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INTRODUCTION 
 

Thyroid cancer (THCA) as the most frequently 

diagnosed malignancy had high incidence in females 

worldwide [1]. According to the annual cancer study 

report, there had been 62,450 estimated new cases  

and 1,950 estimated deaths in 2015 [2], however, the 

estimated new cases have dropped to 43,720, and the 

deaths are 2,120 in 2023 [3], indicating the incidence of 

THCA has greatly decreased and the mortality is stable 

[4] causing tremendous threat to people’s life and  

health. The THAC originated from the parafollicular  

C cells or follicular epithelial cells [5], and its types  

and pathogenesis are diverse, meanwhile great progress 

has been made in developing diagnosis and intervention 

method for THCA control based on a variety of 

molecular targets and combination therapy [6]. Papillary 

thyroid carcinoma (PTC) is a common subtype of THCA 

characterized by relatively favorable prognosis after 

treatment, accounting for 80% of diagnosed cases [7]. 

www.aging-us.com AGING 2024, Vol. 16, No. 3 

Research Paper 

Investigating the clinical role and prognostic value of genes related 
to insulin-like growth factor signaling pathway in thyroid cancer 
 

Junyan Liu1,*, Xin Miao1,*, Jing Yao1, Zheng Wan1, Xiaodong Yang1, Wen Tian1 
 
1Department of General Surgery, The First Medical Center, Chinese People’s Liberation Army (PLA) General 
Hospital, Beijing 100853, China 
*Equal contribution 
 
Correspondence to: Xiaodong Yang, Wen Tian; email: yangxiaodong1901@163.com, https://orcid.org/0000-0002-4066-
7788; tianwen301_cta@163.com, https://orcid.org/0000-0001-7994-0908 
Keywords: insulin-like growth factor, thyroid cancer, survival, RiskScore, prognosis 
Received: September 25, 2023 Accepted: December 27, 2023  Published: February 7, 2024 

 
Copyright: © 2024 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 
 

ABSTRACT 
 

Background: Thyroid cancer (THCA) is the most common endocrine malignancy having a female predominance. 
The insulin-like growth factor (IGF) pathway contributed to the unregulated cell proliferation in multiple 
malignancies. We aimed to explore the IGF-related signature for THCA prognosis. 
Method: The TCGA-THCA dataset was collected from the Cancer Genome Atlas (TCGA) for screening of key 
prognostic genes. The limma R package was applied for differentially expressed genes (DEGs) and the 
clusterProfiler R package was used for the Gene Ontology (GO) and KEGG analysis of DEGs. Then, the 
un/multivariate and least absolute shrinkage and selection operator (Lasso) Cox regression analysis was used 
for the establishment of RiskScore model. Receiver Operating Characteristic (ROC) analysis was used to verify 
the model’s predictive performance. CIBERSORT and MCP-counter algorithms were applied for immune 
infiltration analysis. Finally, we analyzed the mutation features and the correlation between the RiskScore and 
cancer hallmark pathway by using the GSEA. 
Result: We obtained 5 key RiskScore model genes for patient’s risk stratification from the 721 DEGs. ROC 
analysis indicated that our model is an ideal classifier, the high-risk patients are associated with the poor 
prognosis, immune infiltration, high tumor mutation burden (TMB), stronger cancer stemness and stronger 
correlation with the typical cancer-activation pathways. A nomogram combined with multiple clinical features 
was developed and exhibited excellent performance upon long-term survival quantitative prediction. 
Conclusions: We constructed an excellent prognostic model RiskScore based on IGF-related signature and 
concluded that the IGF signal pathway may become a reliable prognostic phenotype in THCA intervention. 
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Anaplastic thyroid cancer (ATC) accounted for 2% of 

diagnosed cases and is characterized by poor prognosis 

and the highest mortality, lacking effective treatments 

for ATC currently [8]. The surgery and radioactive 

iodine are primary treatment methods for THCA, and 

combined with the minimally invasive intervention and 

other auxiliary means to improve the cancer treatment 

effect. Mounting evidences indicated that the THCA 

had good intervention effect and relative high cure  

rate compared with other cancers [9, 10]. However,  

the patients with the specific subtypes, such as ATC, 

exhibited poor intervention effect and the tumor cells 

developed aggressive and drug-resistant properties 

causing enormous obstacles to clinical cure [11]. 

Therefore, identifying reliable molecular markers and 

developing effective prognostic model are beneficial  

for the risk stratification and design of precise treatment 

in THCA [12]. 

 

The insulin-like growth factor (IGF) signaling played a 

crucial role in regulating growth and development,  

and the disorder of IGF-signaling pathway is closely 

related to the pathogenesis and progression of many 

cancers [13]. Liver is the primary source of IGF, which 

binds to their corresponding receptors (IGFR) with 

different affinities [14]. The ligand-receptor binding 

phosphorylated the downstream substrates, such as Src 

homology collagen (SHC) and insulin receptor substrate 

(IRS) [15]. After that, the phosphorylated SHC activated 

the mitogen-activated protein kinase (MAPK) pathways 

for cell cycle regulation [16] and the IRS activated  

the phosphatidylinositol 3-kinase (PI3K)/AKT for RNA 

processing, protein translocation, cell proliferation, 

autophagy and apoptosis in malignancy [17] and IGF-I 

induced the anti-inflammatory cytokines interleukin 

(IL)-10 for cancer progression [18]. However, IGFs are 

also involved in the activating immune activities of 

lymphoid, myeloid, and hematopoietic cells through the 

autocrine, paracrine and endocrine ways [19]. IGF-I can 

restore the cell ability both T and B cells that undergone 

lethal irradiation [20] and promote mature B cells and 

plasmocyte proliferation [21]. Meanwhile, the IGF-I 

also enhanced the tumor necrosis factor α (TNF-α) and 

interleukin (IL)-8 cytokine expression in anti-cancer 

response [22]. Dysregulation of the IGF signaling 

system could affect the progression and prognosis of 

multiple cancers, and also has the potential to be applied 

to stem cell therapy [23]. Abnormal down-regulation of 

IGFBP expression has been proved to be suggestive of 

breast cancer risk in pregnant women during pregnancy 

and postpartum, and may also be involved in the 

suppression of the associated immune microenvironment 

[24]. In some studies, IGF-IR has been shown to be  
a breast cancer-related marker and contributes to the 

progression of epithelial-mesenchymal transformation 

(EMT) in tumors to a certain extent [25]. Abnormal IGF 

signaling system may be involved in the progression of 

diseases such as obesity and ovarian cancer by affecting 

nutrient absorption and energy metabolism [26]. Both 

ligand and receptor systems of IGF were overexpressed 

in THCA tissue [27]. The report found that IGF-I is 

relatively actively expressed in some subtypes of THCA, 

such as PTC, which can stimulate the phosphorylation 

of corresponding receptors and induce tumor cells  

to accelerate the mitosis process [28]. At present, a 

number of researches have investigated the potential 

correlation between IGF-related genes and breast cancer 

prognosis, and the IGF system may also affect THCA 

prognosis at the genomic level [29]. Thus, we aimed  

to develop a useful risk prognosis model based on the 

IGF-related signatures. 

 

This project will explore the clinical features of genes 

correlated with IGF signaling pathway in THCA, and 

assess the prognostic significance of IGF-correlated 

genes. We extracted and screened IGF-related genes 

according to TCGA and MSigDB to acquire key  

genes affecting prognosis, and designed and validated  

a RiskScore model to forecast the prognosis and 

survival of patients. Additionally, we also analyzed the 

clinicopathological features, mutation features, immune 

microenvironment and related biological pathway 

changes of different THCA patients with the model 

results. 

 

MATERIALS AND METHODS 
 

Data acquisition and preprocessing 

 

(1) The RNA-Seq data of TCGA-THCA were 

downloaded from The Cancer Genome Atlas (TCGA) 

database through the GDC API tool [30, 31], in which 

502 tumor samples and 58 normal samples were 

included in the RNA-Seq data, the patients missing the 

survival time, status, and clinical follow-up information 

were removed from this study, lastly, a total of 487 

tumor samples were obtained. 

 

(2) The IGF related gene set was downloaded  

from the Molecular Signatures Database (MsigDB, 

https://www.gsea-msigdb.org/gsea/msigdb), and 40 

IGF-related genes were obtained [32], which are listed 

in Supplementary Materials (Supplementary Table 1). 

 

Identification and enrichment analysis of DEGs 

 

We identified the differentially expressed genes (DEGs) 

between the tumor and adjacent normal samples  

by using limma R packages (setting |FC|>1.5 and 
FDR<0.05) [33]. Then the IGF score of tumor samples 

was calculated by using the GSVA R package [34], and 

the volcano map was made by spearman correlation 

https://www.gsea-msigdb.org/gsea/msigdb
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analysis of Hmisc package to acquire the DEGs 

associated with IGF score (|R|>0.4, p<0.05) [35]. Next, 

we used the clusterProfiler package for GO and KEGG 

enrichment analysis of DEGs [36]. 

 

Screening of key genes 

 

(1) We randomly divided the TCGA-THCA dataset into 

the training set and the test set with 1:1 proportion, and 

compared the difference between the groups by using 

the Chi-square test [37]. 

 

(2) The survival R package was used to perform the 

univariate Cox proportional risk regression analysis for 

IGF score related DEGs in training set, the p < 0.05 as 

the filtering threshold [38]. 

 

(3) The univariate Cox regression analysis was applied 

for the significant prognostic gene. Then, the Least 

absolute shrinkage and selection operator (LASSO) 

compression was performed by using glmnet R package 

to reduce the number of candidate genes [39]. The 

model was designed using 10-fold cross-validation and 

the confidence intervals under each lambda were 

researched [40]. When the model is optimized, the gene 

is chosen as the target gene for the next step. The 

multivariate Cox regression analysis with the stepwise 

regression was used to determine the final model genes 

and calculate the regression coefficient [41]. 

 

Constructing and verification of RiskScore model 

 

We calculated the RiskScore for each sample using the 

following formula: 

 

RiskScore i Expi=   

 

(i representing gene expression level and the β is the 

Cox regression coefficient). 

 

Based on the median RiskScore, the patients were 

classified into high- and low-RiskScore categories.  

For prognosis analysis, survival curves were plotted 

using the Kaplan-Meier technique, and the significance 

of differences was assessed using the logarithmic rank 

test [42]. The ROC analysis with the Area Under Curve 

(AUC) value was performed using the R software 

timeROC package [43]. 

 

RiskScore analysis of comprehensive clinico-

pathological features 

 

The expression of key prognostic model genes in  

the TCGA-THCA cohort and the RiskScore groups  

were compared, and a heatmap of clinicopathological 

characteristics was produced using the pheatmap tool. 

Riskscore and clinicopathological characteristics were 

subjected to univariate and multivariate Cox regression 

analysis in order to identify significant prognostic 

variables. In the TCGA-THCA cohort, the decision  

tree was built based on the patients’ age, sex, clinical 

grade of T, N, and M Stages and RiskScore grouping. 

Subsequently, several risk subgroups were found, and 

the variations in overall survival across subgroups were 

analyzed. 

 

Developing of nomogram 

 

Using the rms R package, we integrated Riskscore and 

clinicopathological variables to create a nomogram that 

quantified the patient’s risk assessment and survival 

probability [44]. Further, we use Calibration curve and 

Decision curve to assess the prediction accuracy of the 

model [45]. 

 
Gene set enrichment analysis (GSEA) 

 

In order to observe the relationship between  

RiskScore and biological function of different samples,  

we chose the TCGA dataset for analysis. Using 

H.LL.v7.5.1.symbols.gmt as gene set, R software 

GSVA package was used for ssGSEA [46], and the 

scores of each sample in different functions were 

computed. Then the correlation between RiskScore 

and channel score was calculated by spearman method. 

 
Analysis of tumor microenvironment 

 
We performed CIBERSORT and MCP-counter 

algorithms to estimate immune infiltration difference 

between varying risk groups [47]. Based on the 

expression of marker genes of immune cells, the 

CIBERSORT algorithm assessed the degree of immune 

infiltration through calculating the immune infiltration 

score of 22 immune cells in varying risk groups. 

Meanwhile, we calculated the correlation between  

the RiskScore and the immune infiltration by using  

the spearman method. The MCP-Count algorithm used 

for the immune infiltration score of other 10 immune 

cells, and its correlation with the RiskScore were also 

calculated. In addition, we analyzed the correlation 

between the common immune checkpoints and the 

RiskScore. The higher tumor stemness represented  

the stronger potential of tumor cell renewal and 

differentiation and the poor progression-free survival 

(PFS) of patients, we further calculated the correlation 

between the RiskScore and the tumor stemness index. 

 
Analysis of mutation characteristics 

 
First, the tumor mutation burden (TMB) of the 

RiskScore groups was compared. Next, the R software 
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Survminer package was performed to divide the  

TCGA-THCA tumor samples into two groups with  

high and low TMB according to the optimal TMB 

threshold, compare the survival difference between the 

two groups, and analyze the synergistic effect of TMB 

and RiskScore. 

 

The THCA RNA-seq data of normal (58) and tumor-

samples (502) were processed by mutect2 software to 

obtain the THCA mutation dataset, which were further 

used for screening the genes with significant high 

frequency mutations by using the fisher rest (p< 0.05 

and mutation frequency > 3) [48]. Then we performed 

fisher test to screen genes with high mutation frequency 

in each group (p < 0.05), and finally acquired key mutant 

genes. Somatic alterations in the tumor-associated 

pathways in the group were then assessed, including 

Hippo, PI3K, WNT, NOTCH, MYC, NRF2, TGF-β, 

TP53, RTK-RAS, and Cell-Cycle. 

 

Statistical analysis 

 

This study mainly performs R language for statistical 

analysis. The wilcoxon rank sum test was used for the 

significance of difference between two sets of continuous 

variables, the spearman method was used for correlation 

analysis (p-value < 0.05 as a statistically significant,  

* p-value <0.05, ** p-value <0.01, *** p-value <0.001 

and “ns” is no significant difference). 

 

Data availability statement 

 

The datasets generated during and analyzed during  

the current study are available from the corresponding 

author on reasonable request. 

 

RESULTS 
 

Screening and enrichment of DEGs 

 

A total of 3211 DEGs were acquired by difference 

analysis between THCA samples and normal samples of 

TCGA, in which 721 DEGs were closely correlated to 

the IGF score (Figure 1A). The Molecular Function of 

GO enrichment analysis indicated that these genes were 

closely associated with the actin binding pathway 

(Figure 1B), the biological process of GO indicated that 

these genes were closely associated with the activation 

of regulation of GTPase activity and stress-activated 

MAPK cascade pathways (Figure 1C), the cellular 

component of GO displayed that the most of receptor 

complex, adherens junction, focal adhesion and cell-

substrate adherens junction pathway were activated 

(Figure 1D), implying these genes could be may be 

closely related to epithelial cell transformation or cancer 

metastasis. 

Establishment of RiskScore model 

 

Chi-square test results between the training set  

and test set indicated no significant difference in 

clinicopathologic features groups, indicating that our 

grouping was random and reasonable (p < 0.05,  

Table 1). 25 genes were retained after IGF score  

related EDGs filtering. Lasso regression analysis 

indicated that the number of independent variable 

coefficients approaching 0 rose together with the 

progressive increase in lambda (Figure 2A). Ten  

genes at lambda=0.01147 were chosen as the target 

genes for the following phase after analyzing the 

confidence interval under each lambda (Figure 2B). 

After stepwise regression, five genes were identified  

as key genes affecting prognosis, namely EGR2, 

ATP7B, CACNA1D, ACBD7, and FLRT3 (Figure 2C). 

 

The final model formula is as follows: 

 

RiskScore=(-0.228*EGR2)+(-1.491*ATP7B)+ 

0.888*CACNA1D+0.336*ACBD7+(-0.082*FLRT3) 

 

The three data sets (TCGA training set, TCGA test set, 

and TCGA data set) were divided into high and low 

RiskScore group according to the median RiskScore 

(Figure 2D, 2F, 2H). The KM curves of the three data 

sets all indicated that the patient’s survival probability 

had significantly difference, in which patients in the 

high-risk groups were associated with poor prognosis. 

ROC curves of the three datasets indicated that AUC 

values were 0.9, 0.73 and 0.81 in the first year, 0.93, 

065 and 0.74 in the third year, and 0.81, 0.71 and  

0.69 in the fifth year (Figure 2E, 2G, 2I), the higher 

AUC value indicated the RiskScore had excellent 

classification performance in long- and short-prognostic 

prediction [49]. 

 
Analysis of RiskScore combined with 

clinicopathological features and construction of the 

nomogram 

 

The expression of key genes was compared with the 

clinicopathological characteristics of RiskScore groups. 

It was indicated that there were significant differences 

in T.tage, N.tage, Stage and PFS between RiskScore 

groups. ACBD7 and CACNA1D as risk factors were 

significantly expressed in the group with high RiskScore, 

while FLRT3, EGR2 and ATP7B as protective factor 

were more actively expressed in the group with low 

RiskScore (Figure 3A). The RiskScore increased with 

the increasing clinicopathological grade (Figure 3B). 

Univariate and multivariate Cox regression analysis 

indicated that Riskscore and Stage were significant 

prognostic independent factors (Figure 3C, 3D). We 

incorporated RiskScore and several clinical features into 
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a decision tree model, which is mainly used to construct 

a risk hierarchical classifier. Through the decision tree 

model, the patients were divided into four different 

clusters (C1, C2, C3, C4), we found that RiskType’s 

classification ability was superior to other clinical 

information, followed by T-stage and Stage feature 

(Figure 3E), indicating the RiskScore is an important 

risk decision factor. There were significant differences 

in overall survival among the risk subgroups, with  

the C1 subgroup having the highest survival rate, 

followed by C3, C2, and C4 (Figure 3F), indicating  

that the RiskScore could be a reliable classification 

indicator. 

 

A nomogram was created using RiskScore and 

additional clinicopathological characteristics, and the 

RiskScore showed the greatest influence on the 

prediction of survival rate (Figure 3G). The calibration 

curves for the calibration points at 1-, 3-, and 5- years 

are seen to be quite near to the standard calibration 

curve, demonstrating the nomogram’s strong predictive 

ability (Figure 3H). The results of decision curves and 

ROC curves of each clinicopathological features 

indicated that both nomogram and RiskScore showed 

the strongest predictive power compared with other 

clinicopathological features (Figure 3I, 3J), these results 

indicated that the nomogram can quantify the survival 

probability of the patient effectively and benefit the 

clinical patients. 

 

Differences in immune microenvironment between 

RiskScore groups 

 

CIBERSORT analysis indicated that there were 

significant differences between the seven immune cells 

in different groups. The proportions of CD8 T cells, 

 

 
 

Figure 1. Screening and enrichment of DEGs. (A) DEGs volcano maps of THCA and normal samples in TCGA dataset; (B–D) GO 

enrichment analysis bubble chart of IGF score related DEGs (MF, BP, CC). 
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Table 1. Clinical information of TCGA dataset. 

Characteristics TCGA-train (N=244) TCGA-Test (N=243) Total (N=487) p-value FDR 

Age    0.08 0.44 

<=46 135(27.72%) 114(23.41%) 249(51.13%)   

>46 109(22.38%) 129(26.49%) 238(48.87%)   

Gender    0.78 1 

FEMALE 177(36.34%) 180(36.96%) 357(73.31%)   

MALE 67(13.76%) 63(12.94%) 130(26.69%)   

T.stage    0.01 0.08 

T1 73(14.99%) 68(13.96%) 141(28.95%)   

T2 74(15.20%) 89(18.28%) 163(33.47%)   

T3 92(18.89%) 68(13.96%) 160(32.85%)   

T4 5(1.03%) 16(3.29%) 21(4.31%)   

Unknow 0(0.0e+0%) 2(0.41%) 2(0.41%)   

N.stage    0.07 0.44 

N0 108(22.18%) 116(23.82%) 224(46.00%)   

N1 117(24.02%) 96(19.71%) 213(43.74%)   

Unknow 19(3.90%) 31(6.37%) 50(10.27%)   

M.stage    0.32 1 

M0 146(29.98%) 129(26.49%) 275(56.47%)   

M1 3(0.62%) 3(0.62%) 6(1.23%)   

Unknow 95(19.51%) 111(22.79%) 206(42.30%)   

Stage    0.33 1 

I 146(29.98%) 134(27.52%) 280(57.49%)   

II 21(4.31%) 30(6.16%) 51(10.47%)   

III 54(11.09%) 50(10.27%) 104(21.36%)   

IV 23(4.72%) 27(5.54%) 50(10.27%)   

Unknow 0(0.0e+0%) 2(0.41%) 2(0.41%)   

PFS    1 1 

Progression-free 221(45.38%) 221(45.38%) 442(90.76%)   

Progression 23(4.72%) 22(4.52%) 45(9.24%)   

 

T cells follicular helper, Monocytes and  

Activated mast cells in the low RiskScore group were 

significantly higher than those in the high RiskScore 

group (Figure 4A), indicating that the low-risk patients 

had more strong immune ability against tumor cells. 

The correlation between RiskScore and CIBERSORT 

immune infiltration score showed that the RiskScore 

was significantly negative correlation to most immune 

cell infiltration score (Figure 4B), these results  

are consistent with the results of 22 immune cells 

infiltration in high-risk patients, the patients with 

higher RiskScore are associated with worst immune cell 

infiltration. A substantial inverse relationship between 

RiskScores and the scores of the majority of immune 

cells was found by the MCP-Count algorithm, while 

several model genes exhibited obviously positive 
correlation to the immune cell infiltration score, such 

as the ABCD7 and ELRT3 are closely associated with 

the activated NK cells (Figure 4C). RiskScore, FLRT3, 

and ACBD7 were found to be positively correlated  

to most immune checkpoint genes, whereas ATP7B 

and CACNA1D were shown to be negatively 

correlated with most of immune checkpoint genes 

(Figure 4D), suggesting that FLRT3 and ACBD7  

are closely associated with the immunotherapy effect 

and can be developed as a combination target for 

immunotherapy [35]. 

 

The correlation results of RiskScore and THCA tumor 

stemness index indicated that there was a significant 

positive correlation between RiskScore and mRNAsi 

(Figure 4E). 

 

Differences in mutation features between groups 

 
The TMB comparison in varying risk groups indicated 

that the TMB of the high RiskScore group was higher 

(Figure 5A), the survival probability was significantly 
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lower in the high TMB group (Figure 5B), implying the 

high-risk patients had poor prognosis after treatment. 

The synergistic effect of TMB and RiskScore showed 

that regardless of the high TMB subgroup or the low 

TMB subgroup, the prognosis of patients in the low 

RiskScore group was always better than that in the high 

RiskScore group, indicating that the TMB status did not 

hinder the predictive effect of RiskScore (Figure 5C). 

 

 
 

Figure 2. Design and validation of RiskScore model. (A) The trajectory of each independent variable changing with lambda;  

(B) Confidence interval under lambda; (C) Forest map of characteristic gene prognosis; (D, E) RiskScore of TCGA training set, ROC curve and 
KM curve of RiskScore model; (F, G) RiskScore of TCGA test set, ROC curve and KM curve of RiskScore model; (H, I) RiskScore of TCGA data 
set, ROC curve and KM curve of RiskScore of model. 
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Four genes with high frequency mutation in each 

subtype were screened. The mutation features of genes 

in different groups indicated that BRAF gene had a 

significant mutation frequency in the high RiskScore 

group, and most of them were missense mutations. 

Somatic cell changes in tumor-related pathways in  

the high and low RiskScore groups were evaluated. It 

was found that the mutation rate in the high RiskScore 

group was the highest, and the proportion of affected 

samples was the largest (Figure 5E, 5F), implying that 

the highly mutation of these classic cancer-related 

pathway conferred tumor cell with more strong 

survival and immune suppressive ability in tumor 

microenvironment. 

 

Correlation between RiskScore and biological 

pathways 

 

The correlation between RiskScore and pathway score 

was estimated, and it was found that Wnt-β catenin 

 

 
 

Figure 3. Analysis of RiskScore combined with clinicopathological and construction of the nomogram. (A) Relationship between 

model gene expression and clinicopathological features; (B) Differences in RiskScore between clinicopathological grades; (C) Results of single-
factor Cox analysis of clinicopathological features; (D) Multivariate Cox analysis results of clinicopathological features; (E) Using RiskScore and 
clinicopathological features to construct the survival decision tree; (F) Differences in survival rates among the four subgroups; (G) RiskScore 
combined with clinicopathological features to establish a nomogram; (H) Calibration curves for 1, 3 and 5 years of the nomogram; (I) Decision 
curve of the nomogram; (J) The ROC curves of the nomogram and a variety of clinicopathological features at 1, 3 and 5 years. 
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signaling, UV response, KRAS signaling and Notch 

signaling, Hypoxia, TGF-β signaling and angiogenesis 

pathways were significantly negative correlated to the 

RiskScore (Figure 6). However, the E2F targets, Myc 

targets-v1/v2, interferon alpha and gamma response, 

G2M checkpoint, mTORC1 signaling, peroxisome, 

glycolysis and PI3K AKT MTOR signaling pathways 

were significantly positive correlated to the RiskScore 

(Figure 6), implying the tremendous heterogeneity 

existed in varying risk patients mediated by the different 

cancer activation pathway. 

 

DISCUSSION 
 

Thyroid cancer (THCA) is the most common endocrine 

malignancy characterized by highly incidence and 

invasion in female worldly. Many researches have 

shown that IGF signaling pathway is closely related to 

the THCA, and IGF system can interact with a variety 

of biological pathways to affect the growth and spread 

of tumor tissue [50]. In addition, the serum of THCA 

patients was detected, and the IGF-1R concentration 

was generally elevated in the serum of the subjects [51]. 

In the research of Piotr Tomasz Wysocki, it was found 

that the reduced expression level of DIRC3, a long non-

coding RNA gene, can enhance the susceptibility of 

THCA cells to IGF1 stimulation, promote Akt signaling 

by down-regulating IGFBP5 protein, and increase  

the invasion ability and spread of THCA cells [52]. 

Clinical studies have indicated that IGF-blocking 

therapy, including monoclonal antibodies and IGF-

related inhibitors, may be a new strategy for cancer 

treatment [53]. Lv et al. claimed that IGF can promote 

THCA stemness and increase tumor cell invasiveness 

by activating PI3K/AKT/mTOR signaling pathway,  

and blocking IGF signaling pathway can inhibit  

this process [54]. IGFBP-3 is a regulatory protein of  

p53 tumor suppressor factor, which can destroy some 

important life processes including transcription of 

various cancer cells and play a role in tumor inhibition 

[55]. Therefore, it is of great significance for us to focus 

on and identify key IGF-related genes for clinical 

research and prognostic value mining of THCA. 

 
In this study, we acquired five key genes affecting 

prognosis, in which the CACNA1D and ACBD7 were 

 

 
 

Figure 4. Analysis of immune features between RiskScore groups. (A) The difference of immune infiltration by CIBERSORT analysis 
between RiskScore groups; (B) The correlation between RiskScore and CIBERSORT’s immune score; (C) The correlation between RiskScore 
and immune score analyzed by MCP-Count; (D) RiskScore is associated with immune checkpoint genes; (E) Correlation between RiskScore 
and tumor stemness index. 
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Figure 5. Analysis of mutation features between RiskScore groups. (A) TMB differences between RiskScore groups; (B) KM curve 

between high and low TMB groups in TCGA cohort; (C) KM curve of high and low TMB groups and high and low RiskScore of TCGA cohort; 
(D) Significantly different mutated genes between RiskScore groups; (E) Mutation frequency of tumor pathway genes and proportion of 
affected samples in the high RiskScore group; (F) Frequency of mutation of tumor pathway genes and proportion of affected samples in low 
RiskScore group. 
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Figure 6. Correlation between RiskScore and HALLMARK channel score. 
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regarded as risk factors, while the EGR2, FLRT3  

and ATP7B were regarded as protective factors in 

model. Early growth response proteins (EGRs) are a 

family of multifunctional transcriptional regulatory 

proteins, of which EGR2 is one of the most studied. 

Levels of EGR2 are relatively low in THCA tissues, but 

overexpression of EGR2 can prevent the growth and 

spread of cancer cells [56]. EGR2 can be targeted by 

MiR-224-5p to promote the proliferation and invasion 

of THCA [57]. Some researches have found that  

EGR2 is the target gene of miR-25 that can promote  

the proliferation of cancer cells, and knocking down  

EGR2 will promote the proliferation and spread of 

tumor tissues [58]. ATP7B is a type of copper effector 

transporter, which is a key protein in maintaining copper 

metabolism and copper homeostasis in cells, and is also 

associated with some cancer prognostic effects [59]. 

Cisplatin and carboplatin are common chemotherapy 

drugs, and ATP7B can mediate the resistance of cancer 

cells to platinum-based chemotherapy drugs, helping to 

alleviate the stress of cancer cells, resulting in poor 

benefits of traditional chemotherapy for patients [60]. 

Mengdi Yang et al. found in the study of colorectal 

cancer that the up-regulated expression of FLRT3 can 

inhibit the growth and invasion of tumor cells, leading 

to the apoptosis of tumor cells, but the down-regulated 

expression of FLRT will lead to the opposite result, and 

patients will have a poor prognosis [61]. CACNA1D  

is a key protein encoding calcium ion channel  

subunits, which can effectively participate in regulating 

calcium ion concentration and maintaining intracellular 

homeostasis [62]. In gastric cancer studies, it was found 

that CACNA1D was regulated by tRNA derivatives to 

participate in MAPK signaling pathway transmission, 

inhibiting the growth and metastasis of tumor cells  

[63]. ACBD7 is a member of the multigene family 

containing Acyl-CoA binding domain (ACBD), which 

plays an important role in life activities such as energy 

metabolism and nutrient uptake [64]. ACBD7 can be 

regulated by transcription factors to promote muscle 

development and lipid metabolism, but cancer-related 

studies are lacking [65]. ACBD3, from the same family 

as ACBD7, has been found to be up-regulated in a 

variety of tumor tissues and may be responsible for  

poor breast cancer prognosis [66, 67]. The function of 

these genes promoting or inhibiting cancer progression 

in multiple cancers had been reported, indicating that 

these model genes had higher reliable prognostic value 

supporting model construction. 

 

When we analyzed the correlation between RiskScore 

and THCA tumor stemness index, we discovered that 

there was a significant positive correlation between 
Riskcsore and mRNAsi. Studies have indicated that 

high levels of mRNAsi show that cancer cells are more 

active in various life activities, have stronger potential 

for differentiation and invasion, and increase tumor 

drug resistance [68, 69]. This may be the reason for the 

poor immune cell scores and immune infiltration in 

most patients with high RiskScore. 

 

The mutation features analysis the BRAF had the 

highest mutation frequency in low- and high-risk 

patients. Integrative clinical genomics had revealed 

hundreds of key genes that occurred significant 

mutation in tumorigenesis, such as the cyclin-dependent 

kinase inhibitor 2A (CDKN2A), tumor protein p53 

(TP53), and retinoblastoma (RB1) phosphatidylinositol-

4,5-bisphosphate 3-kinase catalytic subunit alpha 

(PIK3CA) [70, 71]. The BRAF is proto-oncogene [72] 

and has been found to be mutated in a variety of 

cancers, including non-small cell lung cancer, colorectal 

cancer, and melanoma to mediate the oncogenetic 

phenotype [73–75]. Therefore, the BRAF could be  

a useful marker of THCA occurrence. The CD8 T  

cell and Monocytes are significantly infiltrated in the  

low-risk groups and contributed to eliminate the  

tumor cells [76], however, the macrophages M0 are 

significantly enriched in the low-risk group. It is well-

known that the macrophages contribute significantly to  

pathogen eliminating and cancer killing at early-stage  

of the disease [77], while the tumor cells released  

several chemokines (CCL2, CCL5 and CXCL12) and  

cytokines (VEGF and Csf1) to recruit more monocytes 

that are primitive macrophage M0 and they promote 

differentiation to macrophages M2 at advanced  

tumor-stages [78]. The abundant anti-inflammatory 

macrophages M2 infiltration is not conducive to the 

anti-tumor function of other immune cells, thus M1 

macrophage inducers may be more beneficial for cancer 

treatment in high-risk patients [79], meanwhile based on 

the significant positive correlation, the overexpression 

of ABCD7 and FLRT3 could enhance the NK cell 

activation for tumor cell killing. 

 

In addition, the cancer progression in varying risk 

patients appears to be mediated by different cancer 

activation pathways. The Wnt/β catenin is a growth 

stimulating factor promoting cell proliferation and 

affecting cell cycle regulation [80], the downregulation 

Wnt/β-catenin signaling often leads to multiple diseases 

[81]. Oncogenic KRAS mediated KRAS signaling 

pathway is crucial for cell growth, differentiation and 

survival, its continuous activation is closely associated 

with the development of breast cancer, colon cancer  

and pancreatic cancer [82–84]. The hypoxia is an 

inducible factor of angiogenesis supporting tumor 

growth and proliferation [85]. These typically cancer 

signaling pathways were significantly negatively 
correlated to the RiskScore, suggesting these pathways 

were significantly activated in the low-risk patients, 

thus we can develop the corresponding intervening 
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scheme targeting these signaling pathways for low-risk 

patients’ precise treatment. Similarly, the cell cycle 

related pathways E2F targets, Myc targets-v1/v2 and 

G2M checkpoint [86, 87], the metabolism-related 

pathways mTORC1 signaling, peroxisome and glycolysis 

and PI3K AKT mTOR signaling [88, 89], could  

be intervention targeting for high-risk patients’ precise 

treatment. 

 

Overall, we screened five IGF-related prognostic genes 

and constructed a reliable RiskScore model for patient’s 

risk stratification, this study is expected to help clinicians 

make more effective treatment decisions and design 

advisable personalized therapeutic schedule for patients. 

However, our research also has major limitations.  

All the data came from the database with a single 

sample size and lack of complete clinicopathological 

information. Moreover, both the training set and the 

validation set were from the same dataset. In the future, 

we hope to expand the scope of cancer research and the 

number of valid samples, and integrate more complete 

clinicopathological information to carry out model 

design. More research is needed to uncover the specific 

pathogenesis and optimal treatment of THCA. 

 

CONCLUSIONS 
 

We screened IGF related genes and acquired five key 

genes that affect prognosis: EGR2, ATP7B, CACNA1D, 

ACBD7 and FLRT3. A RiskScore model was designed 

based on 5 key genes. Combined with nomogram 

verification, this model could accurately predict the 

prognosis risk of THCA patients. Our results may 

contribute to the clinical treatment of THCA patients 

and further study of tumor mechanisms. 

 

Abbreviations 
 

IGF: insulin-like growth factor; THCA: thyroid  

cancer; TCGA: The Cancer Genome Atlas; MSigDB: 

The Molecular Signatures Database; ssGSEA: single-

sample gene set enrichment analysis; KM: Kaplan-

Meier; PTC: papillary thyroid carcinoma; ATC: 

anaplastic thyroid cancer; IGFBP: IGF-binding protein; 

DEGs: differentially expressed genes; GSEA: Gene Set 

Enrichment Analysis; TMB: tumor mutation burden; 

MF: Molecular Function; BP: Biological Process; CF: 

Cellular Component; EGRs: early growth response 

proteins; ACBD: Acyl-CoA binding domain. 

 

AUTHOR CONTRIBUTIONS 
 

All authors contributed to this present work: [JYL] and 

[XM] designed the study, [JY] and [ZW] acquired the 

data, [JYL] applied for funding, [XDY] and [WT] 

drafted the manuscript, and [JYL] and [XM] revised 

the manuscript. All authors read and approved the 

manuscript. 

 

CONFLICTS OF INTEREST 
 

The authors declared that they had no conflicts of 

interest. 

 

FUNDING 
 

This study was supported by grants from the National 

Science Foundation of China (82303414). 

 

REFERENCES 
 
1. Cappellacci F, Canu GL, Piras S, Anedda G, Calò PG, 

Medas F. Technological Innovations in Thyroid Cancer 
Surgery. Oncologie. 2022; 24:35–50. 

 https://doi.org/10.32604/oncologie.2022.020864 

2. Cabanillas ME, McFadden DG, Durante C. Thyroid 
cancer. Lancet. 2016; 388:2783–95. 

 https://doi.org/10.1016/S0140-6736(16)30172-6 
PMID:27240885 

3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. 
CA Cancer J Clin. 2015; 65:5–29. 

 https://doi.org/10.3322/caac.21254 PMID:25559415 

4. Carling T, Udelsman R. Thyroid cancer. Annu Rev Med. 
2014; 65:125–37. 

 https://doi.org/10.1146/annurev-med-061512-105739 
PMID:24274180 

5. Laha D, Nilubol N, Boufraqech M. New Therapies for 
Advanced Thyroid Cancer. Front Endocrinol 
(Lausanne). 2020; 11:82. 

 https://doi.org/10.3389/fendo.2020.00082 
PMID:32528402 

6. Xing M. Molecular pathogenesis and mechanisms of 
thyroid cancer. Nat Rev Cancer. 2013; 13:184–99. 

 https://doi.org/10.1038/nrc3431 PMID:23429735 

7. Lin RX, Yang SL, Jia Y, Wu JC, Xu Z, Zhang H. Epigenetic 
regulation of papillary thyroid carcinoma by long non-
coding RNAs. Semin Cancer Biol. 2022; 83:253–60. 

 https://doi.org/10.1016/j.semcancer.2021.03.027 
PMID:33785446 

8. Tang J, Luo Y, Xiao L. USP26 promotes anaplastic 
thyroid cancer progression by stabilizing TAZ. Cell 
Death Dis. 2022; 13:326. 

 https://doi.org/10.1038/s41419-022-04781-1 
PMID:35397626 

9. Chen DW, Lang BHH, McLeod DSA, Newbold K, Haymart 
MR. Thyroid cancer. Lancet. 2023; 401:1531–44. 

 https://doi.org/10.1016/S0140-6736(23)00020-X 
PMID:37023783 

https://doi.org/10.32604/oncologie.2022.020864
https://doi.org/10.1016/S0140-6736(16)30172-6
https://pubmed.ncbi.nlm.nih.gov/27240885
https://doi.org/10.3322/caac.21254
https://pubmed.ncbi.nlm.nih.gov/25559415
https://doi.org/10.1146/annurev-med-061512-105739
https://pubmed.ncbi.nlm.nih.gov/24274180
https://doi.org/10.3389/fendo.2020.00082
https://pubmed.ncbi.nlm.nih.gov/32528402
https://doi.org/10.1038/nrc3431
https://pubmed.ncbi.nlm.nih.gov/23429735
https://doi.org/10.1016/j.semcancer.2021.03.027
https://pubmed.ncbi.nlm.nih.gov/33785446
https://doi.org/10.1038/s41419-022-04781-1
https://pubmed.ncbi.nlm.nih.gov/35397626
https://doi.org/10.1016/S0140-6736(23)00020-X
https://pubmed.ncbi.nlm.nih.gov/37023783


www.aging-us.com 2947 AGING 

10. Nabhan F, Dedhia PH, Ringel MD. Thyroid cancer, 
recent advances in diagnosis and therapy. Int J Cancer. 
2021; 149:984–92. 

 https://doi.org/10.1002/ijc.33690 PMID:34013533 

11. Saini S, Tulla K, Maker AV, Burman KD, Prabhakar BS. 
Therapeutic advances in anaplastic thyroid cancer: a 
current perspective. Mol Cancer. 2018; 17:154. 

 https://doi.org/10.1186/s12943-018-0903-0 
PMID:30352606 

12. Bobillo-Perez S, Sanchez-de-Toledo J, Segura S, Girona-
Alarcon M, Mele M, Sole-Ribalta A, Cañizo Vazquez D, 
Jordan I, Cambra FJ. Risk stratification models for 
congenital heart surgery in children: Comparative 
single-center study. Congenit Heart Dis. 2019; 
14:1066–77. 

 https://doi.org/10.1111/chd.12846 PMID:31545015 

13. Bowers LW, Rossi EL, O’Flanagan CH, deGraffenried LA, 
Hursting SD. The Role of the Insulin/IGF System in 
Cancer: Lessons Learned from Clinical Trials and the 
Energy Balance-Cancer Link. Front Endocrinol 
(Lausanne). 2015; 6:77. 

 https://doi.org/10.3389/fendo.2015.00077 
PMID:26029167 

14. Baxter RC. IGF binding proteins in cancer: mechanistic 
and clinical insights. Nat Rev Cancer. 2014; 14:329–41. 

 https://doi.org/10.1038/nrc3720 PMID:24722429 

15. Hakuno F, Takahashi SI. IGF1 receptor signaling 
pathways. J Mol Endocrinol. 2018; 61:T69–86. 

 https://doi.org/10.1530/JME-17-0311 PMID:29535161 

16. Józefiak A, Larska M, Pomorska-Mól M, Ruszkowski JJ. 
The IGF-1 Signaling Pathway in Viral Infections. Viruses. 
2021; 13:1488. 

 https://doi.org/10.3390/v13081488 PMID:34452353 

17. Morgan EL, Macdonald A. Manipulation of JAK/STAT 
Signalling by High-Risk HPVs: Potential Therapeutic 
Targets for HPV-Associated Malignancies. Viruses. 
2020; 12:977. 

 https://doi.org/10.3390/v12090977 PMID:32899142 

18. Kooijman R, Coppens A. Insulin-like growth factor-I 
stimulates IL-10 production in human T cells. J Leukoc 
Biol. 2004; 76:862–7. 

 https://doi.org/10.1189/jlb.0404248 PMID:15277570 

19. Weigent DA. Lymphocyte GH-axis hormones in 
immunity. Cell Immunol. 2013; 285:118–32. 

 https://doi.org/10.1016/j.cellimm.2013.10.003 
PMID:24177252 

20. Clark R, Strasser J, McCabe S, Robbins K, Jardieu P. 
Insulin-like growth factor-1 stimulation of 
lymphopoiesis. J Clin Invest. 1993; 92:540–8. 

 https://doi.org/10.1172/JCI116621  
PMID:8349796 

21. Kimata H, Yoshida A. Effect of growth hormone and 
insulin-like growth factor-I on immunoglobulin 
production by and growth of human B cells. J Clin 
Endocrinol Metab. 1994; 78:635–41. 

 https://doi.org/10.1210/jcem.78.3.8126135 
PMID:8126135 

22. Kooijman R, Coppens A, Hooghe-Peters E. IGF-I 
stimulates IL-8 production in the promyelocytic  
cell line HL-60 through activation of extracellular 
signal-regulated protein kinase. Cell Signal. 2003; 
15:1091–8. 

 https://doi.org/10.1016/s0898-6568(03)00069-x 
PMID:14575864 

23. Lin SL, Lin CY, Lee W, Teng CF, Shyu WC, Jeng LB. Mini 
Review: Molecular Interpretation of the IGF/IGF-1R 
Axis in Cancer Treatment and Stem Cells-Based 
Therapy in Regenerative Medicine. Int J Mol Sci. 2022; 
23:11781. 

 https://doi.org/10.3390/ijms231911781 
PMID:36233084 

24. Jenkins EC, Brown SO, Germain D. The Multi-Faced 
Role of PAPP-A in Post-Partum Breast Cancer: IGF-
Signaling is Only the Beginning. J Mammary Gland Biol 
Neoplasia. 2020; 25:181–9. 

 https://doi.org/10.1007/s10911-020-09456-1 
PMID:32901383 

25. Motallebnezhad M, Aghebati-Maleki L, Jadidi-Niaragh 
F, Nickho H, Samadi-Kafil H, Shamsasenjan K, Yousefi 
M. The insulin-like growth factor-I receptor (IGF-IR) in 
breast cancer: biology and treatment strategies. 
Tumour Biol. 2016; 37:11711–21. 

 https://doi.org/10.1007/s13277-016-5176-x 
PMID:27444280 

26. Avgerinos KI, Spyrou N, Mantzoros CS, Dalamaga M. 
Obesity and cancer risk: Emerging biological 
mechanisms and perspectives. Metabolism. 2019; 
92:121–35. 

 https://doi.org/10.1016/j.metabol.2018.11.001 
PMID:30445141 

27. Manzella L, Massimino M, Stella S, Tirrò E, Pennisi MS, 
Martorana F, Motta G, Vitale SR, Puma A, Romano C, 
Di Gregorio S, Russo M, Malandrino P, Vigneri P. 
Activation of the IGF Axis in Thyroid Cancer: 
Implications for Tumorigenesis and Treatment. Int J 
Mol Sci. 2019; 20:3258. 

 https://doi.org/10.3390/ijms20133258 
PMID:31269742 

28. Belfiore A, Pandini G, Vella V, Squatrito S, Vigneri R. 
Insulin/IGF-I hybrid receptors play a major role in IGF-I 
signaling in thyroid cancer. Biochimie. 1999; 81:403–7. 

 https://doi.org/10.1016/s0300-9084(99)80088-1 
PMID:10401676 

https://doi.org/10.1002/ijc.33690
https://pubmed.ncbi.nlm.nih.gov/34013533
https://doi.org/10.1186/s12943-018-0903-0
https://pubmed.ncbi.nlm.nih.gov/30352606
https://doi.org/10.1111/chd.12846
https://pubmed.ncbi.nlm.nih.gov/31545015
https://doi.org/10.3389/fendo.2015.00077
https://pubmed.ncbi.nlm.nih.gov/26029167
https://doi.org/10.1038/nrc3720
https://pubmed.ncbi.nlm.nih.gov/24722429
https://doi.org/10.1530/JME-17-0311
https://pubmed.ncbi.nlm.nih.gov/29535161
https://doi.org/10.3390/v13081488
https://pubmed.ncbi.nlm.nih.gov/34452353
https://doi.org/10.3390/v12090977
https://pubmed.ncbi.nlm.nih.gov/32899142
https://doi.org/10.1189/jlb.0404248
https://pubmed.ncbi.nlm.nih.gov/15277570
https://doi.org/10.1016/j.cellimm.2013.10.003
https://pubmed.ncbi.nlm.nih.gov/24177252
https://doi.org/10.1172/JCI116621
https://pubmed.ncbi.nlm.nih.gov/8349796
https://doi.org/10.1210/jcem.78.3.8126135
https://pubmed.ncbi.nlm.nih.gov/8126135
https://doi.org/10.1016/s0898-6568(03)00069-x
https://pubmed.ncbi.nlm.nih.gov/14575864
https://doi.org/10.3390/ijms231911781
https://pubmed.ncbi.nlm.nih.gov/36233084
https://doi.org/10.1007/s10911-020-09456-1
https://pubmed.ncbi.nlm.nih.gov/32901383
https://doi.org/10.1007/s13277-016-5176-x
https://pubmed.ncbi.nlm.nih.gov/27444280
https://doi.org/10.1016/j.metabol.2018.11.001
https://pubmed.ncbi.nlm.nih.gov/30445141
https://doi.org/10.3390/ijms20133258
https://pubmed.ncbi.nlm.nih.gov/31269742
https://doi.org/10.1016/s0300-9084(99)80088-1
https://pubmed.ncbi.nlm.nih.gov/10401676


www.aging-us.com 2948 AGING 

29. Gennari A, Sormani M, Puntoni M, Martini V, Amaro A, 
Bruzzi P, Pfeffer U. Identification of a Prognostic 
Signature Based on the Expression of Genes Related to 
the Insulin Pathway in Early Breast Cancer. Breast Care 
(Basel). 2021; 16:299–306. 

 https://doi.org/10.1159/000509207 PMID:34248472 

30. Liu J, Sun G, Pan S, Qin M, Ouyang R, Li Z, Huang J. The 
Cancer Genome Atlas (TCGA) based m6A methylation-
related genes predict prognosis in hepatocellular 
carcinoma. Bioengineered. 2020; 11:759–68. 

 https://doi.org/10.1080/21655979.2020.1787764 
PMID:32631107 

31. Gao G, Fang M, Xu P, Chen B. Identification of three 
immune molecular subtypes associated with immune 
profiles, immune checkpoints, and clinical outcome in 
multiple myeloma. Cancer Med. 2021; 10:7395–403. 

 https://doi.org/10.1002/cam4.4221 PMID:34418312 

32. Liu X, Li J, Wang Q, Bai L, Xing J, Hu X, Li S, Li Q. Analysis 
on heterogeneity of hepatocellular carcinoma immune 
cells and a molecular risk model by integration of 
scRNA-seq and bulk RNA-seq. Front Immunol. 2022; 
13:1012303. 

 https://doi.org/10.3389/fimmu.2022.1012303 
PMID:36311759 

33. Han H, Chen Y, Yang H, Cheng W, Zhang S, Liu Y, Liu Q, 
Liu D, Yang G, Li K. Identification and Verification of 
Diagnostic Biomarkers for Glomerular Injury in Diabetic 
Nephropathy Based on Machine Learning Algorithms. 
Front Endocrinol (Lausanne). 2022; 13:876960. 

 https://doi.org/10.3389/fendo.2022.876960 
PMID:35663304 

34. Ren Z, He Y, Yang Q, Guo J, Huang H, Li B, Wang D, 
Yang Z, Tian X. A Comprehensive Analysis of the 
Glutathione Peroxidase 8 (GPX8) in Human Cancer. 
Front Oncol. 2022; 12:812811. 

 https://doi.org/10.3389/fonc.2022.812811 
PMID:35402257 

35.  Spearman’s rank correlation coefficient. BMJ. 2018; 
362:k4131. 

 https://doi.org/10.1136/bmj.k4131 PMID:30270200 

36. Wang K, Guan C, Shang X, Ying X, Mei S, Zhu H, Xia L, 
Chai Z. A bioinformatic analysis: the overexpression 
and clinical significance of FCGBP in ovarian cancer. 
Aging (Albany NY). 2021; 13:7416–29. 

 https://doi.org/10.18632/aging.202601 
PMID:33686968 

37. Al-Najjar D, Al-Najjar H, Al-Rousan N. CoVID-19 
symptoms analysis of deceased and recovered cases 
using Chi-square test. Eur Rev Med Pharmacol Sci. 
2020; 24:11428–31. 

 https://doi.org/10.26355/eurrev_202011_23636 
PMID:33215465 

38. Liu TT, Li R, Huo C, Li JP, Yao J, Ji XL, Qu YQ. 
Identification of CDK2-Related Immune Forecast Model 
and ceRNA in Lung Adenocarcinoma, a Pan-Cancer 
Analysis. Front Cell Dev Biol. 2021; 9:682002. 

 https://doi.org/10.3389/fcell.2021.682002 
PMID:34409029 

39. Guo C, Gao YY, Ju QQ, Zhang CX, Gong M, Li ZL. The 
landscape of gene co-expression modules correlating 
with prognostic genetic abnormalities in AML. J Transl 
Med. 2021; 19:228. 

 https://doi.org/10.1186/s12967-021-02914-2 
PMID:34051812 

40. Mohr F, van Rijn JNV. Fast and Informative  
Model Selection Using Learning Curve Cross-
Validation. IEEE Trans Pattern Anal Mach Intell. 
2023; 45:9669–80. 

 https://doi.org/10.1109/TPAMI.2023.3251957 
PMID:37028368 

41. Li J, Qiao H, Wu F, Sun S, Feng C, Li C, Yan W, Lv W, Wu 
H, Liu M, Chen X, Liu X, Wang W, et al. A novel hypoxia- 
and lactate metabolism-related signature to predict 
prognosis and immunotherapy responses for breast 
cancer by integrating machine learning and 
bioinformatic analyses. Front Immunol. 2022; 
13:998140. 

 https://doi.org/10.3389/fimmu.2022.998140 
PMID:36275774 

42. D’Arrigo G, Leonardis D, Abd ElHafeez S, Fusaro M, 
Tripepi G, Roumeliotis S. Methods to Analyse Time-to-
Event Data: The Kaplan-Meier Survival Curve. Oxid 
Med Cell Longev. 2021; 2021:2290120. 

 https://doi.org/10.1155/2021/2290120 
PMID:34594473 

43. Wang QW, Lin WW, Zhu YJ. Comprehensive analysis of 
a TNF family based-signature in diffuse gliomas with 
regard to prognosis and immune significance. Cell 
Commun Signal. 2022; 20:6. 

 https://doi.org/10.1186/s12964-021-00814-y 
PMID:35000592 

44. Sun D, Zhu Y, Zhao H, Bian T, Li T, Liu K, Feng L, Li H, 
Hou H. Loss of ARID1A expression promotes lung 
adenocarcinoma metastasis and predicts a poor 
prognosis. Cell Oncol (Dordr). 2021; 44:1019–34. 

 https://doi.org/10.1007/s13402-021-00616-x 
PMID:34109546 

45. Ruan Z, Sun C, Lang Y, Gao F, Guo R, Xu Q, Yu L, Wu S, 
Lei T, Liu Y, Zhang M, Li H, Tang Y, et al. Development 
and Validation of a Nomogram for Predicting 
Generalization in Patients With Ocular Myasthenia 
Gravis. Front Immunol. 2022; 13:895007. 

 https://doi.org/10.3389/fimmu.2022.895007 
PMID:35874731 

https://doi.org/10.1159/000509207
https://pubmed.ncbi.nlm.nih.gov/34248472
https://doi.org/10.1080/21655979.2020.1787764
https://pubmed.ncbi.nlm.nih.gov/32631107/
https://doi.org/10.1002/cam4.4221
https://pubmed.ncbi.nlm.nih.gov/34418312
https://doi.org/10.3389/fimmu.2022.1012303
https://pubmed.ncbi.nlm.nih.gov/36311759
https://doi.org/10.3389/fendo.2022.876960
https://pubmed.ncbi.nlm.nih.gov/35663304
https://doi.org/10.3389/fonc.2022.812811
https://pubmed.ncbi.nlm.nih.gov/35402257
https://doi.org/10.1136/bmj.k4131
https://pubmed.ncbi.nlm.nih.gov/30270200
https://doi.org/10.18632/aging.202601
https://pubmed.ncbi.nlm.nih.gov/33686968
https://doi.org/10.26355/eurrev_202011_23636
https://pubmed.ncbi.nlm.nih.gov/33215465
https://doi.org/10.3389/fcell.2021.682002
https://pubmed.ncbi.nlm.nih.gov/34409029
https://doi.org/10.1186/s12967-021-02914-2
https://pubmed.ncbi.nlm.nih.gov/34051812
https://doi.org/10.1109/TPAMI.2023.3251957
https://pubmed.ncbi.nlm.nih.gov/37028368
https://doi.org/10.3389/fimmu.2022.998140
https://pubmed.ncbi.nlm.nih.gov/36275774
https://doi.org/10.1155/2021/2290120
https://pubmed.ncbi.nlm.nih.gov/34594473
https://doi.org/10.1186/s12964-021-00814-y
https://pubmed.ncbi.nlm.nih.gov/35000592
https://doi.org/10.1007/s13402-021-00616-x
https://pubmed.ncbi.nlm.nih.gov/34109546
https://doi.org/10.3389/fimmu.2022.895007
https://pubmed.ncbi.nlm.nih.gov/35874731


www.aging-us.com 2949 AGING 

46. Wu Q, Miao X, Zhang J, Xiang L, Li X, Bao X, Du S, 
Wang M, Miao S, Fan Y, Wang W, Xu X, Shen X, et al. 
Astrocytic YAP protects the optic nerve and retina in 
an experimental autoimmune encephalomyelitis 
model through TGF-β signaling. Theranostics. 2021; 
11:8480–99. 

 https://doi.org/10.7150/thno.60031 PMID:34373754 

47. Wu XG, Chen JJ, Zhou HL, Wu Y, Lin F, Shi J, Wu HZ, 
Xiao HQ, Wang W. Identification and Validation of the 
Signatures of Infiltrating Immune Cells in the Eutopic 
Endometrium Endometria of Women With 
Endometriosis. Front Immunol. 2021; 12:671201. 

 https://doi.org/10.3389/fimmu.2021.671201 
PMID:34539624 

48. Wolff A, Perera-Bel J, Schildhaus HU, Homayounfar K, 
Schatlo B, Bleckmann A, Beißbarth T. Using RNA-Seq 
Data for the Detection of a Panel of Clinically Relevant 
Mutations. Stud Health Technol Inform. 2018; 
253:217–221. 

 https://doi.org/10.3233/978-1-61499-896-9-217 
 PMID:30147077 

49. Overgaard D, Schrader AM, Lisby KH, King C, 
Christensen RF, Jensen HF, Moons P. Explanatory value 
of the Ability Index as assessed by cardiologists and 
patients with congenital heart disease. Congenit Heart 
Dis. 2012; 7:559–64. 

 https://doi.org/10.1111/j.1747-0803.2012.00675.x 
PMID:22613047 

50. Zhong W, Wang X, Wang Y, Sun G, Zhang J, Li Z. Obesity 
and endocrine-related cancer: The important role of 
IGF-1. Front Endocrinol (Lausanne). 2023; 14:1093257. 

 https://doi.org/10.3389/fendo.2023.1093257 
PMID:36755926 

51. Lawnicka H, Motylewska E, Borkowska M, Kuzdak K, 
Siejka A, Swietoslawski J, Stepien H, Stepien T. Elevated 
serum concentrations of IGF-1 and IGF-1R in patients 
with thyroid cancers. Biomed Pap Med Fac Univ 
Palacky Olomouc Czech Repub. 2020; 164:77–83. 

 https://doi.org/10.5507/bp.2019.018 PMID:31132076 

52. Wysocki PT, Czubak K, Marusiak AA, Kolanowska M, 
Nowis D. lncRNA DIRC3 regulates invasiveness and 
insulin-like growth factor signaling in thyroid cancer 
cells. Endocr Relat Cancer. 2023; 30:e230058. 

 https://doi.org/10.1530/ERC-23-0058 PMID:37130273 

53. Cao J, Yee D. Disrupting Insulin and IGF Receptor 
Function in Cancer. Int J Mol Sci. 2021; 22:555. 

 https://doi.org/10.3390/ijms22020555 
PMID:33429867 

54. Lv J, Liu C, Chen FK, Feng ZP, Jia L, Liu PJ, Yang ZX,  
Hou F, Deng ZY. M2-like tumour-associated 
macrophage-secreted IGF promotes thyroid cancer 
stemness and metastasis by activating the 

PI3K/AKT/mTOR pathway. Mol Med Rep. 2021; 
24:604. 

 https://doi.org/10.3892/mmr.2021.12249 
PMID:34184083 

55. Cai Q, Dozmorov M, Oh Y. IGFBP-3/IGFBP-3 Receptor 
System as an Anti-Tumor and Anti-Metastatic Signaling 
in Cancer. Cells. 2020; 9:1261. 

 https://doi.org/10.3390/cells9051261  
PMID:32443727 

56. Geng X, Sun Y, Fu J, Cao L, Li Y. MicroRNA-17-5p 
inhibits thyroid cancer progression by suppressing 
Early growth response 2 (EGR2). Bioengineered. 2021; 
12:2713–22. 

 https://doi.org/10.1080/21655979.2021.1935137 
PMID:34130587 

57. Zang CS, Huang HT, Qiu J, Sun J, Ge RF, Jiang LW. MiR-
224-5p targets EGR2 to promote the development of 
papillary thyroid carcinoma. Eur Rev Med Pharmacol 
Sci. 2020; 24:4890–900. 

 https://doi.org/10.26355/eurrev_202005_21178 
PMID:32432752 

58. Yang L, Li L, Chang P, Wei M, Chen J, Zhu C, Jia J. miR-
25 Regulates Gastric Cancer Cell Growth and Apoptosis 
by Targeting EGR2. Front Genet. 2021; 12:690196. 

 https://doi.org/10.3389/fgene.2021.690196 
PMID:34764975 

59. Liu H, Tang T. Pan-cancer genetic analysis of 
cuproptosis and copper metabolism-related gene set. 
Front Oncol. 2022; 12:952290. 

 https://doi.org/10.3389/fonc.2022.952290 
PMID:36276096 

60. Lukanović D, Herzog M, Kobal B, Černe K. The 
contribution of copper efflux transporters ATP7A and 
ATP7B to chemoresistance and personalized medicine 
in ovarian cancer. Biomed Pharmacother. 2020; 
129:110401. 

 https://doi.org/10.1016/j.biopha.2020.110401 
PMID:32570116 

61. Yang M, Li D, Jiang Z, Li C, Ji S, Sun J, Chang Y,  
Ruan S, Wang Z, Liang R, Dai X, Li B, Zhao H.  
TGF-β-Induced FLRT3 Attenuation Is Essential for 
Cancer-Associated Fibroblast-Mediated Epithelial-
Mesenchymal Transition in Colorectal Cancer. Mol 
Cancer Res. 2022; 20:1247–59. 

 https://doi.org/10.1158/1541-7786.MCR-21-0924 
PMID:35560224 

62. Wang H, Zhu JK, Cheng L, Mao G, Chen H, Wu X, Hong 
H, Wang C, Lin P, Chen J, Maboh RN, Chen H. Dominant 
role of CACNA1D exon mutations for blood pressure 
regulation. J Hypertens. 2022; 40:819–34. 

 https://doi.org/10.1097/HJH.0000000000003085 
PMID:35142739 

https://doi.org/10.7150/thno.60031
https://pubmed.ncbi.nlm.nih.gov/34373754
https://doi.org/10.3389/fimmu.2021.671201
https://pubmed.ncbi.nlm.nih.gov/34539624
https://doi.org/10.3233/978-1-61499-896-9-217
https://pubmed.ncbi.nlm.nih.gov/30147077
https://doi.org/10.1111/j.1747-0803.2012.00675.x
https://pubmed.ncbi.nlm.nih.gov/22613047
https://doi.org/10.3389/fendo.2023.1093257
https://pubmed.ncbi.nlm.nih.gov/36755926
https://doi.org/10.5507/bp.2019.018
https://pubmed.ncbi.nlm.nih.gov/31132076
https://doi.org/10.1530/ERC-23-0058
https://pubmed.ncbi.nlm.nih.gov/37130273
https://doi.org/10.3390/ijms22020555
https://pubmed.ncbi.nlm.nih.gov/33429867
https://doi.org/10.3892/mmr.2021.12249
https://pubmed.ncbi.nlm.nih.gov/34184083
https://doi.org/10.3390/cells9051261
https://pubmed.ncbi.nlm.nih.gov/32443727
https://doi.org/10.1080/21655979.2021.1935137
https://pubmed.ncbi.nlm.nih.gov/34130587
https://doi.org/10.26355/eurrev_202005_21178
https://pubmed.ncbi.nlm.nih.gov/32432752
https://doi.org/10.3389/fgene.2021.690196
https://pubmed.ncbi.nlm.nih.gov/34764975
https://doi.org/10.3389/fonc.2022.952290
https://pubmed.ncbi.nlm.nih.gov/36276096
https://doi.org/10.1016/j.biopha.2020.110401
https://pubmed.ncbi.nlm.nih.gov/32570116
https://doi.org/10.1158/1541-7786.MCR-21-0924
https://pubmed.ncbi.nlm.nih.gov/35560224
https://doi.org/10.1097/HJH.0000000000003085
https://pubmed.ncbi.nlm.nih.gov/35142739


www.aging-us.com 2950 AGING 

63. Xu W, Zheng J, Wang X, Zhou B, Chen H, Li G, Yan F. 
tRF-Val-CAC-016 modulates the transduction of 
CACNA1d-mediated MAPK signaling pathways to 
suppress the proliferation of gastric carcinoma. Cell 
Commun Signal. 2022; 20:68. 

 https://doi.org/10.1186/s12964-022-00857-9 
PMID:35590368 

64. Islinger M, Costello JL, Kors S, Soupene E, Levine TP, 
Kuypers FA, Schrader M. The diversity of ACBD 
proteins - From lipid binding to protein modulators and 
organelle tethers. Biochim Biophys Acta Mol Cell Res. 
2020; 1867:118675. 

 https://doi.org/10.1016/j.bbamcr.2020.118675 
PMID:32044385 

65. Feng L, Si J, Yue J, Zhao M, Qi W, Zhu S, Mo J, Wang L, 
Lan G, Liang J. The Landscape of Accessible Chromatin 
and Developmental Transcriptome Maps Reveal a 
Genetic Mechanism of Skeletal Muscle Development in 
Pigs. Int J Mol Sci. 2023; 24:6413. 

 https://doi.org/10.3390/ijms24076413 
PMID:37047386 

66. Houghton-Gisby J, Kerslake R, Karteris E, Mokbel K, 
Harvey AJ. ACBD3 Bioinformatic Analysis and Protein 
Expression in Breast Cancer Cells. Int J Mol Sci. 2022; 
23:8881. 

 https://doi.org/10.3390/ijms23168881 PMID:36012147 

67. Yu ZL, Zhu ZM. N6-Methyladenosine Related Long Non-
Coding RNAs and Immune Cell Infiltration in the Tumor 
Microenvironment of Gastric Cancer. Biol Proced 
Online. 2021; 23:15. 

 https://doi.org/10.1186/s12575-021-00152-w 
PMID:34332535 

68. Chen X, Zhang D, Jiang F, Shen Y, Li X, Hu X, Wei P, 
Shen X. Prognostic Prediction Using a Stemness Index-
Related Signature in a Cohort of Gastric Cancer. Front 
Mol Biosci. 2020; 7:570702. 

 https://doi.org/10.3389/fmolb.2020.570702 
PMID:33134315 

69. Li N, Li Y, Zheng P, Zhan X. Cancer Stemness-Based 
Prognostic Immune-Related Gene Signatures in Lung 
Adenocarcinoma and Lung Squamous Cell Carcinoma. 
Front Endocrinol (Lausanne). 2021; 12:755805. 

 https://doi.org/10.3389/fendo.2021.755805 
PMID:34745015 

70. Howard TP, Vazquez F, Tsherniak A, Hong AL, Rinne M, 
Aguirre AJ, Boehm JS, Hahn WC. Functional Genomic 
Characterization of Cancer Genomes. Cold Spring Harb 
Symp Quant Biol. 2016; 81:237–46. 

 https://doi.org/10.1101/sqb.2016.81.031070 
PMID:27815544 

71. Starostik P. Clinical mutation assay of tumors: new 
developments. Anticancer Drugs. 2017; 28:1–10. 

 https://doi.org/10.1097/CAD.0000000000000427 
PMID:27575332 

72. Behling F, Schittenhelm J. Oncogenic BRAF Alterations 
and Their Role in Brain Tumors. Cancers (Basel). 2019; 
11:794. 

 https://doi.org/10.3390/cancers11060794 
PMID:31181803 

73. Grothey A, Fakih M, Tabernero J. Management of 
BRAF-mutant metastatic colorectal cancer: a review of 
treatment options and evidence-based guidelines. Ann 
Oncol. 2021; 32:959–67. 

 https://doi.org/10.1016/j.annonc.2021.03.206 
PMID:33836264 

74. Tabbò F, Pisano C, Mazieres J, Mezquita L, Nadal E, 
Planchard D, Pradines A, Santamaria D, Swalduz A, 
Ambrogio C, Novello S, Ortiz-Cuaran S, and BOLERO 
Consortium. How far we have come targeting BRAF-
mutant non-small cell lung cancer (NSCLC). Cancer 
Treat Rev. 2022; 103:102335. 

 https://doi.org/10.1016/j.ctrv.2021.102335 
PMID:35033867 

75. Malapelle U, Rossi G, Pisapia P, Barberis M, Buttitta F, 
Castiglione F, Cecere FL, Grimaldi AM, Iaccarino A, 
Marchetti A, Massi D, Medicina D, Mele F, et al. BRAF 
as a positive predictive biomarker: Focus on lung 
cancer and melanoma patients. Crit Rev Oncol 
Hematol. 2020; 156:103118. 

 https://doi.org/10.1016/j.critrevonc.2020.103118 
PMID:33038627 

76. Padgett LE, Marcovecchio PM, Olingy CE, Araujo DJ, 
Steel K, Dinh HQ, Alimadadi A, Zhu YP, Meyer MA, 
Kiosses WB, Thomas GD, Hedrick CC. Nonclassical 
monocytes potentiate anti-tumoral CD8+ T cell 
responses in the lungs. Front Immunol. 2023; 
14:1101497. 

 https://doi.org/10.3389/fimmu.2023.1101497 
PMID:37426658 

77. Wynn TA, Vannella KM. Macrophages in Tissue 
Repair, Regeneration, and Fibrosis. Immunity. 2016; 
44:450–62. 

 https://doi.org/10.1016/j.immuni.2016.02.015 
PMID:26982353 

78. Christofides A, Strauss L, Yeo A, Cao C, Charest A, 
Boussiotis VA. The complex role of tumor-infiltrating 
macrophages. Nat Immunol. 2022; 23:1148–56. 

 https://doi.org/10.1038/s41590-022-01267-2 
PMID:35879449 

79. Mantovani A, Allavena P, Marchesi F, Garlanda C. 
Macrophages as tools and targets in cancer therapy. 
Nat Rev Drug Discov. 2022; 21:799–820. 

 https://doi.org/10.1038/s41573-022-00520-5 
PMID:35974096 

https://doi.org/10.1186/s12964-022-00857-9
https://pubmed.ncbi.nlm.nih.gov/35590368
https://doi.org/10.1016/j.bbamcr.2020.118675
https://pubmed.ncbi.nlm.nih.gov/32044385
https://doi.org/10.3390/ijms24076413
https://pubmed.ncbi.nlm.nih.gov/37047386
https://doi.org/10.3390/ijms23168881
https://pubmed.ncbi.nlm.nih.gov/36012147
https://doi.org/10.1186/s12575-021-00152-w
https://pubmed.ncbi.nlm.nih.gov/34332535
https://doi.org/10.3389/fmolb.2020.570702
https://pubmed.ncbi.nlm.nih.gov/33134315
https://doi.org/10.3389/fendo.2021.755805
https://pubmed.ncbi.nlm.nih.gov/34745015
https://doi.org/10.1101/sqb.2016.81.031070
https://pubmed.ncbi.nlm.nih.gov/27815544
https://doi.org/10.1097/CAD.0000000000000427
https://pubmed.ncbi.nlm.nih.gov/27575332
https://doi.org/10.3390/cancers11060794
https://pubmed.ncbi.nlm.nih.gov/31181803
https://doi.org/10.1016/j.annonc.2021.03.206
https://pubmed.ncbi.nlm.nih.gov/33836264
https://doi.org/10.1016/j.ctrv.2021.102335
https://pubmed.ncbi.nlm.nih.gov/35033867
https://doi.org/10.1016/j.critrevonc.2020.103118
https://pubmed.ncbi.nlm.nih.gov/33038627
https://doi.org/10.3389/fimmu.2023.1101497
https://pubmed.ncbi.nlm.nih.gov/37426658/
https://doi.org/10.1016/j.immuni.2016.02.015
https://pubmed.ncbi.nlm.nih.gov/26982353
https://doi.org/10.1038/s41590-022-01267-2
https://pubmed.ncbi.nlm.nih.gov/35879449
https://doi.org/10.1038/s41573-022-00520-5
https://pubmed.ncbi.nlm.nih.gov/35974096


www.aging-us.com 2951 AGING 

80. Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, Zhou Z, Shu G, 
Yin G. Wnt/β-catenin signalling: function, biological 
mechanisms, and therapeutic opportunities. Signal 
Transduct Target Ther. 2022; 7:3. 

 https://doi.org/10.1038/s41392-021-00762-6 
PMID:34980884 

81. Nusse R, Clevers H. Wnt/β-Catenin Signaling, Disease, 
and Emerging Therapeutic Modalities. Cell. 2017; 
169:985–99. 

 https://doi.org/10.1016/j.cell.2017.05.016 
PMID:28575679 

82. Zhang Y, Liu JL, Wang J. KRAS gene silencing inhibits the 
activation of PI3K-Akt-mTOR signaling pathway to 
regulate breast cancer cell epithelial-mesenchymal 
transition, proliferation and apoptosis. Eur Rev Med 
Pharmacol Sci. 2020; 24:3085–96. 

 https://doi.org/10.26355/eurrev_202003_20673 
PMID:32271426 

83. Ansari D, Ohlsson H, Althini C, Bauden M, Zhou Q, Hu 
D, Andersson R. The Hippo Signaling Pathway in 
Pancreatic Cancer. Anticancer Res. 2019; 39:3317–21. 

 https://doi.org/10.21873/anticanres.13474 
PMID:31262852 

84. Di Segni M, Virdia I, Verdina A, Amoreo CA, Baldari S, 
Toietta G, Diodoro MG, Mottolese M, Sperduti I, 
Moretti F, Buglioni S, Soddu S, Di Rocco G. HIPK2 
Cooperates with KRAS Signaling and Associates with 
Colorectal Cancer Progression. Mol Cancer Res. 2022; 
20:686–98. 

 https://doi.org/10.1158/1541-7786.MCR-21-0628 
PMID:35082165 

85. Ben Dhaou C, Mandi K, Frye M, Acheampong A, Radi A, 
De Becker B, Antoine M, Baeyens N, Wittamer V, 
Parmentier M. Chemerin regulates normal 
angiogenesis and hypoxia-driven neovascularization. 
Angiogenesis. 2022; 25:159–79. 

 https://doi.org/10.1007/s10456-021-09818-1 
PMID:34524600 

86. Engeland K. Cell cycle regulation: p53-p21-RB signaling. 
Cell Death Differ. 2022; 29:946–60. 

 https://doi.org/10.1038/s41418-022-00988-z 
PMID:35361964 

87. Hirasaki Y, Okabe A, Fukuyo M, Rahmutulla B, Mano Y, 
Seki M, Hoshii T, Namiki T, Kaneda A. Cinobufagin 
inhibits proliferation of acute myeloid leukaemia cells 
by repressing c-Myc pathway-associated genes. Chem 
Biol Interact. 2022; 360:109936. 

 https://doi.org/10.1016/j.cbi.2022.109936 
PMID:35447139 

88. Ganapathy-Kanniappan S, Geschwind JF. Tumor 
glycolysis as a target for cancer therapy: progress and 
prospects. Mol Cancer. 2013; 12:152. 

 https://doi.org/10.1186/1476-4598-12-152 
PMID:24298908 

89. Condon KJ, Sabatini DM. Nutrient regulation of 
mTORC1 at a glance. J Cell Sci. 2019; 132:jcs222570. 

 https://doi.org/10.1242/jcs.222570  
PMID:31722960 

  

https://doi.org/10.1038/s41392-021-00762-6
https://pubmed.ncbi.nlm.nih.gov/34980884
https://doi.org/10.1016/j.cell.2017.05.016
https://pubmed.ncbi.nlm.nih.gov/28575679
https://doi.org/10.26355/eurrev_202003_20673
https://pubmed.ncbi.nlm.nih.gov/32271426
https://doi.org/10.21873/anticanres.13474
https://pubmed.ncbi.nlm.nih.gov/31262852
https://doi.org/10.1158/1541-7786.MCR-21-0628
https://pubmed.ncbi.nlm.nih.gov/35082165
https://doi.org/10.1007/s10456-021-09818-1
https://pubmed.ncbi.nlm.nih.gov/34524600
https://doi.org/10.1038/s41418-022-00988-z
https://pubmed.ncbi.nlm.nih.gov/35361964
https://doi.org/10.1016/j.cbi.2022.109936
https://pubmed.ncbi.nlm.nih.gov/35447139
https://doi.org/10.1186/1476-4598-12-152
https://pubmed.ncbi.nlm.nih.gov/24298908
https://doi.org/10.1242/jcs.222570
https://pubmed.ncbi.nlm.nih.gov/31722960


www.aging-us.com 2952 AGING 

SUPPLEMENTARY MATERIALS 

 

Supplementary Table 

 

 

 

 

Supplementary Table 1. 
The list of 40 IGF-related 
genes is showed in. 

CSNK2A1 

ELK1 

FOS 

GRB2 

HRAS 

IGF1 

IGF1R 

IRS1 

JUN 

MAP2K1 

MAPK3 

MAPK8 

PIK3CA 

PIK3CG 

PIK3R1 

PTPN11 

RAF1 

RASA1 

SHC1 

SOS1 

SRF 

AKT1 

BAD 

BCAR1 

CRK 

CRKL 

GRB10 

IRS2 

NCK2 

PDPK1 

PRKCD 

PRKCZ 

PRKD1 

PTK2 

PTPN1 

PXN 

RACK1 

RPS6KB1 

YWHAE 

YWHAZ 

 

 


