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INTRODUCTION 
 
The most frequent type of primary bone cancer in young 
individuals is osteosarcoma. The annual incidence of 
osteosarcoma is about 3-4 cases per million people [1]. 
Although the incidence of osteosarcoma is low, the degree 

of malignancy is high and the age of onset is low. 
Currently, the primary treatment methods for 
osteosarcoma include surgery, chemotherapy 
(neoadjuvant chemotherapy, adjuvant chemotherapy), 
radiotherapy, immunotherapy, and targeted therapy  
[2, 3]. Patients diagnosed with primary osteosarcoma in 
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ABSTRACT 
 
Background: Osteosarcoma is a prevalent malignant tumor that originates from mesenchymal tissue. It typically 
affects children and adolescents. Although it is known that the growth of osteosarcoma relies on oxidative 
phosphorylation for energy production, limited attention has been paid to exploring the potential of oxidative 
phosphorylation-related genes in predicting the prognosis of individuals suffering from osteosarcoma. 
Methods: All the data were retrieved from the UCSC Xena and GEO (GENE EXPRESSION OMNIBUS). 
Identification of the oxidative phosphorylation genes linked to the prognosis of individuals with osteosarcoma 
was done by means of univariate COX and LASSO regression analyses. Following that, patients were categorized 
into a high-risk group and a low-risk group as per the risk score determined by the identified oxidative 
phosphorylation genes. Furthermore, a comparison was made in terms of the survival and immune infiltration 
between both groups, and the prognostic model was established. 
Results: Five oxidative phosphorylation genes (ATP6V0D1, LHPP, COX6A2, MTHFD2, NDUFB9) associated with 
the prognosis of individuals with osteosarcoma were identified and the risk prognostic models were 
constructed. In the current research, the analysis of the ROC curves indicated a superior predictive accuracy 
exhibited by the risk model. The prognosis was adversely affected by immune infiltration in the high-risk group 
in comparison with the low-risk group. The function of the oxidative phosphorylation-related prognostic gene 
set was verified by GO and KEGG analysis. Furthermore, the link between oxidative phosphorylation-related 
genes and osteosarcoma immune infiltration was examined by GSEA analysis. 
Conclusions: In this study, a prognostic model that demonstrated good predictive performance was 
constructed. Additionally, this study highlighted a correlation between oxidative phosphorylation-related genes 
and immune infiltration. 
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the absence of metastasis have a 5-year survival rate 
ranging from 65-70% [4]. In contrast, patients who 
experience metastasis or recurrence have an overall 
survival (OS) rate of just 20-30% [2, 3]. Therefore, 
finding the prognostic genes of osteosarcoma and 
establishing a prognostic model have important guiding 
significance for clinical treatment. 
 
Changes in metabolic patterns are a crucial characteristic 
of cancerous cells. In 1924, Otto Warburg, a German 
biochemist, was the first to propose that tumor cells 
often utilize glycolysis for energy even under sufficient 
oxygen levels. This phenomenon is commonly referred 
to as the Warburg effect or aerobic oxidative 
phosphorylation [5, 6]. It is generally accepted that 
tumors obtain energy primarily through glycolysis. In 
fact, cellular metabolic pathways mainly include 
glycolysis, fat metabolism, glutamine decomposition, 
and oxidative phosphorylation. However, recent research 
has highlighted the essential role of oxidative 
phosphorylation in tumorigenesis and progression [7–10]. 
 
The current research aimed at identifying the oxidative 
phosphorylation genes linked to the prognosis of 
individuals with osteosarcoma. Additionally, it also 
aimed at establishing and verifying a prognostic  
model for the prediction of the overall survival rate of 
patients. Furthermore, the association of oxidative 
phosphorylation-related genes with the immune status 
in osteosarcoma was explored. The goal was to provide 
valuable insights into clinical treatment strategies. 
 
RESULTS 
 
Training and validation data sets of osteosarcoma 
patients 
 
The flowchart of this article is shown in Supplementary 
Figure 14. The current investigation merged the clinical 
and transcriptional data of 88 individuals with 
osteosarcoma retrieved from the UCSC Xena database. 
A total of 84 individuals diagnosed with osteosarcoma, 
along with their clinical information, were included, 
after excluding samples with unreported or zero 
survival time. The dataset of GSE21257 contained 53 
cases, and the gene expression matrix obtained from the 
combination of clinical data and transcriptional data 
was used as the validation set. The clinical data of the 
two groups are shown in Table 1. 
 
Prognosis-related oxidative phosphorylation genes 
and risk-scoring model of osteosarcoma 
 
The GSE28425 dataset was used to obtain 3662 
differential genes. The intersection with 342 oxidative 
phosphorylation-related genes was taken to obtain 68 

oxidative phosphorylation-related genes (Figure 1A–1C). 
A univariate Cox regression analysis was conducted on 
the training set of individuals to identify five oxidative 
phosphorylation genes that were associated with 
prognosis: ATP6V0D1, LHPP, COX6A2, MTHFD2, and 
NDUFB9 (Figure 2B). Subsequently, the risk-scoring 
model was developed based on LASSO regression 
analysis (Figure 2C, 2D). Therefore, the present research 
computed the risk score of all patients. The correlation 
coefficients between the five oxidative phosphorylation-
related differential expression prognostic genes and risk 
scores were also examined (Supplementary Figures 1, 2). 
Analysis of the TCGA training group data demonstrated 
that individuals with osteosarcoma classified as high-risk 
exhibited a remarkably poorer prognosis in comparison 
to those categorized as low-risk (P = 6.602e-03,  
Figure 3A). Scatter plots and risk curves showed survival 
and risk scores for all osteosarcoma samples. Individuals 
with osteosarcoma in the low-risk group demonstrated 
lower mortality rates and risk coefficients in contrast  
with the other group (Figure 3B, 3C). Moreover, the heat 
map highlighted the expression of five oxidative 
phosphorylation genes related to prognosis in 84 
osteosarcoma patients in both groups (Figure 3D). A 
time-dependent ROC curve was utilized to compute the 
risk score, yielding respective AUC values of 0.749, 
0.773, and 0.744 to predict the OS of individuals 
suffering from osteosarcoma at 1, 3, and 5 years  
(Figure 3E). PCA dimensionality reduction analysis 
showed that the risk-scoring model can better classify 
osteosarcoma patients into two groups, with considerable 
variations across the two groups (Figure 3F). The 
validation set in GSE21257 also demonstrated the 
effectiveness of the risk model to predict the survival of 
individuals suffering from osteosarcoma, with low-risk 
individuals exhibiting a longer OS period in contrast with 
low-risk individuals (P = 1.357e-02, Figure 4A). 
Additionally, scatter plots further illustrated that 
individuals at higher risk demonstrated a more 
unfavorable prognosis (Figure 4B). Risk curve plots, heat 
maps, and PCA dimensionality reduction analysis charts 
showed similar results to the training set (Figure 4C, 4D, 
4F). Furthermore, the respective AUC values predicted 
by the validation group time ROC curve for the OS of 
individuals suffering from osteosarcoma for 1-, 3-, and 5-
year periods were 0.735, 0.760, and 0.731 (Figure 4E). 
The risk-scoring model demonstrated excellent predictive 
performance, as evidenced by the AUC values exceeding 
0.7 for both validation and training groups. 
 
Subgroup analysis 
 
The prognosis-predictive efficacy of the risk-scoring 
model in various clinical feature subgroups was 
elucidated through the survival analysis of clinical 
features, with the following findings: Male (p = 0.036), 
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Table 1. Summary of clinical data from the TARGET and 
GSE21257 osteosarcoma datasets. 

 Training set  
(TARGET n = 84) 

Validation set  
(GSE21257 n = 53) 

Age (%)   
<18 66(78.6%) 34(64.2%) 
≥18 18(21.4%) 19(35.8%) 

Gender (%)   
Female 37(44.0%) 19(35.8%) 
Male 47(56.0%) 34(64.2%) 

Metastasis (%)   
No 63(75.0%) 19(35.8%) 
Yeah 21(35.0%) 34(64.2%) 

Survival (%)   
Alive 57(67.9%) 30(62.3%) 
Dead 27(32.1%) 23(37.7%) 

 

 
 

Figure 1. Acquisition of oxidative phosphorylation-related genes. (A, B) GSE28425 data set: Analysis of differences between 
osteosarcoma and adjacent cancer (osteoblasts) (differential gene volcano map and differential gene heat map). (C) Obtaining a Wayne map 
of differentially expressed genes related to oxidative phosphorylation in osteosarcoma. 
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female (p = 0.076), non-metastatic (p = 0.052), age 18 
(p = 0.068), age 18 (p = 0.023), and metastatic (p = 
0.050) (Supplementary Figure 3A–3F). The validation 
set application also involved conducting survival 
analysis based on clinical features, which elucidated the 
capability of the risk-scoring model to predict outcomes 
in different clinical feature subgroups (Supplementary 
Figure 4A–4F). Although P-values were not less than 
0.05 for many subgroups, it was attributed to the limited 
sample size of patients and the apparent poorer survival 
observed among individuals in the high-risk group. 
 
Tumor microenvironment across high- and low-risk 
groups 
 
In order to explore the underlying reasons behind the 
significant impact of oxidative phosphorylation-related 

genes on the prognosis of individuals with 
osteosarcoma, the current research analyzed the results 
of the infiltration of 22 immune cells across the two risk 
groups. The results demonstrated the proportion of 
immune cell composition in 84 patients, highlighting 
that macrophages accounted for a large proportion of 
osteosarcoma samples. Macrophages have been found 
to be substantially involved in the onset and progression 
of osteosarcoma (Figure 5A). Moreover, this study 
identified five distinct types of immune cells that 
exhibited variations across the two groups. In the high-
risk group, there was a higher infiltration level of CD4 
naive T cells while a lower infiltration level of CD8+T 
cells, follicular helper T cells, activated CD4 memory T 
cells, and γ δ T cells was noted (Figure 5B). 
Subsequently, the link between immune cells was 
compared, and it was found that M2 macrophages were 

 

 
 

Figure 2. Construction of a risk‐scoring model for patients with osteosarcoma based on oxidative phosphorylation genes.  
(A) Forest plots based on univariate Cox regression analysis showed that there were 5 oxidative phosphorylation genes with prognostic 
significance (p < 0.01). (B, C) LASSO regression to construct a risk model. 
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inversely proportional to most immune cells in 
osteosarcoma. The correlation coefficient with M0 
macrophages was -0.58, showing a high negative 
correlation, while the correlation coefficient with M1 
macrophages was 0.08, showing no correlation. The 
correlation coefficient between M1 macrophages and 
M0 macrophages was -0.39. Furthermore, the 
correlation coefficients for T cells and M1 macrophages 
were 0.48, 0.55, and 0.35, respectively, and the 
correlation coefficient for M0 macrophages was -0.43. 
The ultra-high positive correlation between immature B 
cells and plasma cells reached 0.78 (Figure 5C). 
 
According to the relative proportion of 22 immune 
cells, TCGA osteosarcoma patients were classified into 
high- and low-risk groups. The impact of various types 
of immune cells on the survival of osteosarcoma was 
examined by employing Kaplan-Meier survival 

analysis. The outcomes highlighted that individuals 
with a higher proportion of CD8+T cells and activated 
CD4 memory T cells experienced a more favorable 
prognosis. On the other hand, patients with a higher 
proportion of resting dendritic cells, activated mast 
cells, and immature CD4 T cells demonstrated a poorer 
prognosis (Figure 6). In addition, the link between 
oxidative phosphorylation-related differentially 
expressed genes (DEGs) and immune cells in risk 
scores and five risk-scoring models was compared. The 
risk score exhibited a positive link to activated CD4 
naive T cells and mast cells while showing an inverse 
link to activated CD4 memory T cells, CD8+T cells, 
and follicular helper T cells (Supplementary Figure 5). 
The expression of the ATP6V0D1 gene was 
proportional to M1 macrophages, CD8+T cells, and M2 
macrophages, and inversely proportional to activated 
mast cells, M0 macrophages, and CD4 naive T cells 

 

 
 

Figure 3. TCGA osteosarcoma data were used as training groups to validate the effectiveness of the risk score model in 
predicting survival. (A) Kaplan-Meier survival analysis; (B) Scatter chart: green represents survival during follow-up, red represents death 
during follow-up, abscissa represents risk score, and ordinate represents survival time. (C) Risk curve. (D) Heat map of gene expression in 84 
patients with osteosarcoma. (E) Time ROC graph. (F) PCA dimensionality reduction analysis chart. 
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(Supplementary Figure 6). Moreover, LHPP gene 
expression was positively correlated with CD8+T cells 
and follicular helper T cells, while negatively correlated 
with CD4 naive T cells (Supplementary Figure 7). The 
expression of the COX6A2 gene was proportional to 
naive B cells and inversely proportional to memory B 
cells (Supplementary Figure 8). MTHFD2 gene 
expression was not linked to the 22 immune cells 
examined in this study. NDUFB9 gene expression was 
proportional to activated mast cells and monocytes 
(Supplementary Figure 9). Furthermore, the low-risk 
group exhibited statistically higher matrix, immune, and 
ESTIMATE scores (matrix score plus immune score). 
Moreover, the low-risk group exhibited a higher 
PDCD1LG2 expression, suggesting that this group 
might be more responsive to PD1 combined with 
immunosuppressive therapy (Supplementary Figure 10). 

Drugs with potential therapeutic effects on 
osteosarcoma 
 
In order to further explore why oxidative 
phosphorylation-related genes in osteosarcoma were 
significantly correlated with the prognosis of 
osteosarcoma, this study conducted a drug sensitivity 
analysis of osteosarcoma. Drug sensitivity analysis 
showed that Bortezomib (p = 1.3e − 06), CGP. 082996  
(p = 7.7e − 05), GNF. 2 (p = 0.00013), MG.132 (p = 3.2e 
− 06), NVP.TAE684 (p = 1.8e − 05), PAC.1 (p = 
0.00018), PF.02341066 (coxotinib) (p = 3.4e − 06), and 
Roscovitine (p = 2.5e − 05) demonstrated substantial 
sensitivity in both risk groups. Individuals in the low-risk 
group displayed more sensitivity to Bortezomib, CGP. 
082996, GNF. 2, MG. 132, NVP. TAE684, F.02341066, 
and Roscovitine. In contrast, the individuals at higher risk 

 

 
 

Figure 4. GSE21257 data was used as a validation group to verify the effectiveness of the risk scoring model in predicting 
survival. (A) Kaplan-Meier survival analysis; (B) Scatter chart: green represents survival during follow-up, red represents death during follow-
up, abscissa represents risk score, and ordinate represents survival time. (C) Risk curve. (D) Heat map of gene expression in 53 patients with 
osteosarcoma. (E) Time ROC graph. (F) PCA dimensionality reduction analysis chart. 
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Figure 5. Cibersort analysis results. (A) The relative proportion of immune cells in 84 osteosarcoma patients; (B) The violin diagram 
shows the difference in the proportion of immune cell infiltration between the low-risk group and the high-risk group. (C) Correlation 
between immune cells. 
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exhibited greater sensitivity to PAC (Supplementary 
Figure 11). The stability of proteins that hinder cell 
survival and cell cycle advancement, such as p53, was 
increased by bortezomib. CGP60474 is a protein 
kinase C (PKC) inhibitor, and GNF-2 is a Bcr-Abl 
fusion gene inhibitor. MG-132 is an inverse 
proteasome inhibitor with the ability to induce tumor 
cell apoptosis. Moreover, NVP-TAE684 is a selective 
inhibitor of anaplastic lymphoma kinase (ALK), 
which is associated with the pathogenesis of various 
cancers and can serve as an important therapeutic 
target. PAC-1 drugs have the ability to induce cell 
apoptosis, and their use alone or in combination with 
chemotherapy has shown anticancer effects in lung 
cancer, melanoma, and osteosarcoma, among others. 
Furthermore, PF-02341066 was an ALK inhibitor that 
can induce autophagy in various tumor cell lines by 
inhibiting the STAT3 pathway. Roscovitine was a 
selective inhibitor of cyclin-dependent kinase (CDK). 
CDK is an essential cell cycle regulator and often 
participates in the deregulation of human tumors. 
 
Nomogram of the prediction model 
 
Univariate and multivariate Cox regression analyses 
were conducted to explore the link between gender, age, 

metastasis, risk-scoring, and prognosis of individuals 
who suffer from osteosarcoma (Supplementary Figure 
12A, 12B). The findings demonstrated that both 
metastasis and risk score were identified as independent 
predictors of prognoses for individuals suffering from 
osteosarcoma. The 1-, 3-, and 5-year OS of the patients 
were predicted using a nomogram that took the 
outcomes of multivariate Cox regression into account 
(Figure 7A). This nomogram included the risk-scoring 
index of the patient and whether the patient had 
metastasis. The predicted performance results of the 
nomogram estimated by the ROC curve highlighted that 
the respective AUC values of 1-, 3-, and 5-year OS of 
the training set were 0.929, 0.807, and 0.809 (Figure 
7B). However, the respective AUC values of 1-, 3- and 
5-year OS of the verification set were 0.786, 0.885, and 
0.924 (Figure 7C). The C index also highlighted a good 
predictive performance exhibited by the prognosis 
model (Figure 7D, 7E). 
 
Gene features set enrichment analysis 
 
To investigate the possible mechanism underlying the 
association between oxidative phosphorylation-related 
genes and the prognosis of individuals with 
osteosarcoma, an enrichment analysis of DEGs 

 

 
 

Figure 6. Survival analysis of immune cells. The impact of Dendritic cells resting (A), Mast cells activated (B), T cells CD4 memory 
activated (C), T cells CD4 naïve (D) and T cells CD8 (E) on the survival of osteosarcoma were examined by employing Kaplan-Meier survival 
analysis. 
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(|log2FC|>1, p-value<0.05) was carried out across the 
two risk groups. GO enrichment analysis revealed that 
the DEGs were primarily associated with biological 
processes related to myofibril assembly and muscle 

contraction. In terms of cellular components, the 
enrichment was predominantly observed in myofibrils. 
Furthermore, the molecular functions of these genes 
were found to be primarily associated with muscle 

 

 
 

Figure 7. Validation of the prognostic model nomogram. (A) Nomogram. (B) Time ROC curve of training set. (C) Time ROC curve of the 
validation set. (D) The C-index calibration curve for age, gender, risk score, and nomogram of the training set. (E) Validate the C-index 
calibration curve for age, gender, risk score, and nomogram. 
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structural components. The pathways for KEGG 
enrichment analysis included neural active ligand- 
receptor interaction pathways. GSEA enrichment 
analysis highlighted that the enrichment pathways of 
DEGs between both risk groups included leukocyte 
adhesion, cell activation, actin-mediated cell 
contraction, and positive regulation of external stimulus 
responses (Supplementary Figure 13). 
 
DISCUSSION 
 
Osteosarcoma seriously affects the health of adolescents 
and can be metastasized to the lung and other tissues in 
the early stage [11]. Numerous reports have confirmed 
the significant role of oxidative phosphorylation in the 
malignant progression of tumors. Additionally, oxidative 
phosphorylation is considered to be the key mechanism 
of energy metabolism in osteosarcoma [2, 10, 12]. 
Therefore, investigating oxidative phosphorylation-related 
genes in osteosarcoma becomes crucial for predicting 
the prognosis of patients and identifying potential 
therapeutic targets. In this research, five oxidative 
phosphorylation genes linked to the prognosis of 
individuals with osteosarcoma were screened out, 
including ATP6V0D1, LHPP, COX6A2, MTHFD2, and 
NDUFB9. Among them, COX6A2, MTHFD2, and 
NDUFB9 were positively correlated with risk scores, 
suggesting that they were risk genes for unfavorable 
prognosis among individuals with osteosarcoma. On the 
other hand, ATP6V0D1 and LHPP were negatively 
correlated with risk scores, which suggested that they are 
protective genes for the clinical prognosis of patients 
with osteosarcoma. 
 
In eukaryotic cells, vacuolar ATPase (V-ATPase), which 
was encoded by ATP6V0D1, is in charge of acidifying a 
number of intracellular compartments. As a result, the 
majority of the energy needed for vacuolar system 
transport operations is provided by V-ATPase [13]. The 
findings from the current research align with the results 
of two prior studies, both of which have demonstrated 
that ATP6V0D1 is a protective gene for osteosarcoma 
[13, 14]. The current investigation found no molecular 
biology studies related to ATP6V0D1 and osteosarcoma 
cells, suggesting that ATP6V0D1 may be a new research 
direction [15]. The hydrolase encoded by LHPP exhibits 
a wide range of substrate specificity and is capable of 
hydrolyzing inorganic diphosphate as well, albeit with 
relatively lower efficiency [16]. To date, there have been 
no studies exploring the association of LHPP with 
osteosarcoma. However, the present study has presented 
novel findings, establishing LHPP as a prognosis-
protective gene for osteosarcoma. This discovery holds 
immense significance and opens up new avenues for 
further research in this field [17]. Moreover, LHPP is an 
oncogene in colorectal, pancreatic, bladder, thyroid, and 

prostate cancers [18–22]. Cytochrome c oxidase, which 
is the final enzyme in the mitochondrial electron 
transport chain, catalyzes the reduction of oxygen to 
water as well as oxidative phosphorylation [23]. The 
oxidative respiratory chain consists of three complex, 
multisubunit groups - Complex II (CII), Complex III 
(CIII) also referred to as cytochrome b-c1 complex, and 
Complex IV (CIV) or cytochrome c oxidase. These 
complexes work together to transfer electrons from 
NADH and succinate to molecular oxygen, leading to 
the formation of an electrochemical gradient across the 
inner mitochondrial membrane. Subsequently, this 
gradient drives transmembrane transport and facilitates 
the functioning of ATP synthase [10, 24]. There are also 
no relevant studies on COX6A2 and the prognosis of 
osteosarcoma. Moreover, there is only one paper on 
COX6A2 and cancer prognosis, which demonstrated that 
COX6A2 is a prognostic protective gene in esophageal 
cancer [25]. MTHFD2 is responsible for encoding  
a mitochondrial bifunctional enzyme that performs  
both methylenetetrahydrofolate dehydrogenase and 
methyltetrahydrofolate cyclohydrolase activities and is 
encoded by nuclear DNA [26]. The homodimeric nature 
of the action of the enzyme and its particular need for 
magnesium and inorganic phosphate distinguishes it 
from other enzymes [27]. The finding that MTHFD2 is a 
prognostic risk gene for osteosarcoma was also 
demonstrated for the first time in this study. Among 
other types of cancers, MTHFD2 has been identified as a 
risk gene in ovarian, colorectal, lung, and breast cancers 
[26, 28–32]. A subunit of the mitochondrial oxidative 
phosphorylation complex I (nicotinamide adenine 
dinucleotide: ubiquinone oxidoreductase) is encoded by 
the gene NDUFB9 [33]. Complex I is situated in the 
inner membrane of mitochondria and is responsible for 
oxidizing nicotinamide adenine dinucleotide and 
transferring electrons to coenzyme Q. Malfunctions in 
complex I are the primary cause of oxidative 
phosphorylation disorders and are linked to various 
illnesses. Furthermore, the current study also highlighted 
the function of NDUFB9 as a prognostic risk gene for 
osteosarcoma [33, 34]. However, in breast cancer, 
NDUFB9 serves as a prognostic protective gene [35], 
exhibiting inconsistency with the outcomes of the 
current investigation. 
 
While developing and validating the prognosis  
model, it was found that the expression levels of 
oxidative phosphorylation-related genes varied among 
osteosarcoma patients and influenced their immunity 
status. Patients with greater immune activity had a 
more favorable prognosis than those with lower 
immune activity. The present research highlighted that 
increased T cells CD4 naive, and reduced T cells CD8, 
T cells CD4 memory activated, T cells follicular 
helper, and T cells gamma delta were found in the 
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high-risk group in comparison with the low-risk group. 
The current investigation also indicated that oxidative 
phosphorylation has an impact on the immune status of 
individuals suffering from osteosarcoma, which in turn 
affects the development of the disease [36]. Although 
further investigation is needed to elucidate the precise 
mechanism underlying this study, its potential to offer 
novel perspectives into the molecular mechanisms 
responsible for the onset and progression of 
osteosarcoma is significant. Additionally, the current 
research could aid in exploring targeted therapies for 
osteosarcoma, which could be particularly beneficial 
for patients who show resistance to conventional 
chemoradiotherapy. Overall, this study could have 
significant clinical implications [37, 38]. 
 
This study is subject to certain limitations, including the 
relatively small sample sizes of both the training  
and validation cohorts. Therefore, further verification  
of the prognostic model is required using a larger 
cohort. 
 
CONCLUSIONS 
 
The present study established a risk-scoring model 
incorporating five oxidative phosphorylation genes that 
were linked to the prognosis of osteosarcoma. 
Additionally, a nomogram for the prediction of the OS 
rate of osteosarcoma patients was developed and 
validated. This model exhibits good accuracy and 
universality, which makes it a valuable tool for predicting 
the clinical outcome of patients with osteosarcoma. 
Moreover, its ability to provide reliable predictions can 
serve as a valuable reference for clinical treatment 
decisions. At the same time, the study also found that the 
prognosis based on these five genes is congruent with the 
impact of immune cells on the prognosis of osteosarcoma, 
suggesting that these genes might be linked to immune 
cells. The findings of this study offer new tools for 
orthopedic surgeons to improve their clinical decision-
making process in the treatment of osteosarcoma. 
Additionally, the identification of new therapeutic targets 
in osteosarcoma may offer improved efficacy and 
outcomes for these patients. 
 
MATERIALS AND METHODS 
 
Data source and preprocessing 
 
Osteosarcoma transcriptome and clinical data were 
retrieved from the UCSC Xena (http://xena.ucsc.edu/) as 
the training set. A validation set for this study  
was obtained by acquiring transcriptome and clinical data 
of individuals diagnosed with osteosarcoma  
from the GSE21257 datasets. The datasets were retrieved 
from the publicly accessible GEO (Gene Expression 

Omnibus) database. Researchers can  
access these datasets by following the provided link: 
https://www.ncbi.nlm.nih.gov/geo. The GSE28425 
dataset was used to screen for osteosarcoma differential 
genes. 
 
Development of the risk-scoring model 
 
Using the oxidative phosphorylation-related genes 
screened out above, the model was constructed based on 
the training set data. Differential genes above 0.5-fold 
were screened using GSE28425, whereas univariate Cox 
regression analysis was conducted to screen prognostic 
oxidative phosphorylation-related genes. Subsequently, 
LASSO regression analysis was conducted to calculate 
the risk coefficient (coefi) of all oxidative 
phosphorylation-related genes. To compute the risk score 
for every individual, the expression (expi) and coefficient 
(coefi) values of all oxidative phosphorylation genes 
related to prognosis were added. This was done for every 
sample in the study, and the resulting value was 
considered as the risk score of the patient (risk score = 
(coefi × expri)). By utilizing the median value of risk 
scores, individuals were classified into high- and low-risk 
groups. In order to examine whether a noteworthy 
disparity in the overall survival of individuals between 
both groups existed, a Kaplan-Meier survival analysis 
was conducted. The capability of the risk scoring model 
for making predictions was analyzed by calculating the 
area under the curve (AUC) using receiver operating 
characteristic (ROC) curve analysis. 
 
Analysis of subgroups and confirmation of the 
capacity of the risk prognostic model for independent 
prognostication 
 
Patient subgroups were created based on age (<18, ≥ 
18), sex (male, female), and if metastasis had taken 
place (metastatic or non-metastatic). To ascertain 
whether there were appreciable variations in OS across 
high- and low-risk patients in each subgroup, Kaplan-
Meier survival analysis was utilized. 
 
Analysis of tumor microenvironment across the two 
risk groups 
 
The abundance of 22 types of immune cells in both risk 
groups (high and low) was calculated by utilizing the 
CIBERSORT algorithm (https://cibersortx.stanford.edu/). 
Additionally, high and low groups were established as 
per the median expression of different immune cells, and 
the difference in survival time across the two groups was 
determined. The ESTIMATE (Estimation of Stromal and 
Immunological Cells in Malignant Tumor Tissues using 
Expression Data) algorithm was employed to assess the 
stromal, immunological, and ESTIMA scores, as well as 
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the tumor purity of various molecular subgroups. 
Ultimately, the association of genes with immune cells 
was examined. 
 
Drug sensitivity analysis 
 
Drug sensitivity analysis was conducted using “Rs” 
“limma”, “ggpubr”, and “pRRophic” packages to examine 
the varying sensitivities of drugs for patients in both risk 
groups in the bone and meat data of TCGA. Moreover, 
the potential osteosarcoma treatment drugs were screened 
with a screening criterion of p-value < 0.001. 
 
Nomogram of the prediction model 
 
According to the clinical information of sex, age, 
metastasis, and risk score of the oxidative phosphorylation 
gene, univariate and multivariate Cox regressions were 
implemented, and the nomogram was constructed 
according to the results. Following the calculation of OS 
for all patients, their 1-year, 3-year, and 5-year survival 
rates were predicted, and a ROC curve was developed to 
measure the predictive accuracy of the nomogram. 
 
Gene set enrichment analysis 
 
In addition, enrichment analyses (GSEA, GO, and 
KEGG) were conducted on the differentially expressed 
genes (DEGs) identified between both risk groups. 
 
Statistical analysis 
 
R (v 4.2.0) was employed to carry out all statistical 
analyses. OS curves were generated by utilizing the 
Kaplan-Meier method and assessed by means of the 
log-rank test. A significance level of 0.05 or greater was 
used for all two-tailed p-values. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 

 
 

 
 

 
 

Supplementary Figure 1. Correlation analysis between 5 genes and risk score in TARGET data. (A–E) The correlation coefficients 
between ATP6V0D1, LHPP, COX6A2, MTHFD2, and NDUFB9 in TARGET osteosarcoma data and risk scores, respectively. 
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Supplementary Figure 2. Correlation analysis between 5 genes and risk score in GSE21257 dataset. (A–E) The correlation 
coefficients between ATP6V0D1, LHPP, COX6A2, MTHFD2, and NDUFB9 in the GSE21257 dataset and risk scores, respectively. 
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Supplementary Figure 3. TCGA clinical subgroup survival analysis of the risk score of osteosarcoma oxidative 
phosphorylation genes. The results of the risk‐scoring model in the training group were <18 (A) male (B) nonmetastatic (C) ≥18 (D) female 
(E) and metastatic (F) subgroups. 
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Supplementary Figure 4. GSE21257 clinical subgroup survival analysis of the risk score of osteosarcoma oxidative 
phosphorylation genes. The results of the risk‐scoring model in the validation group were <18 (A), male (B), nonmetastatic (C), ≥18 (D), 
female (E), and metastatic (F) subgroups. 
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Supplementary Figure 5. Correlation analysis between risk score and immune cells. (A–E) The correlation coefficients between risk 
score and Mast cells activated, T cells CD4 memory activated, T cells CD4 naïve, T cells CD8 and T cells follicular helper, respectively. 
 

 
 

Supplementary Figure 6. Correlation analysis between ATP6V0D1 gene expression and immune cells. (A–F) The correlation 
coefficients between ATP6V0D1 and Dendritic cells activated, Macrophages M0, Macrophages M1, Macrophages M2, T cells CD4 naïve and T 
cells CD8, respectively. 
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Supplementary Figure 7. Correlation analysis between LHPP gene expression and immune cells. (A–C) The correlation 
coefficients between LHPP and T cells CD4 naïve, T cells CD8 and T cells follicular helper, respectively. 
 

 
 

Supplementary Figure 8. Correlation analysis between COX6A2 gene expression and immune cells. (A, B) The correlation 
coefficients between COX6A2 and B cells memory and B cells naive, respectively. 
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Supplementary Figure 9. Correlation analysis between NDUFB9 gene expression and immune cells. (A, B) The correlation 
coefficients between NDUFB9 and Mast cells activated and Monocytes, respectively. 
 

 
 

Supplementary Figure 10. Results of immunity analysis. (A) Differences in matrix scores, immune scores, and ESTIMATE scores 
between the low-risk group and the high-risk group. (B) The difference in the expression of PDCD1, CD274, and PDCD1LG2 between the low-
risk group and the high-risk group. (*, p <0.05, **, p <0.01, ***, p <0.001). 

5331



www.aging-us.com 22 AGING 

 
 

Supplementary Figure 11. Results of drug sensitivity analysis. (A) Bortezomib (p =1.3e – 06). (B) CGP.082996 (p = 7.7e−05). (C) GNF.2 
(p = 0.00013). (D) MG.132 (p = 3.2e−06). (E) NVP.TAE684 (p = 1.8e−05). (F) PAC.1 (p = 0.00018). (G) PF. 02341066 (clozotinib) (p =3.4e – 06). 
(H) Roscovitine (p = 2.5e−05). 
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Supplementary Figure 12. Evaluation of clinical data and risk score for prognosis of osteosarcoma. (A) Results of single factor 
Cox analysis of TCGA osteosarcoma data. (B) Multivariate Cox analysis of TCGA osteosarcoma data. 
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Supplementary Figure 13. Enrichment analysis. (A) Differential gene volcano map. (B) GSEA enrichment analysis. (C) GO enrichment 
analysis. (D) KEGG enrichment analysis. 
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Supplementary Figure 14. Flow chart. 
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