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INTRODUCTION 
 

Gastric cancer is a prevalent global malignancy, carrying 

a significant burden of morbidity and mortality [1]. 

Worldwide, it ranks as the fourth leading cause of 

cancer-related death and the fifth most prevalent cancer 

[2]. In 2020 alone, there were over a million new cases 

of gastric cancer, with an estimated 700,000 deaths [2]. 

Notably, East Asia, particularly China, bears a substantial 

burden, with China accounting for around 44% of new 

global cases and half of the world’s fatalities [2]. The 

prevalent Helicobacter pylori infection can be blamed 

for the high prevalence of stomach cancer in China [3, 

4]. Gastric cancer elusive etiology and delayed diagnosis 

contribute to its dismal survival rates [5]. Consequently, 

the imperative lies in the prevention, early detection, 

treatment efficacy, and prediction of sensitivity for 

gastric cancer. 
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ABSTRACT 
 

Background: Patients with gastric cancer respond poorly to immunotherapy. There are still unknowns about the 
biomarkers associated with immunotherapy sensitivity and their underlying molecular mechanisms. 
Methods: Gene expression data for gastric cancer were gathered from TCGA and GEO databases. DEGs 
associated with immunotherapy response came from ICBatlas. KEGG and GO analyses investigated pathways. 
Hub genes identification employed multiple machine algorithms. Associations between hub genes and signaling 
pathways, disease genes, immune cell infiltration, drug sensitivity, and prognostic predictions were explored 
via multi-omics analysis. Hub gene expression was validated through HPA and CCLE. Multiple algorithms 
pinpointed Cancer-Associated Fibroblasts genes (CAFs), with ten machine-learning methods generating CAFs 
scores for prognosis. Model gene expression was validated at the single-cell level using the TISCH database. 
Results: We identified 201 upregulated and 935 downregulated DEGs. Three hub genes, namely CDH6, EGFLAM, 
and RASGRF2, were unveiled. These genes are implicated in diverse disease-related signaling pathways. 
Additionally, they exhibited significant correlations with disease-associated gene expression, immune cell 
infiltration, and drug sensitivity. Exploration of the HPA and CCLE databases exposed substantial expression 
variations across patients and cell lines for these genes. Subsequently, we identified CAFs-associated genes and 
established a robust prognostic model. The analysis in the TISCH database showed that the genes in this model 
were highly expressed in CAFs. 
Conclusions: The results unveil an association between CDH6, EGFLAM, and RASGRF2 and the immunotherapeutic 
response in gastric cancer. These genes hold potential as predictive biomarkers for gastric cancer immunotherapy 
resistance and prognostic assessment. 
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Immune checkpoints are pivotal in orchestrating  

the host’s immune response, yet tumors exploit  

these checkpoints to evade immune eradication and 

simultaneously subdue immune reactions [6]. With the 

discovery of immune checkpoint pathways and ways 

to block them, targeted immunotherapy has become a 

major mutation in the treatment of solid tumors, 

bringing new hope to patients [7]. Since the first 

immunotherapeutic drug was applied to melanoma in 

2011, immunotherapeutic drugs have evolved rapidly 

and become one of the most commonly used drugs  

in treating most tumors. However, the variability in 

response rates to such agents remains substantial. 

Notably, tumors boasting heightened somatic mutations, 

like melanoma and non-small cell lung cancer, tend to 

evince more favorable immunotherapeutic responses  

[8, 9]. Furthermore, patients with high PD1 and PD- 

L1 expression responded better to immunotherapy. 

Research has shown that PD-L1 is highly expressed in 

various solid tumors, including esophageal, colorectal, 

pancreatic, gastric, lung, and breast cancers [10]. 

Meanwhile, gastric cancer patients have a highly 

complex immune microenvironment as well as a high 

rate of somatic mutation [11, 12]. These studies 

suggest that gastric cancer patients may derive greater 

benefits from immunotherapy. However, the use of 

immunotherapy in gastric cancer has fallen short of 

expectations. It is only approved for use in advanced 

gastric cancer in some countries [13]. Therefore, 

identifying which gastric cancer patients are sensitive 

to immunotherapy or which are unsuitable for 

immunotherapy is crucial, and there is an urgent need 

for several biomarkers to aid in this identification. 

 

In this investigation, we discerned genes intricately 

linked to immunotherapeutic response in gastric cancer, 

employing comprehensive genome-wide gene expression 

profiles from the TCGA and ICBatlas datasets. By 

employing diverse machine-learning techniques, we 

systematically evaluated potential biomarkers that  

hold promise for gauging the efficacy of immunotherapy 

in gastric cancer. Additionally, we pinpointed genes 

associated with CAFs and subsequently crafted a 

predictive model and a corresponding nomogram to 

forecast prognosis. Notably, the integrity of our model 

was reaffirmed through meticulous validation against 

pertinent data from the GEO repository. 

 

MATERIALS AND METHODS 
 

Acquisition of datasets related to gastric cancer 

 

We sourced stomach adenocarcinoma (STAD) 

expression profiles, mutational data, and clinical records 

from the TCGA database (https://portal.gdc.cancer.gov/). 

The transcriptomic information for STAD encompassed  

a cohort of 448 samples, comprising 412 tumor tissues 

and 36 normal tissues. GSE15459 expression profiles  

and complete clinical information were obtained from  

the GEO database (https://www.ncbi.nlm.nih.gov/geo/). 

Extract differentially expressed genes (DEGs) associated 

with gastric cancer immunotherapy response from  

the ERP107734 data in the ICBatlas database 

(http://bioinfo.life.hust.edu.cn/ICBatlas/). 

 

Acquisition of DEGs and functional analysis 

 

DEGs were obtained from the ICBatlas database, where 

genes with FDR (False Discovery Rate) < 0.05 and 

|log2FC (Log2 Fold Change)| > 1 were used for 

subsequent analysis. KEGG and GO analyses were 

conducted to determine the pathways and functions of 

DEGs enrichment associated with immunotherapy 

response, facilitated by the “clusterProfiler” software 

package. The Search Tool for the Retrieval of Interacting 

Genes (STRING) database obtained a protein-protein 

interaction (PPI) network graph with a minimum 

interaction score of 0.7 (http://string.embl.de/) [14]. 

 

Identifying hub genes through machine learning 

 

Firstly, the genes most relevant to the disease among the 

DEGs were identified in the TCGA transcript data by the 

“WGCNA” package [15]. Subsequently, using P<0.05  

as the criterion, perform univariate Cox regression to 

screen for prognostic genes among the genes obtained 

from the Weighted gene co-expression network analysis 

(WGCNA) analysis. We used the “randomForestSRC” 

package and the “randomSurvivalForest” package to 

perform a random survival forest algorithm to rank the 

importance of prognostic genes. We selected genes with 

significance >0.4 for subsequent analyses. We used the 

“XGBoost”, and “Boruta” packages for the Boruta and 

Extreme Gradient Boosting (XGBoost) algorithms [16] 

for prognostic genes were ranked in terms of their 

importance. By using these three machine learning 

methods, the hub genes are ultimately determined. 

 
Gene set variation analysis (GSVA) of hub genes 

 

GSVA [17] was performed using the R package 

“GSVA” to explore the relevance of core genes  

in the TCGA_STAD cohort to the Hallmark  

pathway. Relevant gene sets were downloaded  

from the Molecular Signature Database (MSigDB) 

(http://software.broadinstitute.org/gsea/msigdb/index.jsp). 

 
Gene set enrichment analysis (GSEA) of hub genes 

 

In this study, differentially expressed genes between the 

high and low-expression groups were identified based 

on the expression profiles of STAD patients using the 
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GSEA tool (http://www.broadinstitute.org/gsea) [18]. 

When screening gene sets, the maximum gene set  

size was set to 500 and the minimum gene set size to 

15. After 1000 permutations, a significantly enriched 

gene set was obtained based on a significance level of 

P<0.05. 

 

Core gene mutation analysis 

 

Mutational differences in somatic cells between high and 

low expression of core genes were investigated using 

TCGA somatic mutation data by the “maftools” package 

[19]. Mutations in core genes were studied through the 

cBioPortal database (https://www.cbioportal.org). 

 

Correlation analysis between core genes and disease-

related genes  

 

We searched the GeneCards database for STAD-

associated disease genes using the keyword “STAD” 

and used the 20 genes with the highest relevance scores 

for subsequent analyses (https://www.genecards.org/). 

We performed Pearson correlation analysis between the 

expression levels of core genes and disease-related genes, 

where P<0.05 was considered statistically significant. 

 

Immune infiltration analysis 

 

The transcript data from the TCGA_STAD cohort  

were analyzed using the cell-type identification  

by estimating relative subsets of RNA transcripts 

(CIBERSORT) algorithm [20] to calculate the relative 

content of 22 types of immune infiltrating cells and  

to analyze the difference between the immune cell 

content of normal and tumor tissues. We performed 

Pearson correlation analysis between the expression  

of core genes and the content of immune cells. The 

expression of core genes and immune-related genes 

were compared using Pearson correlation analysis  

after immune-related genes were also retrieved from  

the Tumor and Immune System Interaction Database 

(TISIDB) (http://cis.hku.hk/TISIDB/). P<0.05 was 

considered statistically significant. 

 

Drug sensitivity analyses 

 

Downloaded the relevant data from the Genomics  

of Drug Sensitivity in Cancer (GDSC) database 

(https://www.cancerrxgene.org/), and used the R 

package “oncoPredict” to predict drug sensitivity  

for each tumor sample in order to evaluate the 

predictive ability of core genes on drug treatment 

response. Default values were selected for all 
parameters, including “combat” to eliminate batch 

effects and average duplicate gene expression. The 

IC50 differences between different expressions of  

the core genes were then compared using the 

Wilcoxon test. Finally, we plot the results using the 

“ggplot” R package. 

 

Validation of core gene expression in databases 

 

Expression data of gastric cancer cell lines were 

downloaded from the CCLE (http://www.broadinstitute. 

org/ccle) database to validate the gene expression  

levels of core genes in gastric cancer cell lines. 

Immunohistochemistry-related data were downloaded 

from the HPA (http://www.proteinatlas.org) database to 

validate the protein expression levels of the core genes 

in normal and gastric cancer tissues. 

 

Identification of CAFs-related genes 

 

Immunotherapy evaluation-related metrics were 

calculated using the TIDE (Tumor Immune Dysfunction 

and Exclusion) database, and the expression of core 

genes was analyzed for Pearson correlation with these 

metrics. At the same time, we assessed the tumor 

mutation burden (TMB) of each patient in the TCGA_ 

STAD cohort. We performed Pearson correlation 

analysis between TMB and the expression levels of core 

genes. 

 

CAFs content was calculated using three methods:  

the Estimated Proportion of Immune and Cancer Cells 

(EPIC) algorithm [21], the xCell algorithm [22], the 

Microenvironmental Cell Population-counter (MCP-

counter) algorithm [23]. First, in the TCGA transcripts, 

we counted genes associated with the core genes,  

and genes with correlation coefficients >0.3 and p<0.05 

were included in subsequent analyses. We then 

performed WGCNA analysis using the “WGCNA” 

package to obtain the CAFs genes associated with the 

core genes. Finally, we selected gene significance (GS) 

> 0.5 as potential CAFs-related genes. 

 

Enrichment analysis 

 

Utilizing the “clusterProfiler” software package, we 

executed KEGG and GO analyses to unravel the 

pathways and functions enriched with CAFs-related 

genes. We also conducted Disease Ontology (DO) 

enrichment analysis using the R package “DOSE” [24] 

to identify which diseases are associated with CAFs-

related genes. 

 

Construction and validation of CAFs features 

 

The obtained CAFs-related genes were subjected  
to univariate Cox regression analysis, and genes  

with P<0.05 were considered prognostic-related genes. 

We used the prognostic-related genes obtained from 
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the univariate Cox regression analysis and took  

the intersection with the genes from the GSE15459 

dataset for further analysis. To build a CAFs signature 

with high accuracy and generalizability, we integrate 

ten machine learning algorithms, including Cox boost, 

Stepwise Cox, Lasso, Ridge, Elastic Net (Enet), 

Survival Support Vector Machines (survival-svm), 

Generalized Boosted Regression Models (GBMs), 

Supervised Principal Components (SuperPC), Partial 

Minimum Cox (plsRcox) and RSF. In constructing  

this model, we set “ntree” to 1000 and “nodesize” to  

5. During the model selection process, we calculate 

each model’s consistency index (C-index) and filter 

based on a combination of the number of genes in the 

model and the C-index. Models with higher C-index 

and fewer genes were considered the optimal models. 

 

The Kaplan-Meier method was employed to generate 

survival curves. At the same time, the log-rank test was 

utilized to assess the disparity in survival rates between 

the high- and low-risk cohorts. The models’ accuracy 

was evaluated using Receiver Operating Characteristic 

(ROC) curves. The model underwent univariate and 

multivariate Cox regression analyses to evaluate its 

potential as an independent prognostic marker for 

STAD patients. All results were validated in the 

GSE15459 dataset. A nomogram with a calibration plot 

was constructed using the “rms” package to predict the 

consistency between actual and predicted survival. A 

multivariable ROC curve was constructed to compare 

with other factors to validate the model and nomogram 

optimality. Evaluation of the clinical usefulness of 

model and nomogram by decision curves was done. 

 
Single-cell sequencing analysis 

 

The genes in the CAFs risk scores and models were 

subjected to Pearson correlation analysis with CAFs 

marker genes in the previous literature to see whether 

the genes identified by machine learning and the 

constructed models were associated with CAFs marker 

genes reported by previous authors. We analyzed 

single-cell RNA-sequencing (scRNA-seq) data from 

STAD tissues (GSE167297) based on the TISCH 

database [25], which was used to identify whether genes 

in the model were highly expressed in CAFs. 

 
Statistical analysis 

 

R software (version 4.2.1) was used for all statistical 

analyses. Wilcoxon tests were used for group 

comparisons. Prognostic-related genes were screened 

using univariate Cox regression analysis. The log- 

rank test and Kaplan-Meier analysis were employed  

to compare overall survival. All correlation tests  

were conducted using the Pearson correlation analysis 

method in the study. P<0.05 was considered statistically 

significant. 

 

Availability of data and materials 

 

Our research examined datasets that are publicly 

accessible. These data are available here: GSE15459 

cohort from GEO database (https://www.ncbi.nlm. 

nih.gov/geo/); TCGA_STAD from TCGA database 

(https://portal.gdc.cancer.gov/). 

 

RESULTS 
 

Screening for immunotherapy efficacy-related DEGs 

and functional enrichment of DEGs 

 

We filtered out 1136 DEGs between gastric cancer 

samples with response and without response to immune 

therapy from the ICBatlas database using the criteria of 

FDR<0.05 and |log2FC|>1 (Supplementary Table 1). 

The number of up-regulated genes was 201, and the 

number of down-regulated genes was 935 in responders 

compared to non-responders. Supplementary Figure  

1A represents the volcano plot, while Supplementary 

Figure 1B shows the heatmap of DEGs. To further 

investigate the functions and pathways of DEGs, we 

performed KEGG and GO enrichment analyses. The 

KEGG pathway enrichment results showed that DEGs 

were mainly enriched in cancer, PI3K-Akt, gastric 

cancer, and MAPK pathways (Supplementary Figure 

1C). GO enrichment analysis showed that DEGs were 

mainly involved in functions such as extracellular 

matrix composition, basement membrane, and receptor-

ligand activity (Supplementary Figure 1D). PPI network 

analysis revealed that most DEGs were tightly and 

intricately linked (Supplementary Figure 1E). 

 

Machine learning of DEGs and identification of 

three hub genes, CDH6, EGFLAM, and RASGRF2 

 

To further understand which genes in DEGs affect 

immunotherapy, we selected the TCGA_STAD cohort 

for WGCNA analysis and screened the genes most 

relevant to STAD. The green module in the WGCNA 

analysis was most relevant to STAD and was selected 

for our subsequent analysis, which included 62 genes 

(Figure 1A–1C). Subsequently, using a significance 

level of P<0.05, we screened out 38 genes that  

are significantly associated with prognosis through 

univariate Cox analysis (Figure 1D). These 38 genes 

were screened by Random Forest Analysis, Boruta,  

and XGBoost to identify the final genes (Figures 1E, 

1F, 2A–2C). Finally, the intersection of these three 

machine-learning screened genes was taken, and three 

genes met our criteria, namely CDH6, EGFLAM,  

and RASGRF2 (Figure 2D). The Kaplan-Meier survival 
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Figure 1. Selection and analysis of differentially expressed genes in the TCGA_STAD cohort. (A) Scale independence and mean 

connectivity plot generated using WGCNA. (B) Gene dendrogram and nodule color from WGCNA analysis. (C) Merged module correlation 
coefficients from WGCNA analysis. (D) Results of the univariate Cox regression analysis (P<0.05). (E) Random forest analysis of prognostic 
genes. (F) Ranking plot of selected features with random forest importance scores> 0.4. 
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Figure 2. Selection of hub genes from prognostic genes. (A) Shadow feature plot for Boruta algorithm. (B) Confirmed plot for Boruta 
algorithm. (C) XGBoost analysis. (D) Venn diagram of hub genes identification using different methods. (E–G) Kaplan-Meier survival analysis of 
EGFLAM, RASGRF2, and CDH6 (p<0.001, p=0.008, and p<0.001, respectively). 
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analysis demonstrated a significant correlation 

between elevated overall survival and reduced 

expression of EGFLAM, RASGRF2, and CDH6 

(P<0.001, P=0.008, and P<0.001) in contrast to  

high expression levels (Figure 2E–2G). Furthermore, 

these three genes exhibited heightened expression 

levels among non-responsive immunotherapy patients 

(Supplementary Table 1). These findings imply that 

gastric cancer patients with elevated expression of these 

three genes might experience limited or potentially no 

advantages from immunotherapy. 

 

Exploration of specific signaling pathways associated 

with the hub genes EGFLAM, RASGRF2 and CDH6 

 

Subsequently, we performed an in-depth analysis  

of specific signaling pathways involving these three 

core genes and investigated the potential impact of  

the candidate genes on pathways related to disease 

progression. The GSVA analysis revealed that the 

overexpression of CDH6 is mainly enriched in 

pathways such as oxidative phosphorylation, P53 

signaling pathway, DNA repair, G2M checkpoint,  

and UV-response-up. Low-expressed CDH6 is mainly 

enriched in apoptosis, angiogenesis, UV-response-

down, TGFβ signaling pathway, IL2-STAT5 signaling 

pathway, and other pathways. The overexpression of 

EGFLAM is predominantly enriched in signaling 

pathways, including the P53 signaling pathway, 

glycolysis, oxidative phosphorylation, downstream 

effects of the KRAS signaling pathway, and interferon-

alpha response. The low expression of EGFLAM was 

mainly enriched in the IL6_JAK_STAT3 signaling 

pathway, apoptosis, PI3K_AKT_MTOR signaling 

pathway, fatty acid metabolism, TGFβ signaling 

pathway, and other signaling pathways. The 

upregulated RASGRF2 is primarily enriched in the 

MTORC1 signaling pathway, glycolysis, cholesterol 

homeostasis, MYC target genes, and E2F target  

genes. Low expression of RASGRF2 was mainly 

enriched in the PI3K_AKT_MTOR signaling pathway, 

adipogenesis, apoptosis, TNF-α signaling via NFKB, 

and protein secretion (Figure 3A–3C). In addition, we 

performed a GSEA enrichment analysis of these three 

genes. The results indicate that the elevated expression 

of CDH6 is enriched in cancer, MAPK signaling 

pathway, and other pathways. The downregulated 

expression of CDH6 is enriched in pathways such as 

glyoxylate and dicarboxylate metabolism, proteasome, 

and ribosome. The overexpression of EGFLAM is 

enriched in pathways including focal adhesion, gap 

junction, cancer, VEGF signaling pathway, and others. 

Low expression of EGFLAM is enriched in ribosomes. 
The elevated expression of RASGRF2 is enriched in 

pathways such as the MAPK signaling pathway, cancer, 

Wnt signaling pathway, and others. RASGRF2 low 

expression was enriched in oxidative phosphorylation, 

proteasome, and ribosome (Figure 3D–3F). 

 

Analysis of mutations in the three core genes and 

their relationships with disease-related genes 

 

Searched and selected the top 20 genes most relevant  

to STAD from the GeneCards database. Comparison 

between the STAD group and the normal group 

revealed significant differences in the expression of 

genes such as CDH1, BRCA2, BRCA1, TP53, APC, 

and ATM (Supplementary Figure 2A). Through Pearson 

correlation analysis, we found significant correlations 

between the three central genes, CDH6, EGFLAM, and 

RASGRF2, and the expression of several disease-

related genes in STAD. As presented in Supplementary 

Figure 2B, CDH6 was positively correlated with the 

expression of genes such as APC, ATM, and PIK3CA; 

the high expression of EGFLAM was correlated with 

the high expression of genes such as APC, ATM, and 

PTEN; and RASGRF2 was significantly positively 

correlated with the expression of genes such as APC, 

ATM, and MLH1. With the help of the STAD cohort 

from the cBioportal database, we investigated the 

mutation status of these three core genes. It was found 

that all three core genes were mutated to varying 

degrees, with RASGRF2 at 4%, EGFLAM at 11%, and 

CDH6 at 8% (Supplementary Figure 3A). Furthermore, 

we analyzed the mutation rates between the high  

and low expression groups of these three core genes. 

Their results showed that the low expression group  

of the RASGRF2 gene had a higher mutation rate than 

the high expression group; the mutation rate of the 

EGFLAM gene was similar between the high and low 

expression groups; and the low expression group of the 

CDH6 gene had a higher mutation rate than the high 

expression group (Supplementary Figure 3B–3D). 

 

Study of the clinical predictive potential of three 

core genes based on multi-omics research 

 

The tumor microenvironment is irreplaceable in tumor 

development, patient survival, and treatment sensitivity. 

The tumor microenvironment mainly includes tumor 

cells, immune cells, and mesenchymal stromal cells. By 

investigating the relationship between the expression of 

hub genes and tumor immune infiltration, we can gain 

deeper insights into how these hub genes influence the 

development of STAD, uncovering potential molecular 

mechanisms. Supplementary Figure 4A demonstrates the 

Pearson correlation between immune cells in STAD 

patients. STAD patients had higher levels of B cells 

naive, T cells CD4 memory activated, T cells regulatory 
(Tregs), Macrophages M0, and Macrophages M1 than 

normal patients (Supplementary Figure 4B). CDH6  

was positively correlated with B cells naive, Mast cells 
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Figure 3. GSVA and GSEA analysis of the hub genes. (A) GSVA analysis of CDH6. (B) GSVA analysis of EGFLAM. (C) GSVA analysis of 

RASGRF2. (D) GSEA analysis of CDH6. (E) GSEA analysis of EGFLAM. (F) GSEA analysis of RASGRF2. 
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resting, T cells CD4 memory resting, etc., and negatively 

correlated with T cells CD8, T cells CD4 memory 

activated, and T cells follicular helper; EGFLAM was 

positively correlated with Macrophages M0, Mast cells 

activated, Neutrophils, etc., and negatively correlated 

with NK cells activated, T cells CD8, T cells regulatory 

(Tregs), etc.; RASGRF2 was positively correlated with 

B cells naive, Mast cells resting, Macrophages M2 were 

positively correlated, and negatively correlated with  

NK cells activated, T cells regulatory (Tregs), Plasma 

cells, etc. (Supplementary Figure 4C). In addition,  

we obtained chemokines-related, immunostimulatory-

related, immunoinhibitor-related, MHC-related, and 

receptor-related genes from the TISIDB database and 

performed a Pearson correlation analysis. The results 

demonstrate that CDH6, EGFLAM, and RASGRF2 

exhibit varying correlations with these immune-related 

genes (Supplementary Figure 5). 

 

In order to understand the sensitivity of these three 

pivotal genes to chemotherapeutic drugs, we conducted 

drug sensitivity studies based on the GDSC database 

using the “oncoPredict” package. The findings reveal that 

the expression of CDH6, EGFLAM, and RASGRF2 is 

correlated with the sensitivity to drugs like Buparlisib, 

Cediranib, Dasatinib, Dinaciclib, Erlotinib, Niraparib 

(Supplementary Figure 6). 

 

Creating nomogram and crafting calibration curves 

for STAD patient outcome prediction 

 

By incorporating the expression levels of CDH6, 

EGFLAM, and RASGRF2, along with age, gender, stage, 

and grade, we effectively developed a prognostic 

nomogram for anticipating the overall survival of  

STAD patients. Based on logistic regression analyses, we 

observed that the three key genes, CDH6, EGFLAM, and 

RASGRF2, contributed differently at different STAD 

scoring stages. The higher the overall scores for the three 

key genes and clinical features, the worse the 1-, 3-, and 

5-year overall survival of the patients (Figure 4A). Next, 

we constructed a calibration curve. The calibration curve 

showed significant agreement between the predicted and 

observed OS (Figure 4B). 

 

Validation of protein expression and cellular 

expression levels of CDH6, EGFLAM and RASGRF2 

genes 

 

We pooled the IHC maps of CDH6, EGFLAM, and 

RASGRF2 from the HPA database to validate the 

protein expression levels of these three pivotal genes  

in clinical specimens. In normal tissues, the expression 

of CDH6 shows various levels, ranging from low to 

moderate. However, in gastric cancer patients, the 

expression of CDH6 also demonstrates diverse degrees, 

ranging from undetectable low to moderate levels 

(Supplementary Figure 7A). EGFLAM showed high 

levels of expression in normal tissues and diverse levels 

in gastric cancer patients, ranging from undetectable 

low to moderate to high levels (Supplementary Figure 

7C). RASGRF2 showed high levels of expression in 

normal tissues and diverse levels in gastric cancer 

patients, ranging from moderate to high (Supplementary 

Figure 7E). In clinical samples, the variation in  

protein expression levels of hub genes may account for 

 

 
 

Figure 4. Construction of a nomogram for prognostic prediction of STAD patients. (A) Nomogram illustrating the 1-year, 3-year, 

and 5-year overall survival prediction for patients with STAD. (B) Calibration curves of a nomogram predicting 1-year, 3-year, and 5-year 
overall survival. 
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differences in immune therapy sensitivity among gastric 

cancer patients. Furthermore, we also analyzed the gene 

expression levels of hub genes in gastric cancer cell 

lines using the CCLE database. Noticeable variations 

were observed in the expression levels of identical hub 

genes within gastric cancer cell lines. (Supplementary 

Figure 7B, 7D, 7F). 

 

Acquisition and functional analysis of CAFs-related 

genes 

 

A negative correlation between hub genes and TMB was 

found by calculating TMB and performing Pearson 

correlation analysis, consistent with poor immunotherapy 

sensitivity in patients with high hub gene expression.  

In addition, the TIDE database and Pearson correlation 

analysis revealed that hub genes were positively 

correlated with CAFs, Dysfunction, and Exclusion, 

especially CAFs, with which all three hub genes had 

significant positive correlations (Figure 5A). Therefore, 

CAFs may be associated with a low benefit of 

immunotherapy with high expression of the hub genes. 

Subsequently, based on the TCGA_STAD cohort, the 

EPIC, xCell, and MCP-counter algorithms were employed 

to estimate the content of CAFs for each patient, and all 

samples were divided into high CAFs and low CAFs 

groups using the optimal cutoff value of CAFs content. In 

the TCGA_STAD cohort, those with low CAFs content 

had better overall survival (P=0.006, P=0.006, and 

P=0.004) (Figure 5B). In order to obtain the CAFs genes 

related to hub genes, we performed correlation analysis 

based on the TCGA_STAD cohort to obtain a total of 

4020 genes related to hub genes. For these 4020 genes, 

we performed WGCNA analysis, in which the black 

module had the strongest positive correlation with the 

Fibroblasts_MCPcounter score (Cor = 0.8, P = 4e-89), 

Fibroblasts_XCELL score (Cor = 0.83, P = 3e-102) and 

CAFs_EPIC score (Cor = 0.62, P = 8e-43) had the 

strongest positive correlations (Figure 5C–5F). Finally, 

we obtained 262 genes in the black module as potential 

CAFs-associated genes associated with hub genes, using 

GS > 0.5 as the threshold (Supplementary Table 2). 

 

In order to explore the functions and pathways of these 

262 genes and which diseases they are associated with, 

we performed KEGG, GO, and DO analyses. KEGG 

enrichment analysis showed that CAFs-related genes 

were mainly enriched in the PI3K-Akt signaling 

pathway, cancer, cAMP signaling pathway, ECM-

receptor interaction, Wnt signaling pathway, and other 

pathways (Supplementary Figure 8A). Based on the 

GO enrichment analysis outcomes, CAFs-associated 

genes predominantly participated in the regulation  
of cellular response to growth factor stimulation, 

extracellular matrix composition, basement membrane, 

and fibroblast activation (Supplementary Figure 8B). 

DO results suggest these genes are associated with 

bone cancer, fibrosarcoma, and connective tissue 

cancer (Supplementary Figure 8C). 

 

Model construction driven by CAFs properties 

 

In the TCGA_STAD cohort, a univariate Cox 

regression analysis of these 262 genes yielded a total  

of 218 genes that were associated with prognosis.  

After taking the intersection with the GSE15459 

dataset, 195 genes were obtained for model construction 

(Supplementary Table 3). Subsequently, these 195 

genes were incorporated into combinations of 10 

machine algorithms to generate a series of models, and 

the concordance index (C-index) was calculated for 

each model. Based on the C-index and model gene 

count criteria, we ultimately selected the algorithmic 

model composed of RSF and GBM, which exhibited a 

higher validation set C-index and fewer genes. This 

model encompasses 27 genes (Figure 6A). 

 

Patients within each cohort were divided into high  

and low-risk categories, classified according to the 

median risk scores derived from the model. In both 

TCGA_STAD and GSE15459 cohorts, the low-risk 

group exhibited significantly improved overall survival 

(P < 0.001 and P = 0.02, respectively) (Figure 6B, 6D). In 

both the TCGA_STAD and GSE15459 cohorts, the risk 

score was included in univariate and multivariate Cox 

regression analyses alongside clinical characteristics. The 

results indicated that this risk score is an independent 

prognostic indicator for STAD patients (Figure 7A,  

7B). Furthermore, for 1-year, 3-year, and 5-year overall 

survival rates, ROC curve results indicate that our model 

possesses excellent predictive performance (Figure 6C, 

6E). To develop a tool that could predict the overall 

survival of STAD patients in the TCGA_STAD cohort, 

we created a nomogram incorporating clinical features 

(Figure 7C). Subsequently, we plotted a calibration 

curve, which showed a high degree of agreement 

between actual and expected survival (Figure 7D). The 

results of the multivariate ROC curves for 1-, 3-, and 5-

year OS showed clear superiority of our model and 

nomogram over other clinical features (Figure 7E, 7G, 

7I). DCA analyses at 1, 3, and 5 years showed that using 

a model or nomogram was more favorable than using 

other clinical characteristics to predict patient prognosis 

(Figure 7F, 7H, 7J). 

 

Validation of scRNA-seq for model genes 

 

A Pearson correlation analysis was conducted between 

CAFs risk scores, model gene expression levels, and 
previously reported CAFs marker genes from existing 

literature. The examination unveiled a notable positive 

correlation linking CAFs risk scores, model genes, and 
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Figure 5. Multiple methods for identifying CAFs-associated genes related to hub genes. (A) Pearson correlation analysis of hub 

genes with immunotherapy-related indicators. (B) The Kaplan-Meier survival analysis of CAFs scores was calculated using three methods 
(p=0.006, p=0.006, and p=0.004, respectively). (C) Scale independence and mean connectivity analysis. (D) Cluster dendrogram among 
modules. (E) Scatterplot of MM and GS from the black module. (F) Module-trait relationships. *p < 0.05, **p < 0.01, ***p < 0.001. 
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the previously documented CAFs marker genes  

(Figure 8A). To investigate whether model genes  

are expressed in CAFs, we performed a single-cell 

analysis based on the TISCH database. We identified 

scRNA-seq to 9 cell types: B, CD8T, DC, endothelial, 

epithelial, fibroblasts, Mast, Mono/Macro, and plasma 

(Figure 8C). Model genes are 25 in this scRNA-seq. 

The differential analysis showed that most model genes 

were highly expressed in fibroblasts, especially GNG11, 

FBLN1, MFGE8, C11orf96, and VIM expression was 

significantly higher (Figure 8D–8G). Furthermore, the 

single-cell GSEA-KEGG analysis corroborated the 

outcomes of the KEGG analysis for CAFs-related 

genes, illustrating a notable enrichment of fibroblasts 

within the extracellular matrix-receptor interaction 

pathway (Figure 8B). These results suggest that the 

genes in the CAFs-associated models screened and 

constructed based on machine learning may be CAFs-

specific markers. 
 

DISCUSSION AND CONCLUSIONS 
 

Gastric cancer is a global tumor with a high clinical 

burden [26]. It possesses high heterogeneity, and its 

survival rate is low [27, 28]. In recent years, 

immunotherapy has developed rapidly and brought 

breakthroughs in treating gastric cancer. However, the 

efficacy of immunotherapy in gastric cancer is not 

apparent. Therefore, an in-depth understanding of the 

mechanisms of immunotherapy sensitivity is essential to 

enhance the efficacy of gastric cancer immunotherapy. 

We comprehensively explored the biomarkers and 

underlying mechanisms of immunotherapy resistance in 

gastric cancer patients through bioinformatics analyses. 

 

This study obtained DEGs between immunotherapy 

responders and non-responders among gastric cancer 

patients from the ICBatlas database. DEGs include  

201 up-regulated and 935 down-regulated genes. The 

KEGG and GO enrichment analyses revealed significant 

enrichment of DEGs in multiple tumor-related biological 

processes, while the PPI results demonstrated intricate 

interactions among the DEGs. A series of analyses, 

including WGCNA, univariate Cox, random forest, 

XGBoost, and Boruta, were performed on the DEGs 

from the TCGA_STAD cohort, revealing that three 

genes, namely CDH6, EGFLAM, and RASGRF2, met 

the criteria. Finally, these three genes were significantly 

 

 
 

Figure 6. Establishment and validation of CAFs risk model in STAD through a combination of 10 machine learning 
approaches. (A) A c-index ranking map of 10 machine learning combinatorial models. (B) Kaplan-Meier survival analysis of risk models for 

CAFs in the TCGA_STAD cohort. (C) Time-dependent ROC curves for the TCGA_STAD cohort CAFs risk model. (D) Kaplan-Meier survival 
analysis of risk models for CAFs in the GSE15459 cohort. (E) Time-dependent ROC curves for the GSE15459 cohort CAFs risk model. 
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Figure 7. Validation of the clinical significance of a risk model for CAFs in the TCGA_STAD cohort. (A) Univariate Cox regression 
analysis for the CAFs risk model in the TCGA STAD cohort. (B) Multivariate Cox regression analysis for the CAFs risk model in the TCGA STAD 
cohort. (C) TCGA_STAD on the nomogram of the CAFs risk model. (D) Calibration curve of TCGA_STAD on the nomogram of the CAFs risk 
model. (E–G) Multivariate ROC curve for 1-year, 3-year, and 5-year. (H–J) Decision curve for 1-year, 3-year, 5-year. 
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associated with survival by Kaplan-Meier survival 

analysis and were identified as hub genes for this study. 

The results of GSVA and GSEA analyses of the three 

hub genes, CDH6, EGFLAM, and RASGRF2, indicated 

that their differential expression levels may affect 

multiple signaling pathways associated with disease 

progression, including oxidative phosphorylation, DNA 

repair, apoptosis, angiogenesis, TGFβ signaling, and 

IL2-STAT5 signaling pathways that may be affected  

by CDH6. Furthermore, these three hub genes show 

significant correlations with STAD-related genes, 

including APC, ATM, MLH1, PIK3CA, PTEN, and 

others. Gene mutation analyses revealed significant 

mutation profiles in hub genes, as well as different 

somatic mutation rates between hub gene expression 

differences, factors that may potentially influence  

the efficacy of immunotherapy. Multi-omics studies 

have revealed significant correlations between CDH6, 

EGFLAM, and RASGRF2 with tumor immunity, 

multiple immune-related genes, and chemotherapeutic 

drug sensitivity. By integrating the expression data of 

CDH6, EGFLAM, and RASGRF2, as well as clinical 

features, a nomogram for predicting the prognosis of 

STAD patients was established. The calibration curves 

exhibit the remarkable predictive efficacy of the 

nomogram in prognosticating the outcomes of STAD 

patients. In addition, we confirmed the expression  

of these three genes in clinical samples and cell lines 

with the help of the HPA and CCLE databases. The 

findings suggest significant variability in the expression 

levels of these genes in gastric cancer patients and  

cell lines, which may reflect differences in intrinsic 

immunotherapeutic susceptibility between patients. 

 

Ultimately, we investigated the connections between  

the hub gene and additional metrics for assessing 

immunotherapy, and the study’s findings indicated 

notable correlations between the hub gene and these other 

assessment metrics. At the same time, we found a 

significant relationship between the hub gene and 

CAFs. CAFs are considered to play a crucial role in the 

interaction between the tumor microenvironment and 

cancer cells, driving tumor progression [29]. This implies 

that hub genes may potentially induce immunotherapy 

resistance by impacting CAFs. Furthermore, we found 

that high CAFs scores were associated with poor overall 

survival in STAD patients, consistent with previous 

findings. In contrast to traditional DEGs analysis for 

 

 
 

Figure 8. Validation of genes in the CAFs risk model at the single-cell level. (A) Pearson correlation analysis of risk models with 

reported CAFs genes. (B) GSEA of genes that are upregulated in different cell types. (C) Predominant cellular category in single-cell 
sequencing. (D–G) Validation of risk model genes for CAFs. 
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selecting CAFs markers [30], we employed various 

bioinformatics algorithms to assess the abundance of 

CAFs in each STAD sample, ensuring the robustness  

of the constructed WGCNA network. The KEGG, GO, 

and DO analyses performed on CAFs-related genes 

revealed their close association with the occurrence and 

progression of tumors. Similarly, to ensure the reliability 

of predictive features, we employed a combination of 10 

different machine-learning algorithms for construction 

and validation. Additionally, we compared the model and 

its constituent genes with previously identified CAFs 

markers, revealing their close association. Also, at the 

single-cell level, we verified that the genes included in 

the model have high expression in CAFs. The above 

findings imply a strong association between our selected 

genes and CAFs, and the model we constructed can 

accurately predict patient prognosis. 

 

CDH6, or CAD6 or KCAD, is a cadherin (CDH) family 

member. Recent research has indicated that CDH 

molecules play a significant role in tumor initiation, 

growth, and progression, potentially serving as diagnostic 

markers, prognostic indicators, and potential therapeutic 

targets for cancer patients [31, 32]. As one of the family 

members, the CDH6 protein has five extracellular 

structural domains and one cytoplasmic structural 

domain, a particular structure that makes it unique from 

other family members in terms of its interaction with 

connexin molecules [33]. Elevated CDH6 expression  

is closely linked to unfavorable prognostic outcomes 

across multiple malignant tumors. In papillary thyroid 

carcinoma, aberrant up-regulation of CDH6 may promote 

epithelial-mesenchymal transformation and cancer cell 

metastasis by regulating autophagic processes [34, 35]. 

CDH6 is highly expressed in renal cancer and is 

associated with lymph node invasion and metastasis [36]. 

Furthermore, CDH6 shows a high expression level in 

osteosarcoma, which is closely associated with patient 

prognosis [37]. In addition, heightened CDH6 expression 

in gastric cancer is connected to tumor advancement and 

unfavorable prognostic implications [38]. Finally, CDH6 

is also overexpressed in tumors such as snuff carcinoma, 

ovarian carcinoma, and oral squamous carcinoma and 

may be involved in the prognosis of patients [39–41].  

To the best of our knowledge, studies on CDH6 have 

been limited to its effects on tumors, and no studies have 

examined the role of CDH6 in immunotherapy resistance 

in gastric cancer. 

 

RASGRF2, functioning as a guanylate exchange factor 

for RasGTPase, participates in diverse cellular processes 

and contributes to tumor progression, migration, and 

invasion. Recent genome-wide association studies have 
unveiled a link between RASGRF2 and the susceptibility 

to malignant mesothelioma (MM) [42]. High expression 

of RASGRF2 inhibits tumor migration invasion in 

colorectal cancer [43]. However, high RASGRF2 

expression in lung adenocarcinoma is associated with 

tumor invasion and poor prognosis [44]. However, in-

depth studies and research on the function of RASGRF2 

in gastric cancer and its importance in immunotherapy 

resistance are still lacking. The role of EGFLAM,  

EGF-like, type III fibronectin, and laminin G structural 

domains in tumors must be studied more. In recent 

studies, it has been found that EGFLAM exhibits 

significant hypomethylation in ovarian cancer [45], while 

in glioblastoma, EGFLAM is associated with tumor cell 

migration, invasion, and adverse prognosis [46]. 

 

However, our study has some limitations and 

shortcomings. First, given the high heterogeneity of 

gastric cancer, while the number of samples we retrieved 

from the TCGA and GEO databases was limited,  

this would lead to possible bias in the results. Second, 

these results have not been confirmed by in vivo and  

in vitro experiments. Despite these shortcomings, the 

preliminary study provides valuable and constructive 

basic information. In the subsequent study, we will delve 

into the role of CDH6, EGFLAM, and RASGRF2 as  

hub genes in gastric cancer immunotherapy resistance 

through a series of experiments. We will also investigate 

the effects of CDH6, EGFLAM, and RASGRF2 on 

gastric cancer proliferation, migration, and invasion in 

both in vivo and in vitro contexts. 

 

In summary, we identified genes associated with 

immunotherapy resistance in gastric cancer based on a 

machine learning approach, which provides a new 

biological marker for determining the sensitivity of 

gastric cancer patients to immunotherapy. In addition, 

CAFs scores constructed using CAFs-related genes 

based on these resistance genes can effectively predict 

the prognosis of patients and facilitate clinical decision-

making. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Identification of differentially expressed genes (DEGs) associated with immunotherapy. (A) Volcano 

plot of DEGs. (B) Heatmap of DEGs. (C) KEGG analysis of DEGs. (D) GO analysis of DEGs. (E) PPI of DEGs.  
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Supplementary Figure 2. Exploration of interrelationships between hub genes and disease-related genes. (A) Comparison of 
disease-related genes in normal and tumor tissues. (B) Pearson correlation analysis of hub genes and disease-associated genes. *p < 0.05, 
**p < 0.01, ***p < 0.001. 
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Supplementary Figure 3. Mutation analysis of the hub genes. (A) Analysis of genetic variation in the hub genes of the TCGA_STAD 

cohort. (B–D) Mutational analysis of somatic cells with different RASGRF2, EGFLAM, and CDH6 expressions. 
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Supplementary Figure 4. Analysis of Pearson correlation between hub genes and immune cells. (A) Correlation analysis of 22 
immune cells in STAD patients. (B) Comparison of 22 immune cells in normal and tumor tissues. (C) Analysis of hub genes correlation with 22 
types of immune cells. *p < 0.05, **p < 0.01, ***p < 0.001. 
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Supplementary Figure 5. Pearson correlation analysis of hub genes with immune-related genes. (A) Chemokine-related genes. 

(B) Immunostimulator-related genes. (C) Immunoinhibitor-related genes. (D) MHC-related genes. (E) Receptor-related genes. *p < 0.05,  
**p < 0.01, ***p < 0.001. 
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Supplementary Figure 6. Drug sensitivity analysis of the hub genes. (A) Buparlisib. (B) Cediranib. (C) Dasatinib. (D) Dinaciclib.  

(E) Erlotinib. (F) Niraparib. 
 

 
 

Supplementary Figure 7. Validation of hub genes expression levels. (A) Validation of protein expression levels of CDH6 in the HPA 
database. (B) Validation of CDH6 expression levels in gastric cancer cell lines using the CCLE database. (C) Validation of protein expression 
levels of EGFLAM in the HPA database. (D) Validation of EGFLAM expression levels in gastric cancer cell lines using the CCLE database.  
(E) Validation of protein expression levels of RASGRF2 in the HPA database. (F) Validation of RASGRF2 expression levels in gastric cancer cell 
lines using the CCLE database. 
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Supplementary Figure 8. Enrichment analysis of CAFs-related genes. (A) KEGG analysis of CAFs-related genes. (B) GO analysis of 

CAFs-related genes. (C) DO analysis of CAFs-related genes. 
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Supplementary Tables 
 

 

Please browse Full Text version to see the data of Supplementary Tables 1–3. 

 

 

Supplementary Table 1. 1136 differentially expressed genes obtained from the ICBatlas database. 

 

Supplementary Table 2. 262 CAFs-related genes identified by WGCNA. 

 

Supplementary Table 3. 195 genes obtained by multiple screening methods for constructing the model. 
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