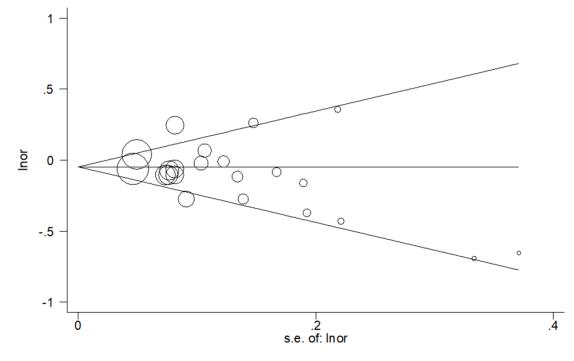
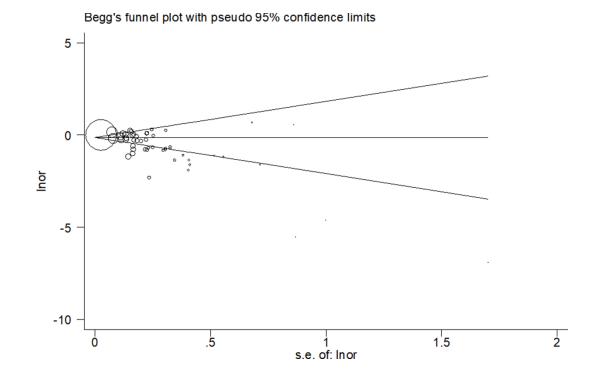

SUPPLEMENTARY FIGURES

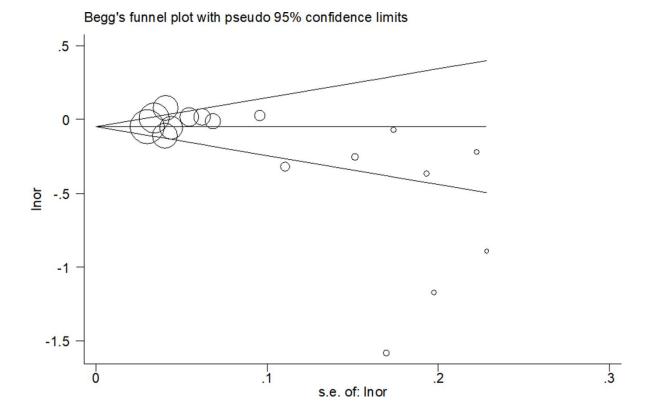


Supplementary Figure 1. Forest plot of meta-analysis of breast cancer risk in relation to Highest vs lowest categories of vitamin D intake. Abbreviations: OR, odds ratio; CI, confidence interval.

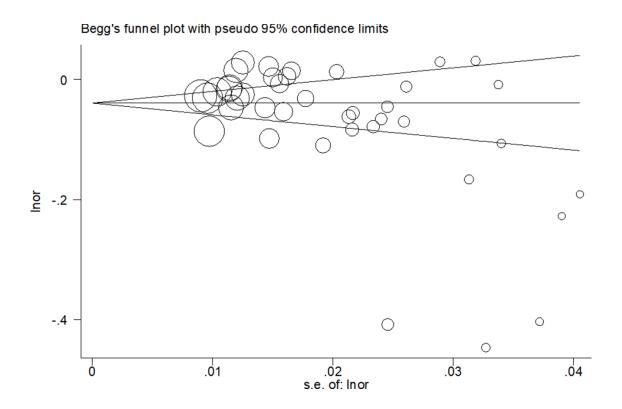

Highest vs lowest categories of blood v	vitamin D levels OR (95% CI)	Weight
ase-control	- d	
ope (2018)	✤ 0.46 (0.30, 0.70)	2.26
Budhathoki (2018)	• • 0.78 (0.51, 1.21)	2.24
ofi (2018)	•• 0.49 (0.27, 0.89)	1.89
Vu (2017)	 0.46 (0.33, 0.63) 	2.47
)'Brien (2017)	 0.79 (0.63, 0.98) 	2.65
Atoum (2017)	0.00 (0.00, 0.03)	0.56
Dliveira-Sediyama (2016)	• 0.34 (0.16, 0.71)	1.59
liassen (2016)	♦ 0.87 (0.67, 1.13)	2.58
Shirazi (2016)	 1.04 (0.80, 1.34) 	2.59
amshidinaeini (2016)	0.26 (0.12, 0.59)	1.49
Sofi (2016)	0.31 (0.10, 0.88)	1.06
Park (2015)	• 1.00 (0.95, 1.05)	2.82
Colagar (2015)	• 0.26 (0.13, 0.50)	1.73
Deschasaux (2015) Kim (2014)	◆ 0.98 (0.60, 1.61)	2.11 2.48
Alipour (2014)	 ◆ 1.01 (0.74, 1.39) ◆ 0.33 (0.12, 0.90) 	1.16
Bidgoli (2014)	1.78 (0.33, 9.59)	0.57
Scamo (2013)	 ♦ ♦ 0.94 (0.76, 1.16) 	2.66
rousef (2013)	0.15 (0.07, 0.34)	1.51
Chen (2013)	0.10 (0.06, 0.15)	2.19
(uhn (2013)	♦ 1.07 (0.85, 1.36)	2.63
Amir (2012)		2.46
Bilinski (2012)	• 0.44 (0.25, 0.79)	1.93
Nohr (2012)	✤ 0.74 (0.52, 1.06)	2.40
Fedirko (2012)	••• 0.53 (0.28, 1.00)	1.80
Neuhouser (2012)	✤ 0.50 (0.32, 0.79)	2.20
Peppone (2012)	•• 0.45 (0.25, 0.82)	1.89
mtiaz (2012)	0.00 (0.00, 0.79)	0.17
Veldhuis (2011)	•• 0.49 (0.26, 0.93)	1.80
Pazdiora (2011)	0.01 (0.00, 0.05)	0.44
Yao (2011)	• 0.37 (0.27, 0.51)	2.48
Eliassen (2011)	◆ 1.20 (0.88, 1.63)	2.50 2.74
Anderson (2011) Engel (2010)	 ◆ 0.84 (0.72, 0.98) ◆ 0.80 (0.62, 1.04) 	2.59
Almquist (2010)	 ◆ 0.80 (0.82, 1.04) ◆ 0.93 (0.66, 1.33) 	2.39
Crew (2009)	 ◆ 0.56 (0.41, 0.78) 	2.47
Abbas (2009)	➡ 0.45 (0.29, 0.70)	2.22
McCullough (2009)	→ 1.09 (0.70, 1.68)	2.23
Rejnmark (2009)	➡ 0.52 (0.32, 0.85)	2.12
Chlebowski (2008)	▲ 1.27 (0.94, 1.70)	2.52
Abbas (2008)	✤ 0.31 (0.24, 0.42)	2.55
Freedman (2008)	▲ 1.04 (0.75, 1.45)	2.46
Lowe (2005)	• 0.20 (0.09, 0.45)	1.48
Bertone-Johnson (2005)	• 0.73 (0.49, 1.07)	2.33
Subtotal (I-squared = 89.9%, p = 0.000)	0.57 (0.48, 0.66)	89.44
cohort		
Cheney (2018)	1.99 (0.53, 7.55)	0.81
AcDonnell1 (2018)	0.20 (0.05, 0.82)	0.75
Palmer (2016)	• 1.18 (1.02, 1.36)	2.75
Ordonez-Mena (2015)	✤ 1.37 (0.85, 2.22)	2.14
Skaaby (2014)	➡ 1.11 (0.71, 1.71)	2.23
Ordonez-Mena (2013)	1.29 (0.71, 2.35)	1.88
Subtotal (I-squared = 31.6%, p = 0.198)	1.17 (0.92, 1.48)	10.56
Overall (I-squared = 89.3%, p = 0.000)	0.61 (0.53, 0.70)	100.00
NOTE: Weights are from random effects analysis		

Supplementary Figure 2. Forest plot of meta-analysis of breast cancer risk in relation to Highest vs lowest categories of blood vitamin D. Abbreviations: OR, odds ratio; CI, confidence interval.

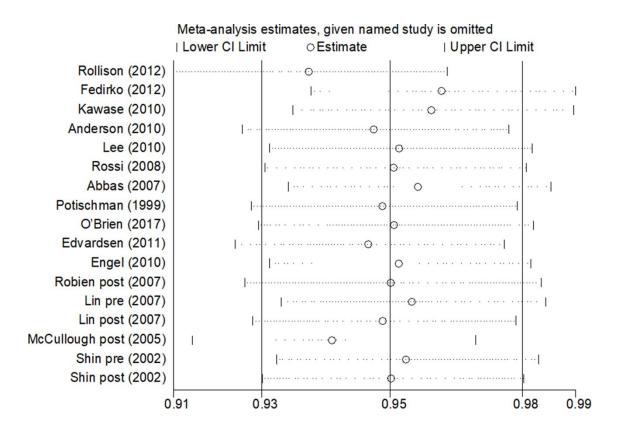
Begg's funnel plot with pseudo 95% confidence limits

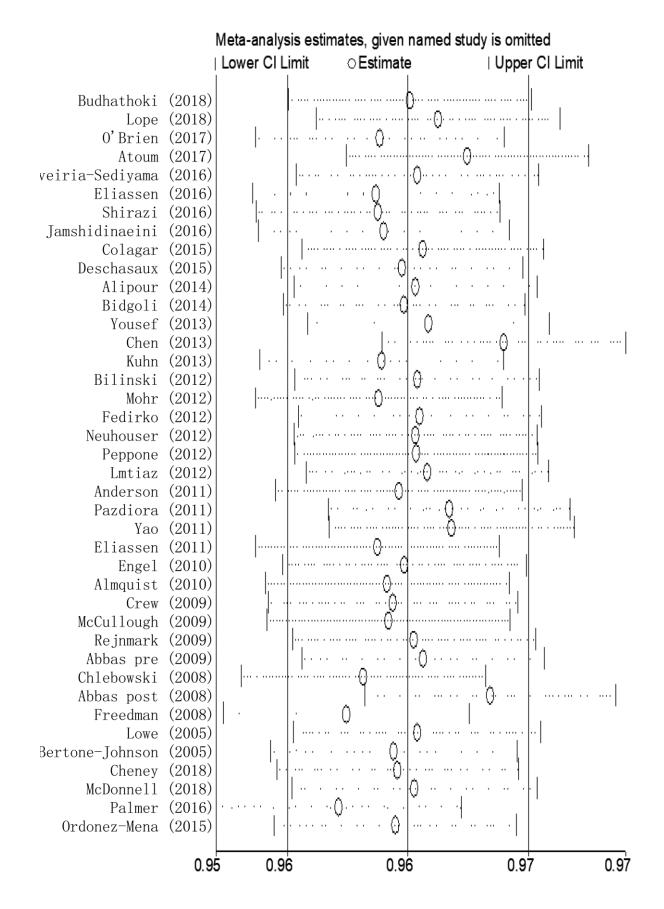


Supplementary Figure 3. Funnel plot of meta-analysis of breast cancer risk in relation to Highest vs lowest categories of vitamin D intake.



Supplementary Figure 4. Funnel plot of meta-analysis of breast cancer risk in relation to Highest vs lowest categories of blood vitamin D.


www.aging-us.com


Supplementary Figure 5. Funnel plot of meta-analysis of breast cancer risk in relation to vitamin D intake increment (per 400IU/day).

Supplementary Figure 6. Funnel plot of meta-analysis of breast cancer risk in relation to blood vitamin D increment (per 5nmol/I).

Supplementary Figure 7. Sensitivity analysis of meta-analysis of breast cancer risk in relation to vitamin D intake increment (per 400IU/day).

Supplementary Figure 8. Sensitivity analysis of meta-analysis of breast cancer risk in relation to blood vitamin D increment (per 5nmol/l).