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ABSTRACT 
 

Previous research has found that living in a disadvantaged neighborhood is associated with poor health 
outcomes. Living in disadvantaged neighborhoods may alter inflammation and immune response in the body, 
which could be reflected in epigenetic mechanisms such as DNA methylation (DNAm). We used robust linear 
regression models to conduct an epigenome-wide association study examining the association between 
neighborhood deprivation (Area Deprivation Index; ADI), and DNAm in brain tissue from 159 donors enrolled in 
the Emory Goizueta Alzheimer’s Disease Research Center (Georgia, USA). We found one CpG site (cg26514961, 
gene PLXNC1) significantly associated with ADI after controlling for covariates and multiple testing (p-
value=5.0e-8). Effect modification by APOE ε4 was statistically significant for the top ten CpG sites from the 
EWAS of ADI, indicating that the observed associations between ADI and DNAm were mainly driven by donors 
who carried at least one APOE ε4 allele. Four of the top ten CpG sites showed a significant concordance 
between brain tissue and tissues that are easily accessible in living individuals (blood, buccal cells, saliva), 
including DNAm in cg26514961 (PLXNC1). Our study identified one CpG site (cg26514961, PLXNC1 gene) that 
was significantly associated with neighborhood deprivation in brain tissue. PLXNC1 is related to immune 
response, which may be one biological pathway how neighborhood conditions affect health. The concordance 
between brain and other tissues for our top CpG sites could make them potential candidates for biomarkers in 
living individuals. 
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INTRODUCTION 
 

Neighborhood socioeconomic status (SES) is complex 

and has unique social, cultural, physical, and economic 

attributes that can impact human health [1]. Residing in a 

deprived neighborhood has been associated with 

increased incidence of mental health conditions such as 

depression [2], increased risk of chronic conditions such 

as cardiovascular disease [2], and increased risk of brain-

health diseases including Alzheimer’s disease [3, 4]. 

Research has demonstrated that living in a disadvantaged 

neighborhood can lead to chronic stress in the body, 

mainly through the immune and inflammatory response 

system [5]. The specific biological mechanisms that link 

neighborhood conditions to health outcomes are not fully 

understood. 

 

A growing body of evidence suggests that epigenetics 

may help explain how neighborhood conditions impact 

health [6, 7]. DNA methylation (DNAm) is a well-

studied epigenetic mechanism that involves the 

addition of a methyl group to DNA, typically at the 5-

carbon of cytosine at cytosine-phosphate-guanine 

(CpG) dinucleotides, which can influence gene 

expression [8]. While the link between individual-level 

socioeconomic factors and differential DNAm has 

been well established [9–11], the effect of neighbor-

hood-level socioeconomic factors on DNAm is less 

well known. 

 

Existing studies on the relationship between neighbor-

hood deprivation and DNAm are limited due to the 

novelty of the field of social epigenomics. 

Additionally, the implications of this relationship in 

the context of neuropsychiatric disorders are not well 

characterized. One study using blood samples and one 

study using saliva samples both found increased global 

DNAm among those living in more disadvantaged 

neighborhoods [12, 13]. Another study using blood 

samples identified three CpG sites that were associated 

with neighborhood deprivation, with one being linked 

to a gene (MAOB) that is related to Parkinson’s 

Disease [14]. Two other studies using blood samples 

found increased DNAm in nine genes related to stress 

and inflammation in the body [6, 15]. However, none 

of these identified CpG sites or genes were replicated 

across different studies. It is also important to note that 

none of these existing studies have examined the 

association between neighborhood deprivation and 

DNAm in brain tissue. DNAm changes in the brain 

specifically are important to study because they can 

provide indications of neuropathology outcomes such 

as Alzheimer’s disease (AD) [16–22] and depression 

[23, 24]. Many of these brain health outcomes have 

themselves been associated with neighborhood 

deprivation [2, 25, 26]. 

Given this gap in knowledge of how neighborhood 

deprivation impacts differential DNAm in the brain, we 

evaluated the association between the most established 

measure of neighborhood deprivation (Area Deprivation 

Index; ADI) and DNAm measured from brain tissue 

samples in a sample of mainly cognitively impaired, 

deceased donors from Georgia, USA, and analyzed 

whether those associations were independent of the 

observed AD neuropathology. DNAm at any CpG sites 

showing an association with ADI was further 

investigated in terms of their concordance across other 

(more accessible) tissues to explore their potential for 

serving as biomarkers in living individuals. 

 

RESULTS 
 

Description of study population 

 

Our study included 159 donors. In the total study 

population, 89 (56.0%) were male, 142 (89.3%) were 

white, and the mean age at death was 76.6 years (SD 

10.0) (Table 1). Of the total population, 56% had at 

least one APOE ε4 allele and 95.7% were clinically 

diagnosed with AD or some other form of dementia 

before death. Overall, 45.9% were classified as having 

the highest Braak Stage of 6, 69.2% were classified as 

having frequent CERAD, and 58.5% were classified as 

having a high ABC score. The mean ADI was 36.7 (SD 

25.6), which is less deprived than the national average 

of ADI=50. Overall, 116 (73.0%) were classified into 

the lower ADI group (ADI<50; less deprived). 

Compared to those in the high ADI group (ADI≥50; 

more deprived), those in the low ADI group were more 

likely to be white (95.7% vs. 72.1% in the high ADI 

group) and have at least a college degree (79.3% vs. 

72.1% in the high ADI group), with the two groups 

being similar in other demographic categories. 

Additionally, those in the low ADI group were more 

likely to be diagnosed with AD or some other form of 

dementia (97.4.1% vs. 90.7% in the high ADI group) 

but were similar on other clinical categories including 

Braak Stage, CERAD, ABC score, and APOE ε4 

alleles. The study characteristics of our analysis sample 

did not significantly differ from the full cohort 

(Supplementary Table 8). 

 

Association between neighborhood deprivation and 

DNA methylation in the brain 

 

One CpG site (cg26514961, gene PLXNC1) was 

significantly associated with ADI when controlling for 

self-reported race, sex, APOE ε4, education, age at 

death, cell type proportions, and post-mortem interval 

(p-value=5.0e-8) (Figures 1, 2 and Table 2). A 20-unit 

increase in ADI was associated with a -0.0052 decrease 

in DNAm beta value (Table 2). No other CpG sites 
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Table 1. Characteristics of individuals from the ADRC cohort, stratified by Area Deprivation Index 
group (low=ADI<50 corresponding to less deprived than the national average), (high=ADI ≥50 
corresponding to more deprived than the national average). 

Sample characteristic n (%) or mean [SD] Total (n=159) Low ADI (n=116) High ADI (n=43) 

ADI1 36.7 [25.6] 24.1 [15.5] 70.5 [14.1] 

Demographics       

Race       

White 142 (89.3) 111 (95.7) 31 (72.1) 

Black 17 (10.7) 5 (4.3) 12 (27.9) 

Sex       

Male 89 (56.0) 63 (54.3) 26 (60.5) 

Female 70 (44.0) 53 (45.7) 17 (39.5) 

Age at death 76.6 [10.0] 76.6 [9.6] 76.6 [11.1] 

Education attainment       

High school or less 36 (22.6) 24 (20.7) 12 (27.9) 

College degree 76 (47.8) 56 (48.3) 20 (46.5) 

Graduate degree 47 (29.6) 36 (31.0) 11 (25.6) 

Clinical variables       

Braak Stage       

Stage 1 16 (10.1) 11 (9.5) 5 (11.6) 

Stage 2 11 (6.9) 6 (5.2) 5 (11.6) 

Stage 3 20 (12.6) 17 (14.7) 3 (7.0) 

Stage 4 17 (10.7) 12 (10.3) 5 (11.6) 

Stage 5 22 (13.8) 18 (15.5) 4 (9.3) 

Stage 6 73 (45.9) 52 (44.8) 21 (48.8) 

CERAD2       

No 35 (22.0) 26 (22.4) 9 (20.9) 

Sparse 4 (2.5) 4 (3.4) 0 (0.0) 

Moderate 10 (6.3) 7 (6.0) 3 (7.0) 

Frequent 110 (69.2) 79 (68.1) 31 (72.1) 

ABC3       

Not 15 (9.4) 10 (8.6) 5 (11.6) 

Low 29 (18.2) 21 (18.1) 8 (18.6) 

Intermediate 22 (13.8) 17 (14.7) 5 (11.6) 

High 93 (58.5) 68 (58.6) 25 (58.1) 

APOE4 ε4 Allele(s)       

0 70 (44.0) 51 (44.0) 19 (44.2) 

1 68 (42.8) 53 (45.7) 15 (34.9) 

2 21 (13.2) 12 (10.3) 9 (20.9) 

Cognitive classification       

No dementia 7 (4.4) 3 (2.6) 4 (9.3) 

Other dementia 66 (41.5) 51 (44.0) 15 (34.9) 

AD5 86 (54.2) 62 (53.4) 24 (55.8) 

1Area Deprivation Index; 2Consortium to establish a register for AD; 3Amyloid, Braak and CERAD; 4Apolipoprotein E; 
5Alzheimer’s disease. 
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were significantly associated with ADI (Figure 1). The 

other top nine CpG sites and their associated genes were 

cg08087060 (KLHDC4), cg01291468 (UGT1A10, 

UGT1A7, UGT1A9, and UGT1A8), cg16241648 

(ARPC1A), cg20912923 (a CSMD1), cg09431774 

(KIAA1671) and the intergenic CpG sites cg05419854, 

cg15953452, cg06787422, and cg13521319 (Table 2 

and Supplementary Figure 2). The epigenome-wide 

summary statistics are available online (Supplementary 

EWAS Output.xlsx). Similar results were found after 

additional adjustment for neuropathology markers of 

AD (CERAD, Braak Stage, and ABC); thus indicating 

that these results were independent of the degree of 

neuropathology (Supplementary Table 2). Results were 

also similar after excluding the 2.5% cognitively normal 

donors from the EWAS (Supplementary Table 7). Our 

regional analysis using DMRs did not find any regions 

to be statistically significant. The top ten regions are 

summarized in Supplementary Table 10. 

 

Next, we investigated whether the associations with 

the top ten CpG sites from the EWAS of ADI were 

modified by APOE ε4 allele. We found nominally 

significant (p-value < 0.05) effect modifications by 

presence versus absence of the APOE ε4 allele for all 

our top ten CpG sites. Effect estimates for associations 

between the ADI and DNAm observed in the whole 

study population were similar as the estimates 

observed among donors with at least one APOE ε4 

allele. Effect estimates were alleviated toward the null 

among donors without any APOE ε4 alleles. No  

CpG sites were found to be significantly associated 

with ADI in either APOE ε4 group (Supplementary 

Figure 1A, 1B). 

 

 
 

Figure 1. Manhattan (A) and QQ plot (B) from the EWAS of DNAm with the ADI. Adjusted for race, sex, educational attainment, age at death, 
APOE genotype, cell type, and post-mortem interval. Bonferroni-threshold: 0.05/789889 = 6.33e-8 (λ=0.94). 
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We then examined whether any of the top ten  

CpG sites from the EWAS of ADI were associated 

with AD pathology (CERAD, Braak Stage, and  

ABC). None of the ten CpG sites were significantly 

associated with any of the three neuropathology 

outcomes (Table 3). 

 

Look-up of top hits in mQTL or cross-tissue databases 

 

Genetic variants influence DNAm patterns, so we 

investigated whether the identified DNAm associations 

were likely driven by genetic variant effects (mQTLs). 

According to the GoDMC database [27], of the top ten 

CpG sites from the EWAS of ADI, three were 

associated with at least one mQTL, namely cg26514961 

(PLXNC1), cg01291468 (UGT1A10, UGT1A7, 

UGT1A9, and UGT1A8), and cg06787422 (intergenic) 

(Supplementary Table 3). To evaluate the correlation of 

DNAm at our top ten CpG sites across different tissues, 

we used the BECon tool and Gene Expression Omnibus 

Database [Accession code GSE111165]. Two CpG sites 

(cg20912923 (CSMD1) and cg06787422 (intergenic)) 

exhibited blood–brain concordance using the BECon 

tool (Supplementary Table 4A). Both of these sites 

exhibited 75-90% percentile mean correlations between 

blood and brain samples. Using the Gene Expression 

Omnibus Database, only cg15953452 (intergenic) 

exhibited significant blood-brain concordance 

(Supplementary Table 4B). Two CpG sites, cg26514961 

(PLXNC1) and cg16241648 (ARPC1A), exhibited 

significant buccal cell-brain concordance. Four CpG 

sites (cg26514961 (PLXNC1), cg16241648 (ARPC1A), 

cg15953452 (intergenic), and cg06787422 (intergenic)) 

exhibited significant saliva-brain concordance. 

 

Pathway enrichment analysis 

 

To further aid the interpretation of our top associations, 

we performed a gene ontology (GO) and KEGG pathway 

enrichment analysis based on the top 1000 CpG sites 

 

 
 

Figure 2. Scatterplot of DNAm beta values and the ADI from the EWAS of DNAm with the ADI for the CpG site cg26514961 
(PLXNC1). The dots represent the DNAm beta and ADI values for a participant, and the blue line represents the (unadjusted) linear 

relationship between the DNAm beta values and the ADI. 
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Table 2. Top ten CpG sites from the epigenome-wide association study of DNA methylation with the Area 
Deprivation Index, stratified by the presence or absence of the APOE ε4 allele. 

 Total (n=159) ε4 present (n=89) ε4 absent (n=70) 
Effect 

modification 

CpG Chromosome Position Gene(s) 
Effect 

estimate P-value 
Effect 

estimate P-value 
Effect 

estimate P-value P-value 

cg26514961 12 94566784 PLXNC1 -0.0052 5.0e-8 -0.0050 0.0033 -0.0008 0.0002 8.7e-6 

cg08087060 16 87795808 KLHDC4 -0.0040 5.7e-7 -0.0036 0.0030 -0.0007 0.0009 4.6e-5 

cg01291468 2 234589374 
UGT1A10;UGT1A7; 

UGT1A9;UGT1A8 
0.0034 1.4e-6 0.0027 0.0098 0.0004 0.0019 0.0003 

cg05419854 17 19398395 - -0.0058 1.8e-6 -0.0042 0.0190 -0.0008 0.0004 1.0e-5 

cg16241648 7 98923114 ARPC1A 0.0016 2.1e-6 0.0018 0.0046 0.0003 0.0020 0.0002 

cg20912923 8 2885516 CSMD1 -0.0026 2.5e-6 -0.0021 0.0083 -0.0002 0.0008 3.1e-5 

cg15953452 3 63053400 - -0.0050 2.5e-6 -0.0042 0.0105 0.0008 0.0001 6.2e-6 

cg06787422 15 63331851 - -0.0024 3.1e-6 -0.0015 0.0411 -0.0002 0.0012 0.0001 

cg13521319 9 133423844 - -0.0018 3.4e-6 -0.0020 0.0019 -0.0001 0.0046 0.0007 

cg09431774 22 25465561 KIAA1671 -0.0028 3.6e-6 -0.0020 0.0249 -0.0002 0.0002 8.6e-6 

Bold: statistically significant at the Bonferroni threshold of 6.33e-8. 
Effect estimates can be interpreted per a 20-unit increase in ADI. All models were adjusted for the following covariates: race, 
sex, educational attainment, age at death, apolipoprotein E (APOE) genotype, cell type, and post-mortem interval. 

 

Table 3. Association between the top ten CpG sites from the epigenome-wide association study of Area 
Deprivation Index (compare Table 2), and their association with neuropathology markers (CERAD, ABC and 
Braak stage). 

    CERAD1 ABC2 Braak stage 

CpG Chromosome Position Gene(s) 
Effect estimate 

(95%-CI) 

Effect estimate 

(95%-CI) 

Effect estimate 

(95%-CI) 

cg26514961 12 94566784 PLXNC1 0.41 (-0.85, 1.67) 0.67 (-0.35, 1.70) 0.41 (-0.78, 2.56) 

cg08087060 16 87795808 KLHDC4 0.57 (-1.17, 2.32) 0.08 (-1.47, 1.63) 0.57 (-2.73, 1.92) 

cg01291468 2 234589374 
UGT1A10;UGT1A7; 

UGT1A9;UGT1A8 
-1.20 (-3.50, 1.09) -1.14 (-3.13, 0.82) -1.20 (-4.67, 1.49) 

cg05419854 17 19398395 - -0.89 (-2.17, 0.37) -0.39 (1.50, 0.71) -0.89 (-1.05, 2.52) 

cg16241648 7 98923114 ARPC1A 0.93 (-3.42, 5.30) -1.08 (-4.96, 2.77) 0.93 (-6.89, 5.12) 

cg20912923 8 2885516 CSMD1 0.46 (-2.25, 3.18) 1.54 (-0.66, 3.77) 0.46 (-1.82, 5.46) 

cg15953452 3 63053400 - 0.11 (-1.33, 1.55) 0.56 (-0.62, 1.75) 0.11 (-0.66, 2.93) 

cg06787422 15 63331851 - -0.13 (-3.33, 3.06) 0.50 (-2.22, 3.22) -0.13 (-3.20, 4.94) 

cg13521319 9 133423844 - -1.37 (-5.24, 2.46) -0.69 (-4.24, 2.84) -1.37 (-6.76, 4.03) 

cg09431774 22 25465561 KIAA1671 0.37 (-2.17, 2.91) -0.10 (-2.41, 2.21) 0.37 (-4.31, 2.78) 

1Consortium to Establish a Register for AD; 2Amyloid, Braak, and CERAD. 
Effect estimates can be interpreted per a 0.1-unit increase in DNAm. All models were adjusted for the following covariates: 
race, sex, educational attainment, age at death, apolipoprotein E (APOE) genotype, cell type, and post-mortem interval. 

 

with lowest raw p-values. After correction for multiple 

testing (FDR <0.05), we did not identify any GO terms or 

KEGG pathways with an overrepresentation of genes 

containing significantly, differentially methylated CpGs 

that would indicate an enriched biological pathway. GO 

terms and KEGG pathways that were nominally 

significant (raw p<0.05) are included in the supplement 

(Supplementary Table 5A, 5B). 

DISCUSSION 
 

In the ADRC autopsy cohort of 159 donors, we found 

one CpG site (cg26514961, gene PLXNC1) that was 

significantly associated with the ADI in brain tissue 
after controlling for covariates and multiple testing. 

Effect modification by APOE ε4 was found to be 

statistically significant for the top ten CpG sites from 
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the EWAS, indicating that the observed associations 

between ADI and DNAm were mainly driven by donors 

who carried at least one APOE ε4 allele. Four of the top 

ten CpG sites showed a significant concordance 

between brain tissue and tissues that are easily 

accessible in living individuals (blood, buccal cells, 

saliva), including DNAm in cg26514961 (PLXNC1). 

This suggests that differential DNAm in these CpG sites 

could potentially be detected prior to death. None of the 

top ten CpG sites from the EWAS of ADI were 

associated with AD pathology in this autopsy cohort 

and the EWAS results were robust to additional 

adjustment for neuropathology markers. This indicates 

that the identified associations between ADI and 

differential DNAm in the brain were independent of the 

degree of AD-related neuropathology. 

 

The EWAS identified cg26514961 as being significantly 

associated with the ADI, which is associated with the 

PLXNC1 gene. This gene is believed to be related to the 

immune response in the body [28]. Additionally, the 

corresponding RNA and protein levels are altered in the 

brains of people with AD [29]. The protein that this gene 

encodes regulates melanocyte adhesion, and viral 

semaphorins are thought to modulate the immune 

response through binding to this receptor [29]. Previous 

research has suggested the immune response as a 

potential biological pathway of how neighborhood 

deprivation affects the body [5]. This hypothesis is 

further supported by three additional genes that were 

among the top three CpG sites (cg01291468 [UGT1A7, 

UGT1A8, and UGT1A9]) and which have all been linked 

to immunosuppression [30–32]; thus providing further 

evidence that neighborhood deprivation impacts health 

through the immune response. Two additional genes 

among our top ten CpG sites have been associated with 

brain-related health outcomes and aging. KLHDC4 

(cg08087060) is associated with Huntington’s disease 

[33], and CSMD1 (cg20912923) is related to learning 

and memory [34]. In a meta-analysis of brain tissue-

based EWAS in Alzheimer’s disease (n=1453), our top 

ten CpG sites were not found in any of the studies the 

authors examined, and none of the top 25 CpG sites they 

found to be statistically significant for Alzheimer’s 

disease were associated with ADI in our analysis 

(Supplementary Table 9) [35]. 

 

Our study found concordance between brain and other 

tissues in four of our top ten CpG sites. It is important 

to examine the concordance between brain tissue and 

other tissues (such as blood, saliva, and buccal) because 

brain tissue samples are not accessible from living 

donors, whereas these three other tissues are. 
Differential DNAm in tissues that are easily accessible 

in living individuals can serve as biomarkers of 

exposures or to predict related health outcomes. Thus, if 

DNAm profiles in brain tissue are correlated with other 

tissues, those profiles can potentially be used to identify 

individuals at heightened risk, and may lead to earlier 

access to preventative care. 

 

None of the top ten CpG sites have been identified in 

prior studies as being related to DNAm and ADI, most 

likely due to the different tissues that were used. Two 

prior studies found increased global DNAm among those 

living in more disadvantaged neighborhoods [12, 13]. 

These studies did not examine particular CpG sites or 

genes, so it is unclear which locations experienced 

increased or decreased DNAm levels. Another study 

found three CpG sites that were associated with 

neighborhood deprivation, with one being linked to a 

gene that is related to Parkinson’s Disease [14]. None of 

these three CpG sites were identified in our EWAS 

(Supplementary Table 6), but it is of note that their study 

also identified genes associated with an aging-related 

disease. Two other studies found increased DNAm in 

genes related to stress and inflammation in the body  

[6, 15], which is closely linked to the immune response 

pathway that two of our top ten CpG sites were linked to 

[36]. Overall, our findings related to stress and 

inflammation align with pathways identified in previous 

research, but more studies are needed to replicate our 

findings and to identify other CpG sites and genes which 

are related to neighborhood deprivation. 

 

We found evidence of effect modification by APOE ε4 

in the EWAS of ADI, indicating that the observed 

associations between ADI and DNAm were mainly 

driven by donors who carried at least one APOE ε4 

allele. This aligns with previous research, which 

suggests that there are differences in epigenome-wide 

methylation among APOE ε4 carriers and non-carriers 

in blood samples in many genetic positions and loci 

[37]. Further research is needed to investigate how 

DNAm differs by APOE ε4 being present or absent, 

especially in brain tissue. 

 

None of the top ten CpG sites from the EWAS of ADI 

were associated with AD pathology in this autopsy 

cohort. This finding could be due to most participants in 

our sample being cognitively impaired, which limits the 

statistical power to detect differences between impaired 

and non-impaired individuals. More research on this 

association with a larger sample of non-impaired 

individuals is needed to better understand the relationship 

between these CpG sites and AD. 

 

Lastly, three of our top ten CpG sites were associated 

with at least one known mQTL, which is an indicator of 
the genetic influence on DNAm levels [27]. While we are 

unable to disambiguate the effects of the environment 

and genes on DNAm levels, only a proportion of the 
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variation in DNAm levels is explained by genetic effects. 

In fact, the joint effects of environmental factors and 

single nucleotide polymorphisms (SNP) have been found 

to be larger contributors to DNAm variation than SNPs 

alone [38]. 

 

Our study has several strengths. One major strength is 

that our study is the first known study on the association 

between neighborhood deprivation and DNAm in brain 

tissue, which is difficult to obtain and the most relevant 

tissue to study brain-related health outcomes. Studying 

DNAm changes in brain tissue is especially important 

because it can provide insight into neuropathology 

outcomes such as Alzheimer’s disease [16–22] and 

depression [23, 24]. These brain health outcomes have 

themselves been associated with neighborhood 

deprivation [2, 25, 26], which is the reason more research 

on neighborhood deprivation using brain tissue is needed. 

Another strength of our study is that we had diversity of 

neighborhood deprivation. In our study, the ADI ranged 

from 1 to 95, thus including very deprived and very 

privileged neighborhoods. Another strength of our study 

is that we used the Infinium methylation EPIC array as 

opposed to the Illumina Infinium HumanMethylation450 

(450K) BeadChip array. The EPIC array covers more 

than 850,000 methylation sites whereas the 450K array 

only covers 450,000 methylation sites. Only one of the 

five previous studies on the association between 

neighborhood deprivation and DNAm used the EPIC 

array [13]. Of the top ten CpG sites associated with ADI 

in our cohort, four CpG sites were only available on the 

EPIC array. 

 

Our study has a few limitations. Our sample size was 

relatively small (n=159), which limited the statistical 

power to detect associations. Additionally, our sample 

was not racially diverse and only contained self-reported 

White and Black donors. Only 10.7% of participants in 

our sample were Black, limiting our ability to detect 

racial differences. Thus, we are unable to generalize our 

results to other racial or ethnic groups. Another 

limitation of our study is that we only had information 

on the donors’ last known address. It is possible that the 

donors moved around a lot during their life, or only 

moved to their last address at the end of their life. In 

these cases, the long-term or even life-term exposure to 

neighborhood deprivation would not be captured in the 

data. It is possible that the neighborhood conditions of 

where someone grew up or lived during most of their life 

are more relevant to studying the association with DNA 

methylation as opposed to where they lived at the end of 

their life, but further research is needed to elucidate 

these effects throughout the lifespan. Another limitation 
of our study is that the 2020 ADI measure we used does 

not correspond with the donors’ years of death. This 

could lead to measurement error in our study, which may 

result in biased estimates. A final limitation of our study 

is that very few participants were not cognitively 

impaired (2.5%). Because the majority of participants 

had some form of cognitive impairment, the statistical 

power to detect differences between impaired and non-

impaired participants was rather limited. Furthermore, 

most participants exhibited Braak Stage 6 (45.9%), had 

frequent CERAD (69.2%), and had a high ABC score 

(58.5%). These are extreme values as compared to the 

general US population, demonstrating that our 

population was not representative of the larger US or 

Georgia population. 

 

Overall, our study identified one CpG site (cg26514961, 

PLXNC1 gene) that was significantly associated with 

neighborhood deprivation in brain tissue. We also found 

evidence of effect modification by APOE ε4, suggesting 

that the observed associations between ADI and DNAm 

were mainly driven by donors who carried at least one 

APOE ε4 allele. Our study provides motivation to 

conduct larger studies on the association between 

neighborhood deprivation and DNAm in the brain to 

replicate and expand upon our findings. The 

identification of significant CpG sites could provide 

novel insights into the etiology of health disparities, and 

the concordance between brain and other tissues for our 

top CpG sites could make them potential candidates for 

biomarkers in living individuals. 

 

MATERIALS AND METHODS 
 

Study population 

 

The study population was derived from brain tissue 

donors recruited by the Emory Goizueta Alzheimer’s 

Disease Research Center (ADRC). Most of the donors in 

this study were patients diagnosed as having Alzheimer’s 

Disease and were treated at the Emory Clinic or Emory 

University Hospital. In total, 1011 donors enrolled in the 

study until the third quarter of 2020 (Supplementary 

Table 1). The inclusion criteria for our study were the 

following: 1) residential addresses within Georgia; 2) age 

at death of at least 55; 3) died after 1999; 4) no missing 

values in outcomes and key covariates which include 

race, sex, educational attainment, APOE genotype; 5) 

DNAm data was available. Based on these criteria, 159 

donors remained in the analysis. Written consent for 

brain donation was obtained from next of kin as required 

under Georgia law. Emory University’s Institutional 

Review Board approved this study. 

 

Assessment of neighborhood deprivation 

 
Neighborhood deprivation was defined using the Area 

Deprivation Index (ADI), a census-based socioeconomic 

index developed by Kind et al. [39]. The ADI is 
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calculated using socioeconomic status domains of 

income, education, employment, and housing quality 

indicators obtained from the American Community 

Survey. Using these domains, the ADI is calculated from 

17 census indicators that are multiplied by previously 

published factor weights and summed for each census 

block group and then transformed into a standardized 

index [20]. The ADI assigns ranked percentiles that 

range from 1 to 100, where 100 represents the most 

deprived neighborhood. A neighborhood is defined as a 

census block group, which is the smallest geographic 

unit used by the United States Census Bureau to tabulate 

100-percent data. A census block group comprises a set 

of blocks that generally contain 600 to 3000 people and 

is the smallest unit with detailed demographic-economic 

characteristics [40]. We linked the 2020 ADI to each 

participant’s geocoded residential address at the time of 

their death using Federal Information Processing 

Standards codes [41]. 

 

Assessment of neuropathologic markers 

 

The ADRC conducted neuropathologic evaluations on 

every donor’s brain using diagnostic criteria and 

established research evaluations. The neuropathologic 

assessments evaluated the severity of AD-related 

neuropathology changes, which included a variety of 

stains and immunohistochemical preparations as well as 

semi-quantitative scoring of multiple neuropathologic 

changes in brain regions by experienced neuropathologists 

using published criteria. AD neuropathology was 

assessed using the Consortium to Establish a Register for 

AD (CERAD) score, Braak stage, and a combination of 

Amyloid, Braak, and CERAD (ABC) score. CERAD 

score represents the prevalence of neuritic plaques with 

four levels from zero neuritic plaques to frequent. Braak 

stage is a staging scheme which represents neurofibrillary 

tangles (NFTs) and has six stages (Stage I-VI), with 

higher stages indicating a wider distribution of NFTs in 

the brain. ABC score combines CERAD and Braak Stage 

with the prevalence of Amyloid plaques and is converted 

to one of four levels of AD neuropathologic changes: not, 

low, intermediate, or high. 

 

Assessment of DNA methylation 

 

Fresh, frozen prefrontal cortex samples were collected 

from donors at autopsy, and DNA was isolated from 

these samples using the QIAGEN GenePure kit. 

Illumina Infinium HumanMethylationEPIC BeadChips 

arrays were used to assess DNAm in the 159 samples 

and 6 replicates for quality control to assess the 

background technical variation (root mean square error 
(RMSE) ranged from 0.022-0.028). We followed a 

validated quality control and normalization pipeline as 

previously published [42]. Pre-processing and statistics 

were completed using R (v4.2.0). All DNAm data were 

preprocessed to identify low-quality samples, exclude 

specific probes, and reduce the impact of batch effects. 

Raw intensity files were converted to methylation beta 

values ranging on a continuous scale from 0 to 1 for 

each of the CpG sites measured on the array. The 

Illumina’s 636 control probes were used via the R 

package ewastools to assess technique parameters 

including array staining, extension, hybridization, target 

removal, specificity, and bisulfite conversion [43]. 

Additional sample outlier detection was implemented 

based on detection p-value, beadcount, and distance 

from the group average in principal components. The 

Funnorm function and Combat function were used to 

normalize the distributions to reduce technical variation 

and correct for differences between type I and type II 

probe signals. The following probes were further 

removed: XY probes, low-quality probes with missing 

in more than 5% of samples, probes with poor detection 

p-values, probes predicted to cross-hybridize, probes 

that bind to the sex chromosomes, polymorphic probes, 

and probes with infinite values. In total, after all 

preprocessing steps, 159 samples and 789,286 CpG 

sites remained for the down-stream analysis. We used 

the estimateCellCounts function in the R package minfi 

to obtain the cell-type proportions (neuronal vs. non-

neuronal cells) for each sample using the most recent 

prefrontal cortex database [44, 45]. 

 

Confounder assessment 

 

Confounders were identified based on existing 

literature. All models were adjusted for the following 

covariates: race, sex, educational attainment, age at 

death, apolipoprotein E (APOE) genotype, cell type, and 

post-mortem interval. Due to the sample only 

containing White and Black participants, the race 

variable was binary. Educational attainment was 

defined as the highest level of education completed by 

the participant and classified into high school or less, 

college degree, and graduate degree. APOE genotype 

had three levels in the analysis: no ε4 allele, single ε4 

allele, and double ε4 allele. The APOE ε4 allele is a 

well-known risk factor of developing Alzheimer’s 

disease, and the current analysis considered: 0, 1, and 2 

ε4 alleles. Also, a binary APOE genotype (ε4 absent vs. 

present) was used for testing the effect modification by 

the genotype. Binary APOE genotype was used for 

effect modification analyses to conserve statistical 

power in analyses (see Table 1 for a distribution of 

APOE ε4 genotypes). 

 

Statistical analysis 

 

To identify DNAm patterns in brain tissue that are 

associated with ADI, we conducted an epigenome-wide 
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association study (EWAS) of single CpG sites and an 

analysis of differentially methylated regions (DMRs). 

For the EWAS, we ran a robust linear regression model 

using the RLM function within the MASS package 

with ADI as the independent variable and DNAm beta 

values at each CpG site as a dependent variable, 

adjusting for self-reported race, sex, APOE genotype, 

education, age at death, cell type, and post-mortem 

interval. We applied a Bonferroni threshold to correct 

for multiple testing based on the number of tested CpG 

sites (threshold: 0.05/789889 = 6.33e-8). Associations 

between ADI and DMRs were analyzed using the R 

package dmrff. 

 

We conducted several sensitivity analyses to evaluate 

the robustness of our EWAS findings. First, we adjusted 

for neuropathology markers (CERAD, Braak Stage, and 

ABC) to investigate whether the identified associations 

were independent of the degree of neuropathology. 

Second, we conducted an EWAS of ADI after excluding 

the 2.5% cognitively normal donors. Third, since APOE 

ε4 is a well-known risk factor for developing AD, we 

included a multiplicative interaction term between ADI 

and APOE genotype (presence or absence of ε4 allele) in 

our EWAS to test for effect modification and presented 

the stratified effect estimates derived from that 

interaction model. 

 

Next, we investigated whether DNAm patterns in brain 

tissue that are associated with ADI are also linked with 

neuropathology markers. We ran linear regression 

models using each of the top ten CpGs as the independent 

variables, and three neuropathology outcomes (CERAD, 

Braak Stage, and ABC) as dependent variables in 

separate models, adjusting for ADI, self-reported race, 

sex, APOE genotype, education, age at death, cell type, 

and post-mortem interval. 

 

We conducted additional analyses for the top ten CpG 

sites in the EWAS analysis to evaluate their correlation 

across different tissues and how methylation at  

those sites is affected by genotypic variation. This 

included blood–brain concordance analysis using the 

Blood–Brain Epigenetic Concordance (BECon) tool 

[46], blood-brain, buccal-brain, and saliva-brain 

concordance using the data from Braun et al. (2019) on 

the Gene Expression Omnibus Database [Accession 

code GSE111165] [47, 48] and methylation 

quantitative trait loci (mQTL) mapping using the 

GoDMC database [27]. To further aid the 

interpretation of our top associations, we conducted a 

gene ontology (GO) and KEGG pathway enrichment 

analysis which was a look-up of top hits in mQTL and 
cross-tissue databases using the R package missMethyl 

based on the top 1000 CpG sites with lowest raw  

p-values [49]. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. (A) Manhattan (a) and QQ plot (b) from the EWAS of ADI in APOE ε4 present participants. Adjusted for race, 
sex, educational attainment, age at death, cell type, and post-mortem interval. Bonferroni-threshold: 0.05/789889 = 6.33e-8 (λ=0.94).  
(B) Manhattan (a) and QQ plot (b) from the EWAS of ADI in APOE ε4 absent participants. Adjusted for race, sex, educational attainment, 
age at death, cell type, and post-mortem interval. Bonferroni-threshold: 0.05/789889 = 6.33e-8 (λ=0.94). 
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Supplementary Figure 2. Scatterplots of beta values and the ADI from the EWAS of DNAm with the ADI for the top ten CpG 
sites from the EWAS of ADI for the total study population. The dots represent the DNAm beta and ADI values for a participant, and 

the blue line represents the linear relationship between the DNAm beta values and the ADI. (A) Scatterplot of beta values and the ADI from 
the EWAS of DNAm with the ADI for cg08087060 from the EWAS of ADI for the total study population. The dots represent the DNAm beta 
and ADI values for a participant, and the blue line represents the linear relationship between the DNAm beta values and the ADI.  
(B) Scatterplot of beta values and the ADI from the EWAS of DNAm with the ADI for cg01291468 from the EWAS of ADI for the total study 
population. The dots represent the DNAm beta and ADI values for a participant, and the blue line represents the linear relationship between 
the DNAm beta values and the ADI. (C) Scatterplot of beta values and the ADI from the EWAS of DNAm with the ADI for cg05419854 from the 
EWAS of ADI for the total study population. The dots represent the DNAm beta and ADI values for a participant, and the blue line represents 
the linear relationship between the DNAm beta values and the ADI. (D) Scatterplot of beta values and the ADI from the EWAS of DNAm with 
the ADI for cg16241648 from the EWAS of ADI for the total study population. The dots represent the DNAm beta and ADI values for a 
participant, and the blue line represents the linear relationship between the DNAm beta values and the ADI. (E) Scatterplot of beta values 
and the ADI from the EWAS of DNAm with the ADI for cg20912923 from the EWAS of ADI for the total study population. The dots represent 
the DNAm beta and ADI values for a participant, and the blue line represents the linear relationship between the DNAm beta values and the 
ADI. (F) Scatterplot of beta values and the ADI from the EWAS of DNAm with the ADI for cg15953452 from the EWAS of ADI for the total 
study population. The dots represent the DNAm beta and ADI values for a participant, and the blue line represents the linear relationship 
between the DNAm beta values and the ADI. (G) Scatterplot of beta values and the ADI from the EWAS of DNAm with the ADI for cg06787422 
from the EWAS of ADI for the total study population. The dots represent the DNAm beta and ADI values for a participant, and the blue line 
represents the linear relationship between the DNAm beta values and the ADI. (H) Scatterplot of beta values and the ADI from the EWAS of 
DNAm with the ADI for cg13521319 from the EWAS of ADI for the total study population. The dots represent the DNAm beta and ADI values 
for a participant, and the blue line represents the linear relationship between the DNAm beta values and the ADI. (I) Scatterplot of beta 
values and the ADI from the EWAS of DNAm with the ADI for cg09431774 from the EWAS of ADI for the total study population. The dots 
represent the DNAm beta and ADI values for a participant, and the blue line represents the linear relationship between the DNAm beta 
values and the ADI. 
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Supplementary Tables 
 

Please browse the Full Text version to see the data of Supplementary Tables 4A, 4B. 

 

Supplementary Table 1. Sample 
characteristics of the full ADRC cohort. 

Sample characteristic  Total 

n (%) or mean [SD] (n=1011) 

Demographics  

Race  

White 808 (79.9) 

Black 68 (6.7) 

Hawaiian 5 (0.5) 

American Indian 1 (0.1) 

NA 129 (12.8) 

Sex  

Male 548 (54.2) 

Female 442 (43.7) 

NA 21 (2.1) 

Age at death 71.3 [13.0] 

Education attainment  

High school or less 103 (10.2) 

College degree 200 (19.8) 

Graduate degree 115 (11.4) 

NA 593 (58.7) 

Clinical variables  

Braak Stage  

Stage 0 86 (8.5) 

Stage 1 88 (8.7) 

Stage 2 111 (11.0) 

Stage 3 70 (6.9) 

Stage 4 75 (7.4) 

Stage 5 150 (14.8) 

Stage 6 298 (29.5) 

NA 133 (13.2) 

CERAD  

No 294 (29.1) 

Sparse 29 (2.9) 

Moderate 75 (7.4) 

Frequent 542 (53.6) 

NA 72 (7.1) 

ABC  

Not 161 (15.9) 

Low 163 (16.1) 

Intermediate 110 (10.9) 

High 418 (41.3) 

NA 159 (15.7) 

APOE ε4 Allele(s)  

0 391 (38.7) 

1 318 (31.5) 
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2 83 (8.2) 

NA 219 (21.7) 

Cognitive classification  

No dementia 24 (2.4) 

Other dementia 569 (56.3) 

AD 418 (41.3) 

 

Supplementary Table 2. Top ten CpG sites from the EWAS of DNAm with the Area Deprivation Index (compare 
Figure 1 and Table 2).  

CpG Chromosome Position Gene(s) 

Main analysis (n=159) 
Adjusted for CERAD 

(n=159) 

Adjusted for ABC 

(n=159) 

Adjusted for braak stage 

(n=159) 

Effect 

estimate 
P-value 

Effect 

estimate 
P-value 

Effect 

estimate 
P-value 

Effect 

estimate 
P-value 

cg26514961 12 94566784 PLXNC1 -0.0052 0.00000005 -0.0050 0.0000000533 -0.0053 0.0000000498 -0.0050 0.0000000533 

cg08087060 16 87795808 KLHDC4 -0.0040 0.00000057 -0.0038 0.000000592 -0.0041 0.000000562 -0.0038 0.000000592 

cg01291468 2 234589374 

UGT1A10; 

UGT1A7; 

UGT1A9; 

UGT1A8 

0.0034 0.0000014 0.0034 0.00000151 0.0035 0.00000138 0.0034 0.00000151 

cg05419854 17 19398395 - -0.0058 0.0000018 -0.0057 0.0000019 -0.0060 0.00000175 -0.0057 0.0000019 

cg16241648 7 98923114 ARPC1A 0.0016 0.0000021 0.0013 0.00000223 0.0016 0.0000021 0.0013 0.00000223 

cg20912923 8 2885516 CSMD1 -0.0026 0.0000025 -0.0024 0.00000266 -0.0027 0.00000248 -0.0024 0.00000266 

cg15953452 3 63053400 - -0.0050 0.0000025 -0.0051 0.0000025 -0.0052 0.00000247 -0.0051 0.0000025 

cg06787422 15 63331851 - -0.0024 0.0000031 -0.0025 0.0000031 -0.0025 0.00000309 -0.0025 0.0000031 

cg13521319 9 133423844 - -0.0018 0.0000034 -0.0016 0.00000341 -0.0018 0.0000034 -0.0016 0.00000341 

cg09431774 22 25465561 KIAA1671 -0.0028 0.0000036 -0.0026 0.00000364 -0.0029 0.0000036 -0.0026 0.00000364 

In this sensitivity analysis we additionally adjusted the EWAS of ADI for neuropathology markers (CERAD, ABC, Braak Stage) in 
separate models. 

 

Supplementary Table 3. Number of mQTLs mapped to the CpGs 
identified as the top ten CpG sites from the EWAS of ADI. 

CpG Chromosome Position # mQTLs identified at 

p<1e-14 (Min et al.) 

cg26514961 12 94566784 82 

cg08087060 16 87795808 - 

cg01291468 2 234589374 187 

cg05419854 17 19398395 - 

cg16241648 7 98923114 - 

cg20912923 8 2885516 - 

cg15953452 3 63053400 - 

cg06787422 15 63331851 573 

cg13521319 9 133423844 - 

cg09431774 22 25465561 - 

 

Supplementary Table 4A. BECon blood-brain epigenetic concordance for CpGs identified as the top ten CpG 
sites from the EWAS of ADI. 

Supplementary Table 4B. Blood-brain, buccal-brain, and saliva-brain epigenetic concordance for CpGs identified 
as the top ten CpG sites from the EWAS of ADI. 
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Supplementary Table 5A. GO terms that were nominally significant (p<0.05) for the top ten CpG sites from the 
EWAS of ADI. 

 Ontology Term 
N genes 

in term 

N differentially 

methylated 

genes 

P-value FDR 

GO:0036194 CC muscle cell projection 3 1 0.000502345421245922 1 

GO:0036195 CC muscle cell projection membrane 3 1 0.000502345421245922 1 

GO:0051552 BP flavone metabolic process 6 1 0.00241426466775728 1 

GO:0005885 CC Arp2/3 protein complex 11 1 0.00354560747835619 1 

GO:0052696 BP flavonoid glucuronidation 9 1 0.00390423191457027 1 

GO:0052697 BP xenobiotic glucuronidation 10 1 0.00411590769484143 1 

GO:1902287 BP 
semaphorin-plexin signaling pathway 

involved in axon guidance 
10 1 0.00436272584402716 1 

GO:0002116 CC semaphorin receptor complex 9 1 0.00449002681942201 1 

GO:0017154 MF semaphorin receptor activity 10 1 0.00458158214874175 1 

GO:1902285 BP 
semaphorin-plexin signaling pathway 

involved in neuron projection guidance 
11 1 0.00487691928380841 1 

GO:0009812 BP flavonoid metabolic process 14 1 0.00573835688276425 1 

GO:0052695 BP cellular glucuronidation 17 1 0.00652996834768369 1 

GO:0006063 BP uronic acid metabolic process 22 1 0.00829958662418977 1 

GO:0019585 BP glucuronate metabolic process 22 1 0.00829958662418977 1 

GO:0001964 BP startle response 27 1 0.0105784447630494 1 

GO:0015020 MF glucuronosyltransferase activity 30 1 0.0118114852718722 1 

GO:0034314 BP Arp2/3 complex-mediated actin nucleation 37 1 0.0130563075770592 1 

GO:0071526 BP semaphorin-plexin signaling pathway 37 1 0.0141622932961172 1 

GO:0045010 BP actin nucleation 50 1 0.0177133195926246 1 

GO:0035861 CC site of double-strand break 58 1 0.0194649272443375 1 

GO:0042440 BP pigment metabolic process 66 1 0.0238803078794503 1 

GO:0002433 BP 

immune response-regulating cell surface 

receptor signaling pathway involved in 

phagocytosis 

77 1 0.0261103192117255 1 

GO:0038096 BP 
Fc-gamma receptor signaling pathway 

involved in phagocytosis 
77 1 0.0261103192117255 1 

GO:0090734 CC site of DNA damage 79 1 0.0261634735240811 1 

GO:0038094 BP Fc-gamma receptor signaling pathway 80 1 0.0276743567107917 1 

GO:0002431 BP 
Fc receptor mediated stimulatory signaling 

pathway 
83 1 0.0281054046566517 1 

GO:0050772 BP positive regulation of axonogenesis 79 1 0.0287765616463737 1 

GO:0048013 BP ephrin receptor signaling pathway 85 1 0.0294559296346882 1 

GO:0030838 BP 
positive regulation of actin filament 

polymerization 
98 1 0.0349750533314372 1 

GO:0050905 BP neuromuscular process 106 1 0.0387299038011777 1 

GO:0006805 BP xenobiotic metabolic process 112 1 0.0426557934218213 1 

GO:0071466 BP cellular response to xenobiotic stimulus 117 1 0.0441801450153952 1 

GO:0032273 BP 
positive regulation of protein 

polymerization 
133 1 0.0461578372736143 1 

GO:0009410 BP response to xenobiotic stimulus 124 1 0.0466060117650619 1 

GO:0008194 MF UDP-glycosyltransferase activity 134 1 0.0477513908349988 1 
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Supplementary Table 5B. Top KEGG pathways for the top ten CpG sites from the EWAS of ADI. 

  Term 
N genes 

in term 

N differentially 

methylated 

genes 

P-value FDR 

path:hsa00053 Ascorbate and aldarate metabolism 27 1 0.00935562323527538 0.94649073173396 

path:hsa00040 Pentose and glucuronate interconversions 32 1 0.0112598177301082 0.94649073173396 

path:hsa00860 Porphyrin metabolism 38 1 0.0136467852899198 0.94649073173396 

path:hsa00140 Steroid hormone biosynthesis 58 1 0.0207101214494628 0.94649073173396 

path:hsa00830 Retinol metabolism 61 1 0.0224058341419214 0.94649073173396 

path:hsa00982 Drug metabolism - cytochrome P450 65 1 0.0233265428658444 0.94649073173396 

path:hsa05204 Chemical carcinogenesis - DNA adducts 63 1 0.0239040038630032 0.94649073173396 

path:hsa05100 Bacterial invasion of epithelial cells 76 1 0.0266674544457237 0.94649073173396 

path:hsa00983 Drug metabolism - other enzymes 76 1 0.0268464761287482 0.94649073173396 

path:hsa00980 
Metabolism of xenobiotics by cytochrome 

P450 
73 1 0.026888941242442 0.94649073173396 

path:hsa04666 Fc gamma R-mediated phagocytosis 94 1 0.0300734939977411 0.950116909157175 

path:hsa04976 Bile secretion 86 1 0.0323903491758128 0.950116909157175 

path:hsa05135 Yersinia infection 129 1 0.0423779846739126 1 

 

Supplementary Table 6. CpG sites from the EWAS of ADI that were statistically 
significant in Lawrence et al. (2020). 

CpG 
Our study Lawrence et al. (2020) 

Effect estimate P-value Effect estimate P-value 

cg23538773 0.0000271 0.773 0.002352 0.0000000198 

cg07390373 0.0000374 0.683 0.001854 0.0000000971 

cg18956825 0.0000853185179635161 0.654 -0.00233 0.000000275 

 

Supplementary Table 7. Top ten CpG sites from the EWAS of DNAm with the Area Deprivation Index (compare 
Figure 1 and Table 2). 

CpG Chromosome Position Gene(s) 
Main analysis (n=159) 

Excluding cognitively normal  

donors (n=152) 

Effect estimate P-value Effect estimate P-value 

cg26514961 12 94566784 PLXNC1 -0.0052 0.00000005 -0.005 0.00000004 

cg08087060 16 87795808 KLHDC4 -0.004 0.00000057 -0.0039 0.00000055 

cg01291468 2 234589374 
UGT1A10; UGT1A7;  

UGT1A9; UGT1A8 
0.0034 0.0000014 0.0032 0.0000013 

cg05419854 17 19398395 - -0.0058 0.0000018 -0.0056 0.0000014 

cg16241648 7 98923114 ARPC1A 0.0016 0.0000021 0.0016 0.0000019 

cg20912923 8 2885516 CSMD1 -0.0026 0.0000025 -0.0024 0.0000023 

cg15953452 3 63053400 - -0.005 0.0000025 -0.0048 0.0000023 

cg06787422 15 63331851 - -0.0024 0.0000031 -0.0024 0.0000029 

cg13521319 9 133423844 - -0.0018 0.0000034 -0.0017 0.0000033 

cg09431774 22 25465561 KIAA1671 -0.0028 0.0000036 -0.0025 0.0000034 

In this sensitivity analysis we excluded the 2.5% cognitively normal donors. 
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Supplementary Table 8. Sample characteristics of the full ADRC cohort compared to the 
analysis sample. 

Sample characteristic  
Total  

(full cohort) 

Samples not 

included in the 

analysis 

Analysis sample 

n (%) or mean [SD] (n=1011) (n=852) (n=159) P-Value 

Demographics 

Race       0.42 

White 808 (79.9) 666 (78.2) 142 (89.3)  

Black 68 (6.7) 51 (6.0) 17 (10.7)  

Hawaiian 5 (0.5) 5 (0.1) 0 (0.0)  

American Indian 1 (0.1) 1 (0.0) 0 (0.0)  

NA 129 (12.8) 129 (15.1) 0 (0.0)  

Sex       0.83 
Male 548 (54.2) 459 (53.9) 89 (56.0)  

Female 442 (43.7) 372 (43.7) 70 (44.0)  

NA 21 (2.1) 21 (2.5) 0 (0.0)  

Age at death 71.3 [13.0] 69.7 [8.2] 76.6 [10.0] 0.54 

Education attainment       0.46 
High school or less 103 (10.2) 67 (7.9) 36 (22.6)  

College degree 200 (19.8) 124 (14.6) 76 (47.8)  

Graduate degree 115 (11.4) 68 (8.0) 47 (29.6)  

NA 593 (58.7) 593 (69.6) 0 (0.0)  

Clinical variables        

Braak Stage       0.41 
Stage 0 86 (8.5) 86 (10.1) 0 (0.0)  

Stage 1 88 (8.7) 72 (8.5) 16 (10.1)  

Stage 2 111 (11.0) 100 (11.7) 11 (6.9)  

Stage 3 70 (6.9) 50 (5.9) 20 (12.6)  

Stage 4 75 (7.4) 58 (6.8) 17 (10.7)  

Stage 5 150 (14.8) 128 (15.0) 22 (13.8)  

Stage 6 298 (29.5) 225 (26.4) 73 (45.9)  

NA 133 (13.2) 133 (15.6) 0 (0.0)  

CERAD       0.64 
No 294 (29.1) 259 (30.4) 35 (22.0)  

Sparse 29 (2.9) 25 (2.9) 4 (2.5)  

Moderate 75 (7.4) 65 (7.6) 10 (6.3)  

Frequent 542 (53.6) 432 (50.7) 110 (69.2)  

NA 72 (7.1) 72 (8.5) 0 (0.0)  

ABC       0.67 
Not 161 (15.9) 146 (17.1) 15 (9.4)  

Low 163 (16.1) 134 (15.7) 29 (18.2)  

Intermediate 110 (10.9) 88 (10.3) 22 (13.8)  

High 418 (41.3) 325 (38.1) 93 (58.5)  

NA 159 (15.7) 159 (18.7) 0 (0.0)  

APOE ε4 Allele(s)       0.31 
0 391 (38.7) 321 (37.7) 70 (44.0)  

1 318 (31.5) 250 (29.3) 68 (42.8)  

2 83 (8.2) 62 (7.3) 21 (13.2)  

NA 219 (21.7) 219 (25.7) 0 (0.0)  
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Cognitive classification       0.44 
No dementia 24 (2.4) 17 (2.0) 7 (4.4)  

Other dementia 569 (56.3) 503 (59.0) 66 (41.5)  

AD 418 (41.3) 332 (39.0) 86 (54.2)  

Missing values (NA) included for descriptive purpose only; group comparison was done for complete 
cases. 

 

Supplementary Table 9. Top 25 CpG sites from the EWAS of ADI that were 
statistically significant for Alzheimer’s disease in the Smith et al. (2021) meta-
analysis. 

CpG 
Our study Smith et al. (2021) 

Effect estimate P-value Effect estimate P-value 

cg12307200 0.0000105 0.90 −0.015 4.48E−16 

cg01419713 -0.000139595367796947 0.51 0.022 2.20E−14 

cg04874795 0.000082 0.66 −0.022 3.95E−14 

cg11823178 0.0000133 0.94 0.016 3.24E−13 

cg07061298 -0.0000388 0.77 0.018 4.57E−13 

cg13076843 -0.000075 0.52 0.021 7.57E−13 

cg25018458 -0.0000111 0.64 0.008 7.87E−13 

cg07883124 0.0000109 0.92 0.017 9.10E−13 

cg03223072 0.0000524 0.70 −0.014 1.10E−12 

cg05066959 0.0000104 0.90 0.024 1.45E−12 

cg17881200 -0.00267337 0.02 0.017 1.83E−12 

cg19240213 -0.000110791 0.48 0.02 2.29E−12 

cg10045881 -0.000110486 0.35 −0.015 2.38E−12 

cg02674693 0.00000358 0.98 0.018 3.57E−12 

cg06800235 -0.0000166 0.92 −0.017 3.71E−12 

cg18264562 -0.000294621 0.12 0.014 5.46E−12 

cg01964852 0.0000629 0.58 0.016 5.96E−12 

cg01111041 -0.000056 0.11 0.009 6.83E−12 

cg15974867 -0.000101198 0.15 0.018 7.46E−12 

cg17907520 -0.0000942 0.13 0.011 9.65E−12 

cg16988611 -0.0000406 0.69 0.011 9.98E−12 

cg13579486 -0.0000288 0.76 −0.012 1.01E−11 

cg01681367 0.0000329 0.83 −0.015 1.25E−11 

cg01301319 -0.0000516 0.74 0.017 1.54E−11 

cg02317313 -0.000024 0.85 0.017 1.69E−11 
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Supplementary Table 10. Top 10 regions from the regional EWAS of 
ADI using the dmrff R Package. 

Chromosome Start End 
Effect 

estimate 

P-value 

(bonferroni-

adjusted) 

12 18046784 18050274 -0.011 3.93E−4 

12 16849738 16858357 0.053 4.27E−4 

9 11029484 11038264 -0.044 4.88E−4 

7 14048948 14053843 0.062 5.33E−4 

2 10394855 10399273 0.083 5.53E−4 

8 20483933 20489055 -0.092 8.09E−4 

3 12048391 12059282 0.072 8.20E−4 

6 32031809 32037018 0.082 8.64E−4 

6 30682805 30693326 -0.095 8.94E−4 

6 31904765 31909284 -0.102 8.99E−4 
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Supplementary File 
 

 

Please browse the Full Text version to see the data of Supplementary EWAS Output. 

 

Supplementary EWAS Output. Epigenome-wide summary statistics (Effect Estimate, standard deviation (SD), P-
Value, 95%-confidence interval (Lower CI, Upper CI)) for the association between DNA methylation and the 
Area Deprivation Index (ADI). 
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