cell-related 
genes, thereby elucidating the relationship between 
LGG and NK cells, and informing the personalized 
treatment of LGG. 
 
METHODS 
 
Data acquisition and processing 
 
Similar to the method used in previous studies [22, 23], 
clinical samples and mRNA transcriptome data of LGG 
were accessed using the CGGA 
(http://www.cgga.org.cn/) and TGCA 
(https://portal.gdc.cancer.gov/) databases. Exclusion 
criteria were as follows: samples with incomplete 
clinical follow-up data including survival time and 
status. Two datasets, “mRNAseq_325 (batch 2)” and 
“mRNAseq_693 (batch 1)”, from the CGGA were 
merged using the “RTCGAToolbox” package and 
named as the “CGGA dataset”. Subsequently, batch 
effects were eliminated using the “sva” package. 
Clinical information of the TCGA and CGGA datasets 
is shown in Supplementary Table 1. Gene mutation and 
DNA methylation data of LGG patients were 
downloaded from the TCGA database [24, 25]. 
Transcriptome data for NK cell-related genes, 
containing 79 NK cell genes, were downloaded from 
the LM22 database (Supplementary Table 2) [21]. The 
LM22 database contains 547 genes that distinguish 22 
human hematopoietic cell phenotypes, including T cells, 
naïve and memory B cells, plasma cells, NK cells, and 
myeloid subsets. 
 
Molecular typing 
 
Univariate Cox regression analysis was implemented to 
determine NK cell genes associated with LGG 
prognoses in the TCGA and CGGA datasets. The LGG 
molecular subtypes were obtained using the 
“ConsensusClusterPlus” R package based on prognosis-
related NK cell genes [26]. In total, 500 bootstraps were 
conducted using the “K-M” algorithm and “canberra” as 
the metric distance, with 80% and 20% of patients in 
the respective training and validation sets involved in 
each bootstrapping process. Clusters ranged from 10 to 
2, and molecular subtypes were determined using the 
optimum classification system established by 
calculating the consistency cumulative distribution 
function (CDF) and the consistency matrix [27]. 
 
In 2020, Zheng et al. stated that patients with LGG were 
categorized into six molecular subtypes, including 
Codel, G-CIMP-high, G-CIMP-low, Classic-like, 
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Mesenchymal-like and PA-like [28]. To 
comprehensively uncover the molecular traits of our 
NK cell-based typing, we also investigated the close 
association of NK cell subtypes with these six 
molecular subtypes. 
 
Gene set enrichment analysis (GSEA) 
 
The optimal molecular subtyping was determined, and 
subsequent differential gene analysis was performed on 
the different LGG molecular types using the “limma” 
package with thresholds set at P < 0.05 and |log fold 
change (FC)| > 1 [29]. Candidate gene sets in The 
Molecular Signatures Database (MSigDB) 
(https://ngdc.cncb.ac.cn/databasecommons/database/id/
1077) [30] were subjected to “GSEA” enrichment 
analysis to explore possible pathways linked to DEGs to 
screen significant pathways using a FDR < 0.05 [30]. In 
addition, gene sets related to angiogenesis and 
inflammatory characteristics were collected from 
previously published studies [31, 32]. 
 
Tumor immune microenvironment and clinical 
characteristics in different clusters 
 
The following immune prediction algorithms were 
utilized to explore discrepancies in the tumor immune 
microenvironment among distinct clusters: 
“CIBERSOFT” and “ESTIMATE” algorithms. The 
“CIBERSOFT” algorithm assessed the infiltration 
abundance of various immunocytes in the TCGA and 
CGGA datasets, while the “ESTIMATE” algorithm 
calculated the “ImmuneScore”. The “ImmuneScore” 
reflects the cumulative content of immune cells in the 
TME. Importantly, immune-associated signaling 
pathways were also explored, including interferon and 
MHC. 
 
The TCGA and CGGA datasets provided a series of 
clinical information, including age, grade, and IDH 
mutation. These indicators are key factors in clinical 
decision-making and therapeutic strategies for LGG 
patients. Moreover, discrepancies in clinical information 
among these four clusters were also investigated. 
 
Immunotherapy/chemotherapy prediction in 
different clusters 
 
A recent study by Palmeri et al. stated that the tumor 
mutational burden (TMB) could serve as an accurate 
biomarker for immunotherapy outcome prediction [33]. 
Davoli and colleges further reported that tumor 
aneuploidy could also be used as an immunotherapy 
biomarker [34]. Thus, we compared TMB levels and 
aneuploidy scores among different clusters. 
Importantly, the expression of various typical immune 

checkpoint genes among different clusters was also 
explored. The IC50 of chemotherapy drugs in the 
GDSC (Genomics of Drug Sensitivity in Cancer) 
database, which contained a large panel of cancer cell 
lines, was calculated using the “pRRophetic” package 
[35]. Finally, IC50 values of each drug among different 
clusters were also compared. 
 
Risk model construction 
 
The “Limma” package was implemented to determine 
differentially expressed genes (DEGs) among different 
clusters. Subsequently, these DEGs were selected to 
develop a risk model using least absolute shrinkage and 
selection operator (LASSO) and multivariate Cox 
regression analysis. Specifically, the number of model 
genes was reduced using a LASSO regression to further 
screen the valid genes. LASSO regression solved the 
multicollinearity during the regression study by 
compressing coefficients and setting some of them to 
zero. Alongside the gradual increase in lambda, selection 
of the optimum number of factors was carried out when 
the coefficients of independent variables tended to zero. 
In addition, the best model was developed by performing 
stepwise regression applying the Akaike information 
criterion (AIC) in the “MASS package”. This process of 
regression takes into consideration the best statistical fit 
of the model and parameter number. Model development 
was conducted by initially establishing the most 
complex model, followed by a successive reduction in 
the number of variables involved to decrease the AIC 
values. The lower the AIC values, the better the model, 
as these low values indicated the least number of 
parameters used to achieve a sufficient model fit. After 
determining valid genes, a risk model was constructed 
by the following equation: RiskScore = Expi × Σβi, 
where β is the multivariate Cox regression coefficient of 
a corresponding gene, and Expi refers to the expression 
of NK cell-related gene characteristics [36]. 
Subsequently, a z-score was obtained, and patients were 
classified into low-RiskScore and high-RiskScore 
groups with the criteria of z-score = 0. Furthermore, the 
Kaplan-Meier method was used to plot survival curves 
for prognostic analysis. Moreover, the log-rank test was 
performed to examine whether differences were 
considered significant. 
 
Immune microenvironment, molecular 
characteristics, and drug prediction in the risk model 
 
In LGG, the CIBERSORT 
(https://cibersort.stanford.edu/) algorithm calculated the 
relative abundance of 22 immune cells to analyze the 
differences in immune cell composition and function 
between high- and low-RiskScore groups. Additionally, 
to measure immune cell amounts, the “ESTIMATE” R 

https://ngdc.cncb.ac.cn/databasecommons/database/id/1077
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https://cibersort.stanford.edu/
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package was applied to calculate the ImmuneScore, the 
StromalScore and the ESTIMATEScore [37]. Based on 
previous studies, scores of 10 oncogenic pathways (cell 
cycle, HIPPO, MYC, NOTCH, NRF1, PI3K, TGF-Beta, 
RAS, TP53, WNT), 7 metagenes pathways (HCK, IgG, 
Interferon, LCK, MHC_I, MHC_II, STAT1), T cell 
inflamed GEP, and cytolytic activity were calculated by 
“ssGSEA” using the “GSVA” package [38]. 
Discrepancies in the above pathway activities between 
different risk groups were comprehensively 
investigated. Based on the results of the “pRRophetic” 
package, chemotherapy drug sensitivities between high- 
and low-RiskScore groups were also further explored. 
 
Nomogram 
 
Univariate and multivariate Cox regression analysis 
using clinicopathological variables were performed to 
determine if the RiskScore may be used as an 
independent prediction measure [39]. The ‘rms’ 
software was used to construct a nomogram containing 
all independent prognostic factors to estimate 1-, 3-, and 
5-year overall survival (OS) probability. The 
nomogram's discriminative power was measured using 
the concordance index (C-index) and calibration. 
 
Pan-cancer characterization of NK cell-related genes 
 
Based on the pan-cancer cohort samples of the TCGA, 
we gathered and compiled genomic data, transcriptome 
data, and clinical follow-up information for dozens of 
human malignancies. It is currently recognized that 
information on promoter methylation levels and gene 
mutations may have a significant effect on gene 
expression. Hence, we first investigated the pan-tumor 
mutation and methylation data of NK cell-related genes. 
Of note, we interpreted the mutation spectrum primarily 
from the viewpoints of CNV and SNV. Subsequently, 
we conducted a complete analysis of the differential 
expression of each NK cell-related gene in distinct 
malignant and precancerous tissues and evaluated the 
prognostic relevance of each gene across tumor types. 
Importantly, based on the Msigdb platform, we 
collected the classical metabolic pathways and immune 
pathways and, using the GSEA concept, and evaluated 
the potential correlation between the NK cell gene set 
and these pathways, thereby laying the groundwork for 
subsequent mechanistic studies. 
 
Statistical analysis 
 
Data analysis was conducted using the R 4.0.2 statistical 
tool (https://www.r-project.org/). The “limma” package 
was used for group differential gene analysis, the 
“MASS package” for stepAIC analysis, the “ssGSEA” 
for enrichment pathway analysis, and the “survminer” 

package for survival analysis. Furthermore, the 
examination and comparison of survival differences 
between the aforementioned groups were carried out 
using the Kaplan-Meier (K-M) method and the log-rank 
test. The “rpart” and “rpart.plot” packages were utilized 
to develop a survival decision tree. Statistical tests were 
two-sided unless otherwise specified, and a significant 
difference was indicated by a P value < 0.05. 
 
Availability of data and materials 
 
The datasets analyzed in this work may be found in the 
Supplementary Materials or contact with the 
corresponding author. 
 
RESULTS 
 
Molecular typing based on NK cell-related genes 
 
LGG-related prognostic genes in the TCGA and CGGA 
datasets were analyzed separately using univariate Cox 
regression. Genes associated with NK cells were 
examined for correlation with OS in individuals with 
LGG, which revealed a link between 42 genes in the 
CGGA dataset (P < 0.05) and 51 out of 79 genes in the 
TCGA dataset (P < 0.05). Significant prognostic genes 
are displayed in Supplementary Table 3. Subsequently, 
prognostic genes in both datasets were intersected to 
obtain 34 prognosis-related significant genes (Figure 
1A, 1B). Subsequently, the optimum number of clusters 
in the TCGA dataset was identified using consensus 
clustering for the aforementioned prognostic-related 
genes. Cluster number was defined according to CDF, 
which was reflected by the CDF delta area curves, and 
was determined as a stable cluster when the number of 
clusters was 4 (Figure 1C, 1D). Therefore, clustering 
was optimal when k = 4 (Figure 1E). Clusters of each 
LGG in the TCGA and CGGA datasets are displayed in 
Supplementary Table 4. Survival and K-M curve 
analysis suggested a better prognosis for cluster C4, 
whereas cluster C1 had the worst prognosis (Figure 1F). 
Similarly, LGG subtypes in the CGGA dataset were 
classified into four categories (k = 4), and the survival 
curves for each subtype were examined (Figure 1G). 
Variations between the expression of 34 NK cell-linked 
genes among various subtypes were compared. In the 
two independent datasets, risk genes exhibited increased 
expression in the C1 cluster, whereas protective genes 
depicted increased expression in the C4 cluster 
(Figure 1H, 1I). 
 
Genomic landscape and pathway characteristics 
among molecular subtypes 
 
In the TCGA-LGG cohort, molecular characteristics 
were compared among the four subtypes to investigate 

https://www.r-project.org/
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Figure 1. Molecular subtyping of LGG based on NK cell-related genes. (A) Univariate Cox forest plot of NK cell-related genes in the 
TCGA-LGG cohort. (B) Multivariate Cox forest plot of NK cell-related genes in the CGGA-LGG cohort. (C) CDF curve of samples in the TCGA-
LGG cohort. (D) CDF delta area curve of TCGA-LGG cohort samples area curve, Delta area curve of consensus clustering indicated the 
relative variation in the area under the CDF curve for each category number k in comparison with k−1. The vertical axis represents the 
relative change in area under the CDF curve, the horizontal axis represents the category number k. (E) A heat map of sample clustering at 
consensus k = 4. (F) K-M survival curves showing the prognosis of the four subtypes in the TCGA-LGG cohort. (G) K-M survival curves for the 
prognosis of the four subtypes in the CGGA cohort. (H) A heat map showing the expression of prognostically significant NK cell-related 
genes in various subtypes in TCGA-LGG. (I) A heat map of the expression of prognostically significant NK cell-associated genes in various 
subtypes in CGGA. Abbreviations: CDF: cumulative distribution function; expr: expression; LGG: low-grade glioma; NK: natural killer; TCGA: 
The Cancer Genome Atlas; CGGA: Chinese Glioma Genome Atlas; K-M: Kaplan-Meier. 
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the differences in genomic alterations among them. 
Analysis revealed that the C1 cluster had a high TMB 
score and a high aneuploidy score (Supplementary 
Figure 1A). In addition, six previously established 
molecular subtypes [28] were compared with the 
currently defined four molecular subtypes. The results 
highlighted more “G-CIMP-high” and “Codel” 
molecular subtypes in clusters C3 and C4 
(Supplementary Figure 1B). Subsequently, significant 
mutation differences among subtypes were determined. 
After visualizing the top 20 mutated genes, mutation 
frequencies of gene, such as isocitrate dehydrogenase 
(IDH)1 and capicua (CIC), varied considerably among 
the four molecular subtypes (Supplementary 
Figure 1C). 
 
Additionally, among the four subtypes, a distribution 
comparison of clinical characteristics was carried out in 
the TCGA dataset (Supplementary Figure 2A), and no 
significant difference was found between genders. A 
larger proportion of patients with the C1 subtype had a 
G3 grade and more patients in subtypes C3 and C4 had 
a G2 grade. As for IDH mutations, the highest 
proportion of patients that had mutations were in 
subtypes C4, C3, and C2. In addition, the majority of 
patients in subtypes C4 and C3 had IDH mutations and 
IDHmut-non-codel. O-6-methylguanine-DNA 
methyltransferase (MGMT) promoter methylation level 
was also considerably increased in C3 and C4 subtypes 
rather than in C1 (Supplementary Figure 2A). Age, 
MGMT promoter methylation, IDH mutation, disease 
grade, and 1p19q co-deletion in the CGGA dataset 
were also examined (Supplementary Figure 2B). 
Gender did not show a significant difference among 
subtypes, while the 1p19q co-deletion level and IDH 
mutation were considerably increased in C3 and C4 
subtypes when compared to C1, which was similar to 
the observations reported in the above analysis of the 
TCGA dataset. 
 
Furthermore, differentially activated pathways among 
subtypes were categorized by the “GSEA” enrichment 
analysis. Findings based on the TCGA cohort suggested 
considerable enrichment of cancer-associated pathways 
in subtypes C1 and C2, such as glycolysis, PI3K-AKT-
mTOR, angiogenesis, hypoxia, P53, and apoptosis 
(Figure 2A). Moreover, the cell cycle, HIPPO, and 
TP53 pathway activities were also noticeably 
upregulated in the C1 subtype (Figure 2B). In short, we 
found that several signaling pathways were closely 
related to tumorigenesis and development which 
showed a significantly up-regulated trend in the C1 and 
C2 subtypes, and a significant downward trend in the 
C3 and C4 subtypes. This phenomenon may be 
potentially contributing to the observed difference in 
prognosis. 

Differences in immunological characteristics and 
treatment efficacy among molecular subtypes 
 
Variations in the immune microenvironment among 
subtypes was analyzed by determining the relative 
frequency of the 22 immune cells using 
“CIBERSORT”. Most immune cells differed 
significantly among subtypes. For example, the C1 
subtype had a higher infiltration of CD8+T cells and 
macrophages in the TCGA dataset. Additionally, the 
ESTIMATE algorithm revealed that the C1 subtype had 
the highest “ImmuneScore” and “StromalScore”, 
followed by the C2, C3, and C4 subtypes (Figure 3A, 
3B). Importantly, similar findings were also observed in 
the CGGA dataset (Figure 3C, 3D). In addition, we 
analyzed the inflammatory activity of four molecular 
subtypes, and the enrichment scores of all the metagene 
clusters (i.e., HCK, IgG, Interferon, LCK, MHC-I, 
MHC-II, STAT1) were significantly different among 
the four molecular subtypes. Overall, the C1 subtype 
had higher inflammatory activity, as shown in Figure 
3E; similarly, this phenomenon was also observed in the 
CGGA cohorts, as per Figure 3F. 
 
Since immune cell checkpoints are key targets for cancer 
treatment using immune checkpoint blockade (ICB), 
several checkpoint molecules, including cytotoxic T-
lymphocyte-associated protein 4 (CTLA-4), programmed 
death 1 (PD-1), and programmed cell death-ligand 1 (PD-
L1) were evaluated. These molecules showed significantly 
high expression in subtype C1 (Figure 4A). Given that 
IFN-γ plays a key role in immune modulation and 
anticancer immunity, we carried out ssGSEA analysis of 
the GOBP_RESPONSE_TO_INTERFERON_GAMMA 
gene set loaded from the GO database and found that the 
IFN-γ response is significantly enhanced in the C1 
subtype (Figure 4B). Simultaneously, we also compared 
differences in the expression of the IFNG gene among the 
four subtypes and found that IFNG was significantly 
higher in the C1 subtype (Figure 4C). In addition, the 
cytotoxic (CYT) score, which characterized cytotoxic 
activity, was considerably increased in the C1 subtype 
(Figure 4D). In addition, we used the “T-cell-inflamed 
score” to evaluate the predictive potential of different 
molecular subtypes in cancer immunotherapy. 
As depicted in Figure 4E, the C1 subtype showed a higher 
T-cell-inflamed score. Taken together, these findings 
suggested that LGG patients with subtype C1 might 
benefit from immunotherapy. 
 
Moreover, we analyzed the response of different 
molecular subtypes in the TCGA-LGG cohort to 
traditional chemotherapeutic drugs. C1 subtype patients 
were more sensitive to bleomycin, as evidenced by the 
biochemical half-maximal inhibitory concentration 
(IC50) and their response (Figure 4F). 
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Establishment and validation of a clinical prognostic 
model 
 
We identified a total of 739 DEGs among C1 vs. other, C2 
vs. other, C3 vs. other, and C4 vs. other using the limma 
analysis (Supplementary Figure 3A–3C). There were no 
significant differentially expressed genes between C2 and 

other subtypes. Subsequently, the prognostic performances 
of the above 739 DEGs were further explored, with the 
results showing that a total of 719 genes (including 466 
“risk” and 253 “protective” genes) were significantly 
associated with LGG prognoses (Supplementary 
Figure 4A, Supplementary Table 5, P < 0.001). 
LASSO and multivariate Cox regression algorithms 

 

 
 
Figure 2. Significantly activated pathways in different molecular subtypes. (A) GSEA analysis results in the TCGA-LGG cohort. (B) 
Variation in the scores of 10 tumor abnormality-related pathways in various TCGA-LGG molecular subtypes in the **P < 0.01; ***P < 0.001; 
****P < 0.0001. Abbreviations: ns: no significance; NES: normalized enrichment scores; ssGSEA: single-sample GSEA; GSEA: gene set 
enrichment analysis; TCGA: The Cancer Genome Atlas; LGG: low-grade glioma; TP53: tumor protein p53; PI3K: phosphatidylinositol  
3-kinase; NRF1: nuclear respiratory factor-1; TGF-β: transforming growth factor-β. 
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were utilized to construct a NK cell-based RiskScore. 
LASSO regression highlighted the crucial roles of 14 
genes in the prognostic model (Supplementary Figure 
4B, 4C). Finally, multivariate Cox regression analysis 
identified 6 genes to calculate the RiskScore 
(Supplementary Figure 4D). Using the z-score value = 0 

as the dividing line, LGG patients were divided into 
high-risk group and low-risk groups, and the expression 
and distribution of model genes in each LGG patient 
were characterized (Figure 5A). For the TCGA and 
CGGA cohorts, KM survival analysis and ROC curves 
validated the accurate prediction performances of the 

 

 
 
Figure 3. Degree of immune cell infiltration in different molecular subtypes. (A) Variation in 22 immune cell scores among various 
TCGA-LGG molecular subtypes. (B) Variation in ESTIMATE immune infiltration among various TCGA-LGG molecular subtypes. (C) Variation in 
22 immune cell scores among different CGGA cohort molecular subtypes. (D) Variation in ESTIMATE immune infiltration among CGGA 
cohort molecular subtypes. (E) Variation in the gene cluster scores for the seven inflammation-related genesets among molecular subtypes 
in the TCGA-LGG cohort. (F) Differences in the gene cluster scores for the seven inflammation-related genesets among molecular subtypes 
in the CGGA cohort. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. Abbreviations: ns: no significance; ssGSEA: single-sample GSEA; TCGA: 
The Cancer Genome Atlas; GSEA: gene set enrichment analysis; CGGA: Chinese Glioma Genome Atlas; LGG: low-grade glioma; HCK: 
hematopoietic cell kinase; IgG: Immunoglobulin G; LCK: lymphocyte-specific protein tyrosine kinase; MCH: melanin-concentrating 
hormone; STAT1: signal transducer and activator of transcription 1. 
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Figure 4. Immunological characteristics scores characterizing the effect of immunotherapy in different subtypes. (A) 
Expression differences of immune checkpoint-related genes among molecular subtypes. (B) Variation in response to IFN-γ among molecular 
subtypes. (C) The difference in expression of IFNG gene among molecular subtypes. (D) Differences in “Cytolytic activity” among molecular 
subtypes. (E) Variation in the T cell inflamed GEP score among molecular subtypes. (F) A box plot of the estimated IC50 values for 
temozolomide, bleomycin, cisplatin, cyclopamine, A-443654, AZD6482, and GDC0941 in TCGA-LGG. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 
0.0001. Abbreviations: ns: no significance; TPM: transcripts per million; IFN: interferon; GEP: gene expression profile; IC50: half-maximal 
inhibitory concentration; TCGA: The Cancer Genome Atlas; LGG: low-grade glioma. 
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RiskScore (Figure 5B–5E). Specifically, LGG patients 
with high RiskScore were associated with worse clinical 
outcomes. 
 
Association of the RiskScore with different 
clinicopathological features and molecular subtypes 
 
To examine the relationship between the RiskScore and 
clinical features of LGG, we analyzed the differences in 

RiskScores across age, gender, grade, IDH mutation, 
IDH/code subtype, and MGMT promoter methylation in 
the TCGA-LGG dataset. Results showed that higher 
RiskScores were associated with increased age and 
disease grade (Figure 6A). Furthermore, we compared 
RiskScores among different molecular subtypes (Figure 
6B) and found that the C1 subtype had the highest 
RiskScores. In addition, we also compared whether there 
are prognostic differences in the high- and low-risk 

 

 
 
Figure 5. Calculation of RiskScore and determination of its robustness by ROC. (A) The RiskScore, survival status, survival time, 
and expression of oxidative stress-related prognostic genes in the TCGA dataset. (B) The ROC curve and AUC of RiskScore classification in 
the TCGA dataset. (C) The K-M survival curve distribution of RiskScore in the TCGA dataset. (D, E) The ROC curve and K-M survival curve of 
RiskScore in the CGGA cohort. Abbreviations: AUC: area under the ROC curve; CI: confidence interval; ROC: receiver operating 
characteristic; TCGA: The Cancer Genome Atlas; K-M: Kaplan-Meier; CGGA: Chinese Glioma Genome Atlas. 
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groups of RiskScores defined here among different 
clinicopathological characteristic groups in the TCGA-
LGG cohort. Results showed that our risk groups also 
performed well in different clinical groups, validating 
the reliability of our defined risk groups (Figure 6C). 
The findings in the CGGA dataset showed similar 
results (Supplementary Figure 5). 
 
Tumor immune microenvironment and molecular 
characteristics in both RiskScore groups 
 
By employing the “CIBERSORT” algorithm, variation 
in the immune microenvironment of patients in both 
RiskScore groups was investigated by calculating the 
relative abundance of 22 immune cells. Of note, 
infiltration abundance of eight immune cells, including 
CD8+T cells, was found to be significantly different 
between the two groups (Figure 7A). Results of the 

correlation analysis demonstrated that RiskScores were 
closely related to immunocyte infiltration (Figure 7B). 
In addition, we also used ESTIMATE to evaluate 
immune cell infiltration, as shown in Figure 7C. We 
observed that the “ImmuneScore” in the “High” group 
was significantly higher than that in the “Low” group, 
and that LGG patients with a high RiskScore had higher 
immune cell infiltration. 
 
In order to explore discrepancies in the molecular 
characteristics between high- and low-RiskScore 
groups, the ssGSEA algorithm was utilized to evaluate 
the activity of signaling pathways. As shown in Figure 
7D, the activity of the following pathways in the high-
RiskScore group were noticeably higher than those in 
the low-RiskScore group: interferon, glycolysis, 
apoptosis, and angiogenesis pathways, among others. 
Correlation analysis further validated the close 

 

 
 
Figure 6. Association of RiskScore with clinical information in TCGA dataset. (A) Differences in RiskScore among different 
clinicopathological groups in the TCGA-LGG cohort; (B) Differences in RiskScore among different molecular subtypes in the TCGA-LGG 
cohort; (C) KM curves between high and low RiskScore groups in different clinical subgroup. Abbreviations: TCGA: The Cancer Genome 
Atlas; LGG: low-grade glioma; K-M: Kaplan-Meier. 
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Figure 7. Different infiltration levels of various immune cells between the two RiskScore groups. (A) The amount of immune 
cell components in the TCGA cohort. (B) Correlation analysis of RiskScore with 22 immune cell components in the TCGA cohort. (C) The 
proportion of immune cell components in the TCGA cohort calculated by ESTIMATE software. The red box indicates high-risk group, and 
blue box indicates low-risk group. (D) Top 10 pathways with the most significant differences between low-RiskScore and high-RiskScore 
groups. (E) Correlation between KEGG pathways with correlation coefficient >0.5 and RiskScore. **P < 0.01; ***P < 0.001; ****P < 0.0001. 
Abbreviations: ns: no significance; NK: natural killer; MDC: myeloid dendritic cell; ssGSEA: single-sample GSEA; GSEA: gene set enrichment 
analysis; TCGA: The Cancer Genome Atlas; KEGG: Kyoto Encyclopedia of Genes and Genome. 
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association of the RiskScore with the above pathways 
(Figure 7E). Hence, dysfunction of the immune 
microenvironment and molecular signaling might be 
responsible for the different prognoses observed 
between high- and low-RiskScore groups. 
 
Chemotherapy and immunotherapy efficacy 
differences across RiskScore groups 
 
Initially, the “T-cell-inflamed GEP score” was used to 
assess the predictive potential of the RiskScore in ICB 
across different groups. The results suggested that, in 
the high-RiskScore group, the “T-cell-inflamed GEP 
score” and the “IFN-γ response” showed a considerable 

increase, and that the CYT score was also higher 
(Figure 8A–8C). Moreover, the expression of some 
checkpoint molecules (CTLA-4, PD-1, PD-L1) was 
noticeably higher (Figure 8D). Overall, patients with a 
high-RiskScore are likely to be more sensitivity to ICB. 
 
In addition, patients with a high-RiskScore had lower 
IC50 values for bleomycin and A-443654, whereas 
patients with low-RiskScore had lower IC50 values for 
cyclopamine, AZD6482, and GDC0941. These findings 
suggested that high-RiskScore patients might benefit 
from treatment with bleomycin and A-443654; while 
low-RiskScore patients might benefit from 
cyclopamine, AZD6482, and GDC0941 (Figure 8E). 

 

 
 
Figure 8. Immunological characteristics and drug sensitivities between different RiskScore groups. (A) The difference in “T cell 
inflamed GEP score” among various molecular subtypes. (B) The difference in “response to IFN-γ” among various molecular subtypes. (C) 
The difference in “Cytolytic activity” among various molecular subtypes. (D) Expression differences of immune checkpoint-associated genes 
among various molecular subtypes. (E) A box plot of the estimated IC50 values for temozolomide, bleomycin, cisplatin, cyclopamine,  
A-443654, AZD6482, and GDC0941 in TCGA-LGG. **P < 0.01; ****P < 0.0001. Abbreviations: ns: no significance; GEP: gene expression 
profile; IFN: interferon; TPM: transcripts per million; IC50: half-maximal inhibitory concentration; TCGA: The Cancer Genome Atlas; LGG: 
low-grade glioma. 
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RiskScore incorporates clinicopathological features 
to improve the prognosis models and survival 
prediction 
 
To further improve the prognostic model, clinical 
information of patients (age, gender, tumor-node-

metastasis (TNM) stage, IDH mutation, and RiskType) 
and RiskScores were integrated, and a decision tree 
model was constructed. Ultimately, only two 
parameters, IDH mutation and RiskType, were retained. 
Considering the maximum weight of RiskType, three 
subtypes were identified (Figure 9A) and their 

 

 
 
Figure 9. Determination of optimal prognostic factors by decision tree and their reliability. (A) Patients with full-scale 
annotations, including gender, RiskScore, age, and TNM stage, were employed to develop a survival decision tree for optimizing the risk 
stratification. (B) Significant differences in OS were found among the 4 risk subgroups. (C, D) Comparative analysis on different subgroups. 
(E, F) Univariate and multivariate Cox analyses of clinicopathological characteristics and RiskScore. (G) Nomogram model. (H) 1-, 3-, and 5-
year calibration curves of the nomogram. (I) Decision curves of the nomogram. *P < 0.05; ***P < 0.001. Abbreviations: ANOVA: analysis of 
variance; IDH: isocitrate dehydrogenase; WT: wild-type; Mut: mutant; MGMT: O-6-methylguanine-DNA methyltransferase; CI: confidence 
interval; OS: overall survival; TNM: tumor-node-metastasis; Pr: predicted. 
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prognosis was examined (Figure 9B). The association of 
the decision tree model with the LASSO-Cox model is 
shown in Figure 9C, and the association of the decision 
tree model with consensus clusters is shown in Figure 
9D. Univariate and multivariate Cox regression 
analyses highlighted the crucial role of the RiskScore in 
predicting clinical prognoses (Figure 9E, 9F). To 
quantify the risk assessment and survival probability of 
patients with LGG, we combined RiskScore and other 
clinicopathological features to establish a nomogram 
(Figure 9G). The calibration curve was used for model 
accuracy evaluation. The 1-, 3-, and 5-year predictive 
calibration curves nearly overlapped with the standard 
curve, suggesting a strong prediction performance 
(Figure 9H). In addition, the reliability of the model was 
assessed using the decision curve analysis (DCA). The 
RiskScore and nomogram benefits were both noticeably 
elevated when compared to the extreme curves, 
exhibiting strong survival prediction power over other 
clinicopathological characteristics (Figure 9I). 

Pan-cancer characterization of NK cell-related genes 
 
The CNV profiles of NK cell-related genes in the pan-
cancer cohort were summarized and plotted in Figure 
10A, 10B. KLRK1, KLRF1, KLRD1, KLRC3, and 
KLRB1 showed relatively noticeable CNV 
amplification; while, GZMM, GZMH, GZMB, GZMA, 
and GRAP2 showed CNV deletion (Figure 10A, 10B). 
The majority of NK cell-related genes were 
accompanied by low methylation levels in cancers when 
compared to precancerous tissues. Of note, the 
methylation levels of PTGDR and ZNF135 genes were 
substantially higher in cancers when compared to 
precancerous tissues (Figure 10C). In addition, we also 
investigated other genomics traits (i.e., SNV). Results 
showed that mutation frequencies of MGAM and TEP1 
were relatively high among all NK cell-related genes 
(Figure 11A, 11B). Importantly, we explored the 
correlation among NK cell-related genes, the tumor 
immune microenvironment, and tumor metabolic 

 

 
 
Figure 10. The CNV and methylation profiles of NK cell-related genes in pan-cancer. (A) CNV amplification of NK cell-related 
genes. (B) CNV deletion of NK cell-related genes. (C) DNA methylation traits of NK cell-related genes. 
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remodeling (Figure 12A, 12B). Generally, this 
regulatory network is rather complicated. Several cancer 
types showed distinct immunological and metabolic 
regulatory patterns for these NK cell-related genes, 
demonstrating the disease’s uniqueness among various 
tumor types. As for CHOL and LIHC, enrichment 
scores of NK cell-related genes were negatively 
correlated with tumor metabolic remodeling and 
positively correlated with the tumor immune 
microenvironment (Figure 12A, 12B). Finally, 
transcriptomic traits of NK cell-related genes in the pan-
cancer cohort were also investigated (Figure 13A, 13B). 
 
DISCUSSION 
 
Glioma, the most prevalent brain tumor in adults, 
accounts for approximately 81% of all brain tumors and 
has a poor prognosis; most LGGs progress to HGGs, 
making it a substantial area of clinical concern [40, 41]. 
The onset and progression of LGG is a multistep 
cascade process involving multiple factors such as 
genetics, gene mutations, cellular molecules, and 
immune dysregulation [42–44]. According to preclinical 
studies, glioma cells generate a significant variety of 
growth factors, cytokines, and chemokines that 
encourage the infiltration of many cells, including 
endothelial cells, pericytes, circulating progenitor cells, 

astrocytes, and certain immune cells [45–47]. In recent 
years, therapies targeting immune cell checkpoints have 
undergone remarkable advancement and achieved 
satisfactory clinical results in solid tumors. However, 
ICB is often ineffective in LGG due to the composition 
of the TME and the presence of immunosuppression. 
Therefore, an in-depth study of the immune 
composition of LGG is crucial to improve treatment 
stratification and associated patient prognoses. 
 
NK cells (CD3−CD56+CD16+), potent cytotoxic 
lymphocytes that secrete perforin and granzyme, can 
kill cancer cells and virus-infected cells. Human 
leukocyte antigen (HLA) class I antigens interact with 
specific NK cell receptors to activate NK cells [48]. The 
main hurdle for NK cells to effectively kill glioma cells 
is the high expression of HLA class I. The in vivo 
disruption of immune homeostasis causes the reduction 
of HLA class I expression, thereby impairing NK cell 
tolerance [49]. Aberrant NK cell expression may cause 
glioma cells to escape immune surveillance. In the 
present study, differences in gene expression among 
different LGG subtypes were determined using NK cell-
related genes. The findings of the enrichment analysis 
corroborated those of prior studies showing substantial 
differences between subtypes in terms of GEPs and 
associated pathways (mainly cell cycle and 

 

 
 
Figure 11. The SNV profiles of NK cell-related genes in pan-cancer. (A) Mutation frequency of NK cell-related genes in pan-cancer. 
(B) SNV oncoplot of NK cell-related genes. 
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EMT-related pathways) [50]. Based on these findings, 
NK cells may contribute to LGG via both of these 
mechanisms. Moreover, the pan-characteristic of NK 
cell-related genes presented a wide range of CNVs and 
mutation statuses, confirming that NK cell gene 
mutations also contribute to the pathogenic mechanisms 
of tumor immune escape [51]. 

T cells are the primary immune cells targeted in ICB, 
and the balance between their activating and inhibiting 
signals plays a crucial role in ICB [52]. CTLA-4 and 
PD-1 are the two primary immunological checkpoint 
molecules on the surface of T cells. CTLA-4 modulates 
T cell activation during the first phase of immunological 
activation, while PD-1 is activated throughout the 

 

 
 
Figure 12. The correlation among NK cell-related genes, tumor metabolic reprogramming, and immune microenvironment 
in pan-cancer. (A) Correlation between NK cell-related genes and tumor metabolism-related pathways (B) Correlation between NK cell-
related genes and immune-related pathways. 
 

 
 
Figure 13. The expression levels of NK cell-related genes in pan-cancer. (A) logFC values of differential expression analysis.  
(B) p values of differential expression analysis. 
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immune effector phase and is abundantly produced 
when tumor antigens are presented [53, 54]. In the 
present study, the expression of representative immune 
checkpoint molecules was evaluated in different LGG 
subtypes wherein PD-1, PD-L1, and CTLA-4 were 
considerably highly expressed in the C1 subtype, which 
was consistent with a study by Ghouzlani et al. [55]. 
Therefore, patients in the C1 subtype may be potential 
candidates for ICB. 
 
Most clinical trials investigating the use of CTLA-4 and 
PD-1 inhibitors in glioma are currently ongoing, with 
only a few published findings, and none achieving 
significant efficacy [56–58]. The reason for this may be 
attributed to drug resistance. There are many 
mechanisms associated with the resistance of ICB in the 
treatment of glioma, which can be broadly categorized 
as endogenous or exogenous. Endogenous mechanisms 
include alterations in immune recognition sites, 
abnormal cellular signaling pathways, alterations in 
gene expression, and DNA damage repair [59]. On the 
other hand, exogenous mechanisms include all factors 
related to immune cell activation [60]. Common factors 
used to determine patient prognoses and prediction of 
treatment outcomes include PD-1/PD-L1 expression 
levels, TMB, tumor-infiltrating lymphocytes (TILs), 
and microsatellite instability (MSI) [61]. In the present 
study, ssGSEA revealed that PD-1/PD-L1, TMB, and 
TILs were significantly different among LGG subtypes, 
highlighting the diversity of gliomas and providing new 
indicators for predicting ICB efficacy. 
 
Construction of a risk model enables the more exact 
identification of high-risk groups. In the present study, a 
prediction model was successfully constructed based on 
6 NK cell-related genes, and patients were classified 
into high- and low-risk groups. Prostaglandin F2 
receptor negative regulator (PTGFRN), a tumorigenesis-
related gene, was associated with interleukin (IL)-12-
mediated tumor recognition and killing efficacy for 
drugs [62, 63]. The role of HSPB1 in tumor immunity 
has been previously demonstrated, and its mechanism of 
action is related to the direct immunosuppression of 
Ym1 produced by macrophages and T cell suppression 
[63]. The sterile alpha motif domain-containing protein 
9 (SAMD9) is a potential antigen for the development of 
messenger RNA (mRNA) vaccines against diffuse 
glioma. Its expression is associated with tumor immune 
subtypes and determines immune-related processes of 
tumor-associated genes [64]. In addition, the expression 
of secreted frizzled-related protein 2 (SFRP2), a 
member of the secretory glycoprotein family, correlates 
with the degree of immune infiltration of tumor cells 
and plays a synergistic role in tumor progression. 
Therefore, SFRP2 is a promising prognostic biomarker 
and therapeutic target [65]. Although less research has 

been done on elastin Microfibril Interfacer 3 (EMILIN3) 
and cartilage acidic protein 1 (CRTAC1) in tumor 
immunity, previous findings suggest that CRTAC1 may 
influence the onset and progression of tumors by 
binding to calcium ions and innate immune pathways 
[66]. 
 
Given the poor prognosis of individuals with LGG, it is 
vital to discover clinical variables that influence their 
prognosis and to implement appropriate therapies. This 
research successfully divided LGG patients into two 
groups by calculating RiskScores and determining 
patient prognoses, which were found to be significantly 
different. In addition, a nomogram was constructed and 
validated to determine the ability to accurately predict 
the prognosis of patients with LGG. Overall, the 
nomogram exhibited good prognostic ability and was a 
powerful tool in predicting the survival status of 
individuals with LGG across clinical settings. This 
study is the first to identify molecular subtypes and 
prognostic models associated with LGG based on NK 
cells. In addition, this new six-gene prognostic model 
has not been previously reported. Nonetheless, there are 
some limitations to this study, including the validation 
of these findings using PCR or immunohistochemical 
experiments. Moreover, some clinical factors were not 
considered due to the lack of necessary clinical follow-
up information, especially diagnostic details. These 
limitations may influence the effectiveness of the 
clinical application of our RiskScore. 
 
CONCLUSIONS 
 
In this study, molecular subtypes were categorized 
using consistent clustering based on NK cell-correlated 
genes and showed different immunological, 
pathological, prognostic, and pathway features. 
Subsequently, from these molecular subtypes, 6 key NK 
cell-related genes were screened based on DEGs, and a 
clinical prognostic model was developed. This model 
was independent of other clinicopathological features, 
demonstrating stable predictive performance in 
independent datasets and strong robustness. We finally 
integrated clinicopathological characteristics with 
RiskScores and constructed a decision tree model to 
further improve its survival prediction. Overall, this tool 
may be used for patient stratification, particularly for 
ICB. Moreover, our study may provide critical 
information to overcome immune resistance by 
targeting NK cell-related genes. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 
 

 
 
Supplementary Figure 1. Mutation burden in different molecular subtypes. (A) Comparison of TMB, aneuploidy score, 
homologous recombination defects, intratumor heterogeneity, LOH, purity, and ploidy among different molecular subtypes in the TCGA-
LGG cohort. (B) Comparison of the four molecular subtypes with immune molecular subtypes. (C) Somatic mutations in the four molecular 
subtypes (chi-square test). *P < 0.05. **P < 0.01; ***P < 0.001; ****P < 0.0001. Abbreviations: ns: no significance: ANOVA; analysis of variance; 
IDH: isocitrate dehydrogenase; WT: wild-type; Mut: mutant; MGMT: O-6-methylguanine-DNA methyltransferase; TMB: tumor mutation 
burden; LOH: loss of heterozygosity; TCGA: The Cancer Genome Atlas; LGG: low-grade glioma. 
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Supplementary Figure 2. Distribution patterns of various molecular subtypes in each clinical variable. (A) Clinicopathological 
characteristics of molecular subtypes in the TCGA-LGG cohort. (B) Clinicopathological characteristics of molecular subtypes in the CGGA 
cohort; the upper part is the statistical significance of the pairwise distribution difference, the lower part is the proportion. Abbreviations: 
TMB: tumor mutation burden; ANOVA: analysis of variance; TCGA: The Cancer Genome Atlas; LGG: low-grade glioma; CGGA: Chinese 
Glioma Genome Atlas. 
 
 

 
 
Supplementary Figure 3. Identification of DEGs among different clusters. (A) C1 vs. other. (B) C3 vs. other. (C) C4 vs. other. 
Abbreviation: DEGs: Differentially expressed genes. 
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Supplementary Figure 4. Construction of a prognostic model with key genes screened by LASSO algorithm. (A) A total of 719 
promising candidates were filtered from all the DEGs. (B) Changed trajectory of each independent variable with lambda. (C) Confidence 
interval under lambda. (D) Distribution of LASSO-Cox coefficients of the NK cell-associated prognostic gene signature. Abbreviations: 
LASSO: least absolute shrinkage and selection operator; DEGs: differentially expressed genes; NK: natural killer. 
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Supplementary Figure 5. Association of RiskScore with clinical information in CGGA dataset. (A) Differences in RiskScore among 
different clinicopathological groups in the CGGA-LGG cohort. (B) Differences in RiskScore among different molecular subtypes in the CGGA-
LGG cohort. (C) KM curves between high and low RiskScore groups in different clinical subgroup. Abbreviations: CGGA: Chinese Glioma 
Genome Atlas; LGG: low-grade glioma; K-M: Kaplan-Meier. 
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Supplementary Tables 
 
Please browse Full Text version to see the data of Supplementary Tables 2–5. 
 
Supplementary Table 1. The clinical information of TCGA and CGGA dataset. 

Characteristics TCGA (N = 506) CGGA (N = 408) Total (N = 914) 

Age 
≤40 249 (27.24%) 214 (23.41%) 463 (50.66%) 
>40 257 (28.12%) 193 (21.12%) 450 (49.23%) 
NA 0 (0.0e + 0%) 1 (0.11%) 1 (0.11%) 

Gender 
Female 226 (24.73%) 172 (18.82%) 398 (43.54%) 
Male 280 (30.63%) 236 (25.82%) 516 (56.46%) 

Grade 
G2 245 (26.81%) 220 (24.07%) 465 (50.88%) 
G3 260 (28.45%) 188 (20.57%) 448 (49.02%) 
NA 1 (0.11%) 0 (0.0e + 0%) 1 (0.11%) 

IDH.Mutation 
Mutant 409 (44.75%) 277 (30.31%) 686 (75.05%) 
WT 94 (10.28%) 100 (10.94%) 194 (21.23%) 
NA 3 (0.33%) 31 (3.39%) 34 (3.72%) 

IDH.codel.subtype 
IDHmut-codel 165 (18.05%) 0 (0.0e + 0%) 165 (18.05%) 
IDHmut-non-codel 244 (26.70%) 0 (0.0e + 0%) 244 (26.70%) 
IDHwt 94 (10.28%) 0 (0.0e + 0%) 94 (10.28%) 
NA 3 (0.33%) 408 (44.64%) 411 (44.97%) 

MGMT.promoter.methylation 
Methylated 418 (45.73%) 191 (20.90%) 609 (66.63%) 
Unmethylated 88 (9.63%) 150 (16.41%) 238 (26.04%) 
NA 0 (0.0e + 0%) 67 (7.33%) 67 (7.33%) 

1p.19q.co. deletion 
Codel 0 (0.0e + 0%) 131 (14.33%) 131 (14.33%) 
Non-codel 0 (0.0e + 0%) 243 (26.59%) 243 (26.59%) 
NA 506 (55.36%) 34 (3.72%) 540 (59.08%) 

 
Supplementary Table 2. Identification of 79 genes associated with NK cells. 

 
Supplementary Table 3. The results of univariate cox analysis in the CGGA cohort. 

 
Supplementary Table 4. The results of clustering analysis in the CGGA cohort. 

 
Supplementary Table 5. The information of univariate Cox regression analysis. 

 


