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INTRODUCTION 
 

Lung cancer (LC) is one of the most common causes of 

cancer death worldwide. Approximately 85% of LC with 

histological subtypes are identified as non-small cell 

lung cancer (NSCLC), of which lung adenocarcinoma 

(LUAD) and lung squamous cell carcinoma (LUSC) are 

the most prevailing subtypes [1]. NSCLC is a genetically 

heterogeneous disease with unique combinations of 

somatic mutation profiles and there are significant 

differences in genetic characteristics with regard to 

mutation spectrum and mutation frequencies [2]. Given 

that the soaring of large driver mutations in cancer, the 

treatment of NSCLC therapy has entered a new 

revolutionized era of targeted therapy [3]. Based on the 

increasing knowledge of driver mutations in NSCLC, a 

group of drugs targeting the well-known driver genes 

such as KRAS, EGFR, ALK, ROS1, MET, RET, 

NTRK, and RAF, have been approved for targeted 

therapy, which facilitates personalized medicine [4, 5]. 

Increasing gene variants and genetic characteristics have 
conferred LC to various sub-genotypes [6]. However, 

dissecting the complicated mutation pattern of NSCLC 

is one of the biggest challenges. 
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ABSTRACT 
 

Non-small cell lung cancer (NSCLC), representing about 85% of all lung cancer (LC) cases, is by far the most 
common form of LC. High-throughput technology largely expands our ability to analyze the transcriptome 
data and a plethora of cancer-driving genes has been identified, paving the path to immune therapy, where 
the effects of cancer-causing mutations are countered with microenvironment complexity. Given that 
competing endogenous RNAs (ceRNAs) participate in diverse cellular processes by a broad array of 
mechanisms in cancer, we scrutinized the immune microenvironment and ceRNA signatures in mutation-
specific NSCLC by integrating TCGA-NSCLC and NSCLS-associated GEO datasets. The results suggested that 
RASA1mutation clusters in LUSC had a better prognosis and immunity. Immune cell infiltration analysis 
indicated that the cluster with RASA1 mutation had a significantly high level of NK T cells and a low level of 
memory effector T cells. Further analysis of immune-related ceRNAs in LUSC showed that hsa-miR-23a was 
significantly associated with survival in RASA1-mutation samples, indicating that there may be specific 
ceRNAs in mutation-specific subgroups in NSCLC. In conclusion, this study verified the presence of complexity 
and diversity of NSCLC gene mutations and highlighted the intricate links between gene mutation and tumor 
environment features. 
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Competing endogenous RNAs (ceRNAs) are non-coding 

transcripts that can interact with each other at the post-

transcription level by competing with the shared 

miRNAs [7]. CeRNAs contain microRNAs, long non-

coding RNAs (lncRNAs), pseudogenic RNA, and 

circular RNA. Increasing evidence has revealed that 

ceRNAs play a crucial role in tumor immune infiltration, 

thus affecting the response to immune therapy [8, 9].  

For example, LINC00973 expression launched by 

EGFR/Wnt signaling perceives the miR-216b/CD55 and 

miR-150/CD59 complex by ceRNA mechanism, which 

impedes the complement system activity and cytokine 

secretion of CD8+T cell by leaping the CD55/CD59 

expression. Interestingly, the therapy integrating anti-

CD55/CD59 and anti-PD-1 antibodies evokes a collegial 

cancer-killing outcome [10]. These findings accentuate 

the pivotal purpose of ceRNA expression in fine-tuning 

ICT resistance. Unluckily, the comprehensive analysis 

exploring the response to immunotherapy especially 

immune checkpoint blockade (ICB) on ceRNAs in 

NSCLC is lacking. Further research is warranted to 

clarify the crosstalk between ceRNA and immune 

features. 

 

In this study, the transcriptome data and gene mutation 

profiles of LUAD and LUSC patients were collected 

from The Cancer Genome Atlas (TCGA) database [11]. 

With reference to the driver mutations that have been 

validated in the previous study [12], a hierarchical 

clustering algorithm was employed to cluster NSCLC 

patients into subgroups based on driver gene mutation 

frequencies. Next, survival analysis was applied to 

investigate the survival risk for NSCLC subgroups. 

What’s more, we evaluated the immune cell infiltration 

by using the estimation of stromal and immune cells in 

malignant tumors using expression data (ESTIMATE) 

algorithm [13]. The characteristics of the immune 

microenvironment for each NSCLLC subgroup were 

estimated by using ImmuneCellAI web tools [14]. 

Furthermore, we created an immune-related ceRNA 

signature by using TILsig [15] and validated the 

efficacy in the GEO dataset. The specific-ceRNAs in 

NSCLC subgroups were considered as specific markers 

of the matching NSCLS mutation subgroups. Of course, 

the survival analysis and function enrichment analysis 

were also conducted to highlight the role of immune-

related ceNRA in NSCLS mutation. The overall design 

of our study was shown in Figure 1. 

 

RESULTS 
 

Somatic mutation profiles of NSCLC 

 

The mutation profile of LUSC contained 158,757 SNP 

mutations occurring in 18,484 genes in 490 NSCLC 

samples. Specifically, EGFR mutate in 17 samples, 

KRAS mutate in 6 samples, 323 samples had TP53 

mutations and 54 samples had PIK3CA mutation, and 

 

 
 

Figure 1. The workflow. 
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BRAF mutate in 12 samples. The highest mutation 

frequency in LUSC was TTN, followed by MUC16, 

CSMD3, TP53, and RYR2. In LUAD, 172,086 

mutations occurred in 18,484 genes in 563 samples. 

According to the mutation frequency, TTN was the most 

frequently mutated gene and 731 samples had TTN 

mutation. Next, MUC16 mutated in 470 samples and 

RYR2 mutate in 396 samples. Mutations in the same 

gene can occur at different genomic positions, LUSC 

shared 2418 mutations with LUAD at the same position 

in the same gene. In addition, the Missense type 

mutation on LUSC was the most at 59.68%, followed by 

the Silent type mutation at 21.37%. Missense and Silent 

mutations in LUAD accounted for 60.79% and 20.42%, 

respectively. To sum up, the mutation number and 

mutation type of the two NSCLC subpopulations were 

similar. It seems that the pathological types had a minor 

role in determining the driving mutation of NSCLC. 

 

NSCLC subgroups identified by distinct mutation 

frequency 

 

The driver genes of NSCLC were obtained from the 

research of Matthew H. Bailey et al. [12] and the driver 

gene mutation was extracted from the somatic mutation 

dataset downloaded from TCGA. The frequency matrix 

of mutations was scaled to calculate the Euclidean 

distance between samples to produce the distance 

matrix. The optimal number of classes was determined 

by Nbclust. LUAD was divided into 18 clusters and 

LUSC was divided into 16 clusters by hierarchical 

clustering (Figures 2A, 2B, 3A, 3B). The heatmap of 

cluster analysis was displayed in Figures 2C, 3C. We 

could acquire each cluster-specific gene mutation. For 

example, among the 16 groups of LUSC, the mutations 

of cluster 1 were relatively mixed. RB1 mutation was 

mostly enrichment in cluster 10. MGA gene and CUL3 

mutations were Cluster 11-specific. Compared with 

LUSC, the clustering effect of LUAD was better. 

Samples containing TP53 mutation and fewer mutations 

in other genes were clustered as cluster 9, and the other 

clusters all contained 1 cluster-specific mutation. 

 

Correlation analysis between clinical characteristics 

and NSCLC mutation subgroups 

 

The clinical information, including population, gender, 

aging, and clinical stages, was obtained from TCGA. 

Correlation analysis uncovered that there is no linear 

relationship between NSCLC mutation subgroups and 

clinical features. 

 

Survival analysis in NSCLC mutation subgroups 

 

Survival analysis was performed in LUAD and LUSC 

clusters to examine the influence of cluster-specific 

gene mutations on NSCLC prognosis. In LUAD, there 

was a significant survival difference between the 

following comparisons: cluster1 vs cluster9, cluster5 

vs cluster12, cluster6 vs cluster7, cluster7 vs cluster9, 

cluster8 vs cluster12, cluster9 vs cluster12, cluster14 

vs cluster12, cluster17 vs cluster12 (Figure 4A–4H). It 

was worth noting that cluster9 characterized by TP53 

mutation had a better prognosis while cluster12 

characterized by CDKN2A mutation, has a poor 

prognosis. Likewise, in LUSC, we found that there 

was a significant survival difference between the 

following comparisons: cluster1 vs cluster3, cluster2 

vs cluster13, cluster3 vs cluster16, cluster 9 vs 

cluster13, and cluster13 vs cluster15 (Figure 5A–5E). 

We noted that cluster 3 contained EP300 mutation, 

suggesting that EP300 mutation was positively 

associated with poor prognosis while cluster 13 

characterized by RASA1 mutation showed a good 

prognosis. 

 

Analysis of immune microenvironment features in 

NSCLC mutation subgroups 

 

The ESTIMATE algorithm was used to calculate the 

immune score (immune cell), stromal score (stromal 

cell), and estimate score (tumor purification) to evaluate 

the degree of immune cell infiltration between LUAD 

and LUSC mutation clusters (Figure 6A, 6B). The 

proportion of T cells with distinct functional phenotypes 

was predicted with ImmuneCellAI and we calculated 

the infiltration score, an index of the immune cell 

infiltration level in LUSC (Figure 7). Cluster9 in LUAD 

carried abundant immune cell infiltration, suggesting 

that cluster 9 had better immunity and patients in cluster 

9 were suitable for immune therapy. 

 

Identification of immunity-related ceRNA 

 

From the GSE28490 dataset, the immune-related 

mRNA and miRNA signatures were obtained according 

to the preliminary criteria of TILs. According to the 

previous study, we collected the immune-related 

lncRNA lists [15]. A total of 146 mRNAs, 20 miRNAs, 

and 92 lncRNAs were enrolled in our subsequent 

analysis. 

 

The cluster-specific ceRNAs were screened out 

according to the differential expression of selected 

ceRNA signatures in the immune cell of each cluster and 

they were functionally related to the cluster-specific 

mutation. We found that hsa-miR-768, hsa-miR-140, hsa-

miR-320, hsa-miR-1826, hsa-miR-103, and hsa-miR-107 

were enhanced in immune cell (Figure 8A). KEGG 
analysis indicated that the cluster-specific mRNAs  

were mainly engaged in RNA metabolism-associated 

pathways (Figure 8B). 



www.aging-us.com 5876 AGING 

Survival analysis of immune-related ceRNAs in 

NSCLC mutation subgroups 

 

To verify the cluster-specificality of the identified 

ceRNAs, survival analysis was performed in NSCLC 

mutation subgroups. Survival analysis based on the 

unclustered NSCLC samples indicated that there was 

not a significant association at the overall level while 

survival analysis based on the NSCLC mutation 

subgroups showed that ceRNA was significantly 

 

 
 

Figure 2. Clustering analysis LUAD. (A, B) The cluster analysis of hierarchical cluster with the optimal parameters. (C) The heatmap of  
18 clusters containing the clinical features. 
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associated with survival. In LUAD, has-miR-191 was 

highly expressed in cluster12 while has-mir-185  

was highly expressed in cluster9 and associated  

with a better prognosis. Furthermore, ACTB, ACTR2,  

ADAR, ADD3, ARHGAP, ARPC2, ATP6V0E1, 

BCLAF1, BTG1, CAPZB, CCNI, CCNL1, CD53, 

CDC42SE2, CELF2, CNBP, CORO1A, CXCR4, EIF1, 

EIF4G2, ELOVL5, FTL, GABARAP, GDI2, GHITM, 

GNB1, H2AFY, HCLS1, HIF1A were significantly 

differentially expressed between interested subgroups. 

 

 
 

Figure 3. Clustering analysis LUSC. (A, B) The cluster analysis of hierarchical cluster with the optimal parameters. (C) The heatmap of 16 
clusters containing the clinical features. 
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In LUSC, has-miR-17 was highly expressed in cluster3 

and associated with a poor prognosis. In LUSC, hsa-

miR-23a was low-expressed in cluster13 characterized 

by the RASA1 mutation (Figure 9A). The analysis 

found that the expression of hsa-miR-23a was not 

highly correlated with survival in the overall LUSC 

sample while in cluster 13 with RASA1 mutation, has-

miR-23a was reduced in cluster13 and associated with 

a good prognosis (Figure 9B, 9C). 

 

DISCUSSION 
 

In the current study, we divided LUSC samples into 16 

clusters and LUAD samples into 18 clusters, which were 

characterized by unique mutation patterns according to 

the frequency of tumor driver mutations profiles in 

LUSC and LUAD, respectively. Each subgroup has  

its signature mutation. The distinct NSCLS mutation 

subgroups indicated the complexity and diversity of 

NSCLC gene variations. Survival analysis of pairwise 

comparison showed that some subtypes had significantly 

higher survival rates, and subgroup-specific gene 

mutation may be a potential prognosis biomarker in 

matching NSCLC subgroups. For example, Ras p21 

protein activator 1 (RASA1), specifically mutated in 

cluster13 in LUSC, is a regulator of Ras GDP and GTP 

dynamic conversion. Increasing evidence has pinpointed 

that RASA1 is involved in numerous cancer-related 

physiological processes such as angiogenesis, cell 

proliferation, and apoptosis [16]. Previous research has 

reported that hsa-miR-182 suppresses cell proliferation 

and viability by recognizing the 3’UTR region of 

RASA1 in LUSC [17]. Here, our data highlighted the 

functional govern of RASA1 in LC survival outcomes. 

Taken together, RASA1 mutation was a favorable factor 

in LUSC prognosis. 

 

 
 

Figure 4. Survival analysis between subgroups of LUAD. (A–I) The survival probabilities between different clusters in LUAD. The 

statistical analysis was calculated based on log-rank test. 
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Figure 5. Survival analysis between subgroups of LUSC. (A–E) The survival probabilities between different clusters in LUSC. The 

statistical analysis was calculated based on log-rank test. 
 

 
 

Figure 6. Immune cell infiltration analysis. (A, B) The stromal score, immune score, and estimate score pattern estimated by the 
ESTIMATE algorithm in LUSC and LUAD. 
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Figure 7. Immune cell abundance in LUSC subgroups by ImmuneCellAI. 
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Similarly, CDKN2A, an important tumor-driving gene, 

is specifically mutated in cluster 12 in LUAD. Stanley I. 

Gutiontov et al. revealed that CDKN2A negatively 

impacts clinical outcomes in advanced NSCLC treated 

with immune checkpoint blockade therapy and the 

survival analysis also suggested NSCLC patients 

carrying CDKN2A-mutation have a poor prognosis 

[18]. Our research indicated that, compared with cluster 

8, cluster 9, cluster 14, and cluster 17, the survival time 

of cluster 12 with CDKN2A mutation was shorter, 

implying that CDKN2A mutation was an unfavorable 

risk factor in LUAD survival. Correcting the CDKN2A 

 

 
 

Figure 8. Identification of immune-related ceRNAs. (A) The heatmap of selected miRNA in immune cells. (B) The KEGG analysis of 
selected mRNA. 
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mutation can be an alternative approach to improving 

LUAD prognosis. 

 

Further, the ESTIMATE method and the infiltration 

algorithm from ImmuneCellAI were used to estimate the 

immune infiltration of each cluster. The immune cell 

infiltration was reduced in cluster 9. Cluster 9 in LUSC 

mainly contained the FBXW7 mutation. Mounting data 

have suggested that FBW7 decreases the stability of PD-

1 by inhibiting the K48-linked de-polyubiquitination of 

PD-1, which confers the tumor microenvironment too 

sensitive to response to PD-1 blockade therapy by 

recruiting the tumor-infiltrating cytotoxic T cell in 

NSCLC [19]. Taken together, targeting FBXW7 shows 

great promise in improving the ICT effect. 

 

The scores of neutrophil and regulatory T cells of 

cluster 12 characterized by CDK2NA mutation were 

significantly lower than in other clusters. This may 

partly explain the cause of the worse prognosis. In 

fact, CDKN2A (encoding p16INK4A) exerts a far-

reaching tumor-inhibition purpose by enhancing the 

KRAS signaling pathways activity in accelerating the 

malignant progression of cancer. The small molecule 

inhibitors targeting CDK4 and CDK6 recuperate the 

impaired tumor suppression function induced by 

p16INK4A mutation, which revives the tumor growth 

in pancreatic ductal adenocarcinoma (PDAC) [20]. 

Besides, Kaplan Meier curves of immune-related 

ceRNAs in LUSC showed that has-miR-23a was not 

significantly associated with patient survival in the 

overall samples, but was significantly associated  

with survival in RASA1 mutation samples, indicating 

that there may be specific mutations in clusters 

containing different marker mutations and ceRNA 

marker molecules. 

 

 
 

Figure 9. Survival analysis of hsa-miR-23a. (A) The expression profile of hsa-miR-23a in 16 clusters of LUSC. (B) The survival analysis of 

hsa-miR-23a in overall LUSC samples. (C) The survival analysis of hsa-miR-23a in RASA1-mutation cluster of LUSC. 
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MATERIALS AND METHODS 
 

Data source 

 

The LUSC and LUAD mutation data and mRNA, 

miRNA, lncRNA expression profile data were 

downloaded from TCGA using TCGAbiolinks (2.26.0) 

[21] R package, including 504 patients in LUSC and 

594 patients in LUAD. We downloaded the mRNA 

expression data of 9 immune cell lines of GSE28490 

[22] directly from the website (48 samples * 20368 

probes), the miRNA expression data of 9 immune cell 

lines from GSE28487 [22] (48 samples * 7816 miRNA 

probes). The immune-related mRNAs and miRNAs 

were extracted from the previous study [23]. The 

immune-lncRNA signature was acquired according to a 

previous study [15]. The immune-related core 

molecules of mRNA and miRNA are calculated from 

Gene Expression Omnibus (GEO) database [24]. 

 

Clustering analysis based on mutation profiles 

 

The driver genes of LUSC and LUAD were obtained 

from the research of Matthew H. Bailey et al. [12] and 

the driver gene mutation was extracted from the somatic 

mutation dataset of TCGA. Each gene was counted 

according to the distribution of mutations in the sample. 

The frequency matrix of mutations was scaled to 

calculate the Euclidean distance between samples to 

produce the distance matrix. Then hierarchical clustering 

was used to cluster the samples into different groups. 

The optimal number of clusters was determined with R 

package Nbclust (3.0.1) [25]. LUSC was clustered into 

16 clusters, and LUAD was clustered into 18 clusters. 

 

Immune infiltration analysis 

 

ESTIMATE algorithm, a method that uses gene 

expression signatures to infer the fraction of stromal and 

immune cells, was used to detect the inflating scores of 

tumor and immune cells scores in the tumor environment 

(https://bioinformatics.mdanderson.org/public-software/ 

estimate/). Stromal cell score, immune cell score, and 

overall estimate score were calculated by input 

expression matrix of LUAD and LUSC to the web tool. 

ImmuCellAI (Immune Cell Abundance Identifier) was 

used to estimate the abundance of 24 immune cells 

based on the gene expression dataset including RNA-

Seq and microarray data (http://bioinfo.life.hust.edu.cn/ 

ImmuCellAI#!/). The expression profiles of LUSC and 

LUAD were obtained from TCGA. 

 

Survival analysis 

 

The expression profiles of ceRNAs and related clinical 

information of LUAD and LUSC samples were acquired 

from the TCGA database. To identify the prognosis-

related ceRNAs, survival analysis based on the Cox 

model was used to estimate the survival risk of patients in 

different groups. For a specific ceRNA, patients were 

divided into two groups according to the median 

expression of the ceRNA. Then Kaplan-Meier curve 

analysis was performed with the “Survival” package in R 

and the p-value between the two groups was also 

calculated based on log-tank test. The p.value < 0.05 

were considered significant. 

 

Function enrichment analysis 

 

To explore the potential biological functions and 

pathways of immune-related signature mRNAs, we 

performed Gene Ontology (GO) [26] and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) [27] 

pathway analysis on 146 immune-related genes 

(Supplementary Table 2) using the “ClusterProfiler” 

package in R [28]. GO terms and KEGG pathways with 

p < 0.05 were considered significantly enriched. 

 

Availability of data and materials 

 

Five processed data have been supplied as the 

Supplementary Tables 1–5. The code script was 

supplied (Supplementary File 1). The other datasets 

used and/or analyzed in the present study are available 

from the corresponding author on reasonable request. 
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Supplementary Table 1. Clusters assigned to each sample of LUAD and LUSC. 

 

Supplementary Table 2. The immune-related mRNA, miRNA and lncRNAs collected from previous studies. 

 

Supplementary Table 3. The result of GO enrichment analysis for immune-related mRNAs. 

 

Supplementary Table 4. Stromal cell score, immune cell score, and overall estimate score of LUAD and LUAC 
calculated by ESTIMATE algorithm. 

 

Supplementary Table 5. The estimation of 24 immune cell abundance in LUAD and LUSC by ImmuneCellAI web 
tools. 
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