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ABSTRACT 
 

Background: Disulfidoptosis is an unconventional form of programmed cell death that distinguishes itself from 
well-established cell death pathways like ferroptosis, pyroptosis, and necroptosis. 
Methods: Initially, we conducted a single-cell analysis of the GSE131907 dataset from the GEO database to 
identify disulfidoptosis-related genes (DRGs). We utilized differentially expressed DRGs to classify TCGA samples 
with an unsupervised clustering algorithm. Prognostic models were built using Cox regression and LASSO 
regression. 
Results: Two DRG-related clusters (C1 and C2) were identified based on the DEGs from single-cell sequencing data 
analysis. In comparison to C1, C2 exhibited significantly worse overall prognosis, along with lower expression 
levels of immune checkpoint genes (ICGs) and chemoradiotherapy sensitivity-related genes (CRSGs). Furthermore, 
C2 displayed a notable enrichment in metabolic pathways and cell cycle-associated mechanisms. C2 was also 
linked to the development and spread of tumors. We created a prognostic risk model known as the DRG score, 
which relies on the expression levels of five DRGs. Patients were categorized into high-risk and low-risk groups 
depending on their DRG score, with the former group being linked to a poorer prognosis and higher TMB score. 
Moreover, the DRG score displayed significant correlations with CRSGs, ICGs, the tumor immune dysfunction and 
exclusion (TIDE) score, and chemotherapeutic sensitivity. Subsequently, we identified a significant correlation 
between the DRG score and monocyte macrophages. Additionally, crucial DRGs were additionally validated using 
qRT-PCR. 
Conclusions: Our new DRG score can predict the immune landscape and prognosis of LUAD, serving as a 
reference for immunotherapy and chemotherapy. 
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INTRODUCTION 
 

Lung cancer is a widespread malignant disease  

globally, being the primary cause of cancer-related 

fatalities. This is mainly attributed to its aggressive 

growth and tendency to spread to distant sites [1].  

At present, lung adenocarcinoma (LUAD) is the most 

common histological subtype among lung malignancies. 

Despite recent advances in comprehensive treatments, 

the challenge of metastasis still significantly affects  

the achievement of favorable clinical outcomes [2]. 

Numerous therapeutic modalities, particularly immuno-

therapy, have recently emerged as essential components 

of treatment protocols, demonstrating strong protective 

efficacy for individuals with LUAD [3]. Despite patients 

having comparable clinicopathological characteristics, it 

is evident that there are significant variations in drug 

responses. This indicates that traditional classifications, 

such as the TNM staging system, are insufficient for 

predicting therapeutic outcomes [4, 5]. To address this 

limitation, it is crucial to identify innovative molecular 

characteristics capable of efficiently categorizing LUAD 

patients into distinct subgroups with a greater likelihood 

of responding to targeted therapeutic interventions. 

 

The etiology and progression of LUAD are closely tied 

to the abnormal regulation of various cellular death 

pathways, including apoptosis, necrosis, autophagy, and 

ferroptosis, among others [6]. Recently, a research team 

has discovered and identified a new form of cell death 

called disulfidptosis, which provides new opportunities 

for cancer treatment. Disulfidptosis is a type of cellular 

death that occurs due to an excessive accumulation of 

disulfide linkages within the cellular environment. This 

phenomenon leads to the destabilization and eventual 

breakdown of the actin filament network. Disulfidptosis 

primarily relies on the expression of the SLC7A11 

protein, which is involved in both glutathione synthesis 

and transport, thus influencing the cell’s redox balance. 

Moreover, this study highlights that using inhibitors of 

glucose transporters induces disulfidptosis in cancer cells 

with high SLC7A11 expression, effectively suppressing 

the growth of SLC7A11-overexpressing tumors [7]. 

Recognizing disulfidptosis as a distinctive cell death 

mechanism offers a vital foundation for understanding 

and addressing this process in cancer therapy. Given the 

complex interplay, disulfidptosis emerges as a promising 

and distinctive molecular hallmark, requiring thorough 

investigation in future research efforts. Nonetheless, it 

remains uncertain whether disulfidptosis plays a pivotal 

role in LUAD, and additional research is needed to 

investigate this aspect. 

 

We conducted a thorough bioinformatics analysis  

of disulfidptosis-related genes (DRGs) in LUAD, 

utilizing publicly accessible datasets. We evaluated  

their expression patterns, tumor microenvironment  

(TME) infiltration, prognostic significance, and potential 

molecular mechanisms in LUAD. Our findings provide 

new insights into understanding the molecular basis of 

disulfidptosis in LUAD and have significant implications 

for its diagnosis and therapeutic strategies. 

 

MATERIALS AND METHODS 
 

Single cell sequencing data download and processing 

 

We downloaded the LUAD single-cell dataset 

GSE131907 from the GEO database, which consists  

of 11 samples. Our subsequent procedure involved 

performing quality control of the data. Specifically,  

we retained cells that showed a low proportion of 

mitochondrial genes (less than 10%), as well as those 

with an excessive total number of genes (more than 

200), and genes exhibiting expression levels between 

200 and 7000, and were expressed in fewer than  

three cells. Eleven samples underwent SCT correction 

for integration. Subsequently, we utilized the tSNE 

technique to reduce data dimension by setting the 

“DIMS” parameter to 20. Additionally, we set the 

resolution to 1.0 using the KNN clustering algorithm  

for cell clustering. Afterward, a range of cell surface 

markers was used for cellular annotations. Ultimately, 

by importing DRGs using the “PercentageFeatureSet” 

function, we can determine the percentage of DRGs  

in each cell. 

 

Bulk RNA-seq data collection 

 

The bulk tumor transcriptomic data from the  

TCGA and the clinical records of patients with  

LUAD were obtained from the UCSC Xena platform 

(https://xenabrowser.net/). These datasets were used  

to identify genes associated with patient survival and  

to create prognostic signatures. Four distinct microarray 

datasets, namely GSE30219, GSE50081, GSE26939, 

and GSE72094, were obtained from the GEO database 

for external validation in this study. 

 

Unsupervised clustering for DRG 

 

In previous research, we carefully extracted a total  

of ten DRGs and presented the gene details in 

Supplementary Table 1. In our study, we conducted  

a thorough unsupervised clustering analysis based  

on consensus, using the “ConsensusClusterPlus” R 

package. This analysis was conducted using a carefully 

defined set of parameters, including maxK = maxK, 

reps = 50, pItem = 0.8, pFeature = 1, clusterAlg = “km”, 

distance = “Euclidean”, and seed = 123456. The main 

goal of this analysis was to efficiently categorize 

patients into specific DRG clusters, relying on the 

https://xenabrowser.net/
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evaluation of their DRG expression profiles. 

Furthermore, we conducted a principal component 

analysis (PCA) to effectively illustrate the categorization 

of the DRG clusters. Subsequently, we compared the 

overall survival (OS) probabilities of the DRG clusters 

using the R package “survival”. 

 

Correlations of DRG clusters with chemoradiotherapy 

sensitivity–related genes (CRSGs), immune checkpoint 

genes (ICGs) and tumor microenvironment (TME) 

 

After retrieving CRSGs and ICGs, we analyzed their 

differential expression in DRG clusters. We used the R 

package “ESTIMATE” to calculate TME scores, which 

include stromal, immune, and estimated scores based on 

gene expression profiles. 

 

Gene set variation analysis (GSVA) and gene set 

enrichment analysis (GSEA) 

 

To investigate potential differences in biological 

functions among DRG clusters, we used the R package 

“GSVA” to conduct GSVA analysis with the 

“c2.cp.kegg.v7.5.symbols” and “c5.go.bp.v7.5.symbols” 

gene sets. To visualize the results, we used the R 

package “pheatmap”. We conducted GSEA using the 

“clusterProfiler” R package in combination with the 

hallmark gene set “h.all.v7.2.symbols” obtained from 

MSigDB. 

 

Identification of differentially expressed genes (DEGs) 

between DRG clusters and functional annotation 

 

We used the R package “limma” to identify the DEGs 

within the distinct DRG clusters. The selection criteria 

for the identification of DEGs were defined as having 

an absolute |log2 (FoldChange)| exceeding 0.5, coupled 

with a stringent adjusted p-value threshold of less than 

0.05. Additionally, to uncover the underlying biological 

mechanisms linked to these DEGs in DRG clusters,  

we conducted enrichment analyses using the Gene 

Ontology (GO) and Kyoto Encyclopedia of Genes  

and Genomes (KEGG) databases, and utilized the 

“clusterProfiler” package. 

 

Construction and evaluation of the DRG prognostic 

model 

 

In the TCGA-LUAD cohort, patients were randomly 

allocated, ensuring an even distribution between the 

training and internal testing cohorts with a 1:1 ratio, 

facilitated using the “caret” R package. To reduce the 

complexity of the high-dimensional data associated with 
DEGs linked to OS, we utilized the Least Absolute 

Shrinkage and Selection Operator (LASSO) Cox 

regression technique, implemented using the “glmnet” 

R package. Specifically, we utilized the “cv.glmnet” 

function with predefined parameters, specifying the 

type.measure as “deviance” and the alignment as 

“lambda”. We conducted ten-fold cross-validation to 

reduce overfitting risk, while selecting the optimal 

penalty parameter (λ) based on a strict criterion  

of minimal value. We performed a multivariate  

Cox regression analysis to identify potential genes  

from the pool of candidate genes. We used the 

“My.stepwise.coxph” function with parameters, 

including sle = 0.15, sls = 0.15, and vif.threshold = 999. 

We then proceeded to construct the prognostic model 

for DRG within the training cohort. We formulated a 

prognostic scoring framework for individuals with 

LUAD, using the median value of the predicted DRG 

score as the threshold for classification. Subsequently, 

patient cohorts were categorized into two distinct risk 

groups: high-risk (DRG score > median) and low- 

risk (DRG score < median), based on this specific 

threshold. We utilized the R packages “survival” and 

“survminer” to conduct Kaplan-Meier analysis and 

compare survival probabilities between the two groups. 

Additionally, we employed the “timeROC” R package 

to conduct receiver operating characteristic (ROC) 

analysis for prognostic predictions over 1, 3, and 5 

years. Subsequently, we calculated the area under the 

curve (AUC) for these analyses. 

 

Independent prognostic analysis and establishment 

of a nomogram 

 

We collected clinical data for LUAD patients from  

the TCGA dataset. To personalize the predicted  

survival probability for LUAD patients, we developed  

a nomogram incorporating clinical characteristics  

and DRG score. We assessed the accuracy of the 

nomogram’s predictions through calibration plot 

analysis, and used decision curve analysis (DCA) to 

determine their clinical usefulness. 

 

Correlations of DRG score with tumor mutational 

burden (TMB), ICGs, and immunotherapy response 

 

Patient response to immunotherapy has been associated 

with both TMB and ICGs. To gain insights into the 

mutational landscape of LUAD patients across various 

DRG score groups, we employed the “maftools” R 

package to extract the Mutation Annotation Format (MAF) 

from the TCGA database. Additionally, TMB scores were 

calculated for the TCGA-LUAD cohort. Subsequently, we 

used Spearman’s rank correlation coefficient to assess  

the relationships between ICGs and the DRG score, as 

well as the five genes that make up the DRG prognostic 
model. To assess the effectiveness of immunotherapy  

for LUAD patients, we utilized the tumor immune 

dysfunction and exclusion (TIDE) algorithm, which can 
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be found at http://tide.dfci.harvard.edu/. The algorithm 

offers valuable insights that can aid doctors in identifying 

patients who are more likely to respond positively to 

immunotherapy [8]. 

 

Correlations of DRG score with CRSGs and 

chemotherapeutic sensitivity 

 

We obtained relevant CRSGs from previous research 

(Supplementary Table 2). Subsequently, we assessed 

the expression profiles of CRSGs in different risk 

categories and investigated the correlation between 

DRG scores and gene expression levels. To calculate 

drug sensitivity scores related to the standard treatment 

for LUAD, we used the “calcPhenotype” function 

provided by the “oncoPredict” R package. Lower drug 

sensitivity scores indicate increased responsiveness to 

the medication. 

 

Protein expression validation 

 

Immunohistochemistry (IHC) Validation: We used 

immunohistochemical staining images from the  

Human Protein Atlas (HPA) database, available at 

v19.3.proteinatlas.org [9], to confirm the expression  

of the critical genes under investigation in both  

LUAD and adjacent normal tissue specimens.  

The evaluation of IHC images in the HPA database 

involved a comprehensive assessment of staining 

characteristics, intensity, quantity, and location with 

regard to individual genes (detailed information  

about the statistical methods used for analyzing IHC 

images is available at the following web address: 

https://www.proteinatlas.org/about/assays+annotation#i

h_annotation). 

 

Quantitative real-time polymerase chain reaction 

 
The cell lines utilized in this study, namely LUAD cell 

lines (A549, H1299, and HCC827), in addition to the 

human normal bronchial epithelial cell line (BEAS2B), 

were generously sourced from the Cell Repository of 

the Chinese Academy of Sciences, situated in Shanghai, 

China. All cell lines were diligently maintained in 

RPMI-1640 medium, supplemented with 10% Fetal 

Bovine Serum (FBS), streptomycin (100 U/mL), and 

penicillin (100 U/mL), and incubated at a temperature 

of 37°C under a controlled atmosphere of 5% CO2. 

 
TRIzol® (1 mL) was employed to extract total RNA 

from the cell lines. Subsequently, complementary DNA 

(cDNA) synthesis was accomplished utilizing reverse 

transcriptase derived from avian medulloblastoma  

virus, in accordance with the guidelines provided by 

TAKARA. For the quantification of gene expression  

via qRT-PCR, SYBR Premix Ex Taq II, a product of 

Takara located in Shiga, Japan, was utilized. Data 

analysis was carried out utilizing the 2−ΔΔCT method. 

Detailed information regarding the primer sequences 

utilized for the qRT-PCR analysis is presented in 

Supplementary Table 3. 

 

Statistical analysis 
 

The statistical analyses in this study were performed 

utilizing R software, specifically version 4.0.1, as 

previously detailed. Significance was established at a 

threshold of p < 0.05, denoting statistical significance. 

 

RESULTS 
 

Single cell sequencing data analysis 

 

Initially, we conducted an in-depth analysis of the 

single-cell sequencing dataset GSE131907 specific  

to LUAD, with the objective of integrate disparate 

samples within this dataset. Our analysis, illustrated  

in Figure 1A, revealed that the integration of 11  

samples was effective, and no apparent batch effect  

was present, indicating its suitability for further  

analysis. We employed the KNN clustering algorithm  

to group all the cells into 28 distinct clusters (Figure 

1B). Later, we used the surface marker genes and their 

expression levels for various cell types to ultimately 

identify eight distinct cell types (Figure 1C). These  

cell types include B lymphocytes, endothelial cells, 

fibroblasts, NK cells, myeloid cells, T lymphocytes, 

MAST cells, and tumor cells, as shown in Figure 1D. 

Subsequently, we extracted tumor cells and utilized  

the “PercentageFeatureSet” function to input 10 DRGs, 

which enabled us to determine the percentage of DRGs 

present in each cell. The cellular populations were 

categorized into two distinct groups, namely cells 

exhibiting low and high levels of disulfidptosis, as 

determined by their respective median DRG proportions. 

Subsequently, these data were visualized through  

the generation of tSNE diagrams (Figure 1E). Further 

analysis identified 1,537 DEGs between the high-

disulfidptosis and low-disulfidptosis groups. 

 

Correlations of DRG clusters with CRSGs, ICGs 

and TME 

 

To investigate the expression profiles and potential 

biological characteristics of DRG in the context of 

LUAD, we conducted a consensus clustering analysis on 

the TCGA-LUAD cohort. We employed 1,537 DEGs 

derived from the analysis of single-cell sequencing  

data to categorize patients into two clusters, labeled 

as C1 (n = 295) and C2 (n = 208) (Figure 2A–2C). 

A distinct variation in distribution among DRG clusters 

was observed in the PCA plot (Figure 2D). Moreover, 

http://tide.dfci.harvard.edu/
https://www.proteinatlas.org/about/assays+annotation#ih_annotation
https://www.proteinatlas.org/about/assays+annotation#ih_annotation
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we performed a Kaplan-Meier analysis to compare 

clinical outcomes between the two DRG clusters 

(Figure 2E). The results demonstrated that the overall 

survival rate for C2 patients was significantly lower 

than for C1 patients (p < 0.0001). Subsequently, we 

investigated the interrelation between DRG clusters  

and ICGs, CRSGs, and the TME. Our analysis indicated 

that C1 had a higher expression of ICGs (Figure  

2F). Additionally, we detected various differentially 

expressed CRSGs between the two DRG clusters, such 

as ITGB1, SOD2, UBE2T, and ZBTB38 (Figure 2G). 

To explore the potential role of DRGs in LUAD 

immune infiltration, we employed the “ESTIMATE” 

and “ssGSEA” algorithms to compare TME scores 

between the two DRG clusters. Importantly, we noticed 

that patients in C1 had markedly higher TME scores 

than those in C2 (Figure 2H). 

 

Identification of differentially expressed genes 

between DRG clusters and functional annotation 

 

To further explore the functional annotation of  

C1 and C2, we conducted GSVA and GSEA  

analyses. The results of GSVA showed that C2  

had significant enrichment in cell cycle-associated 

processes, including DNA replication initiation, 

regulation of mitotic nuclear division, and organelle 

fission (Figure 3A). Furthermore, C2 exhibited a high 

abundance of pathways related to metabolism  

(e.g., glyoxylate and dicarboxylate metabolism,  

citrate cycle, TCA cycle), cell cycle regulation, and 

genomic stability, as shown in Figure 3B. The results 

from GSEA indicated that C2 is primarily associated 

with tumorigenesis and metastasis. This association 

includes hallmark features like epithelial-mesenchymal 

transition and angiogenesis, as depicted in Figure 3C–

3E. In summary, we believe that C2’s poor survival 

and immune status are linked to the regulation of 

pathways associated with cancer. 

 

Using the R package “limma”, we identified a total  

of 1,421 DEGs associated with the DRG cluster. 

Consistent with the results of GSVA and GSEA,  

the outcomes of the GO and KEGG investigations 

have revealed that the DEGs under examination  

are primarily linked to important processes, including 

the cell cycle, genomic stability, and cancer. This 

emphasizes the significant role of disulfidptosis in the 

complex mechanisms of tumorigenesis and metastatic 

progression (Figure 3F–3H). 

 

Construction and evaluation of the DRG prognostic 

model 

 

We used LASSO and multivariate Cox regression 

analyses on 1,421 DEGs associated with DRG clusters 

 

 
 

Figure 1. Analysis of GSE131907 using single-cell sequencing technology. (A) The 11 samples exhibit a notable level of integration 

efficacy. (B, C) Dimensionality reduction and cluster analysis. (D) According to the surface marker genes of different cell types, the cells are 
annotated as BB lymphocytes, endothelial cells, fibroblasts, MAST cells, myeloid cells, NK cells, T lymphocytes, and tumor cells, respectively. 
(E) The cells were divided into high- and low-disulfidptosis cells according to the percentage of DRG in each cell. 
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to create a DRG prognostic model. The TCGA cohort 

was split into training and testing cohorts, at a 1:1  

ratio. After performing LASSO Cox regression analysis, 

the TCGA training cohort identified 11 genes, which 

were then analyzed using multivariate Cox regression. 

In the end, we discovered five significant genes, namely 

 

 
 

Figure 2. Correlations of DRG clusters with CRSGs, ICGs, and TME. (A) The TCGA-LUAD cohort was partitioned into two distinct 

clusters based on the consensus clustering matrix (k = 2). (B) Uniform clustering CDF with k from 2 to 9. (C) The alteration in the area 
beneath the CDF curve as the value of k varies from 2 to 9. (D) The PCA plot showed the distribution of samples among 2 DRG clusters. (E) 
Kaplan-Meier survival analysis for two DRG clusters. (F) The heatmap analysis revealed distinct patterns of ICGs expression, as well 
as clinicopathological features, that distinguished DRG cluster 1 from DRG cluster 2. (G) The differential expression of seven CRSGs 
between two distinct clusters of DRGs. (H) Exploring the correlations between CRG clusters and TME scores. *P < 0.05, **P < 0.01, ***P < 
0.001, ****P < 0.0001. 
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ERO1A, KRT18, GALNT2, PPIA, and CAPN12 

(Figure 4A–4C). The heatmap displayed unique 

expression profiles of ERO1A, KRT18, GALNT2, 

PPIA, and CAPN12 in the high- and low-risk groups 

of the TCGA training and testing cohorts (Figure 4D, 

4E). Additionally, we noticed that patients with higher 

DRG scores experienced increased mortality rates and 

shorter overall survival, as shown in the DRG risk plot 

(Figure 4F, 4G). The Kaplan-Meier analysis showed a 

significant difference in overall survival between high-

risk and low-risk group patients (Figure 4H, 4I). In the 

TCGA training cohort, the AUC exhibited predictive 

capability for one-year, three-year, and five-year 

overall survival, with values of 0.77, 0.73, and 0.65, 

 

 
 

Figure 3. Identification of DEGs between DRG clusters and functional annotation. (A, B) GSVA analysis of DRG cluster 2. (C–E) 

GSEA of significant HALLMARK enriched in DRG cluster 2. (F–H) GO and KEGG enrichment analyses of DEGs between two DRG clusters. 
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respectively (Figure 4J). In the TCGA validation cohort, 

the AUC values indicating predictive performance for 

OS at 1, 3, and 5 years were 0.65, 0.68, and 0.66, 

respectively (Figure 4K). 

To validate the predictive accuracy of the model,  

we conducted an assessment using four independent 

external validation cohorts: GSE30219, GSE50081, 

GSE72094, and GSE26939. Afterward, patients in these 

 

 
 

Figure 4. Development and assessment of a DRG-based prognostic model in the TCGA population. (A) Cross-validation for 

selecting the tuning parameter (λ) in the LASSO model. (B) The coefficient profile of prognostic DRGs using the LASSO method. (C) The 
multivariate Cox regression analysis of DRGs was presented through a forest plot. (D, E) The heatmap illustrates the differential gene 
expressions within the DRG prognostic model between the high- and low-risk cohorts in both the TCGA training and testing cohorts. (F, G) 
Risk score distribution plot and risk point plot between the high- and low-risk groups in TCGA training and testing cohorts. (H, I) The Kaplan-
Meier OS curves for patients in two risk groups in TCGA training and testing cohorts. (J, K) ROC curves showed the prognostic performance 
of the DRG prognostic model in TCGA training and testing cohorts. 
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cohorts were categorized into high- and low-risk  

groups based on their DRG scores. The Kaplan- 

Meier analysis showed a significantly better prognosis 

in the low-risk cohort compared to the high-risk cohort 

(Supplementary Figure 1A–1D). At the same time, the 

model demonstrated a notably high AUC value when 

evaluated in external validation cohorts (Supplementary 

Figure 1E–1H). 

 

Establishment and evaluation of a corresponding 

nomogram 

 

To evaluate the DRG score’s potential as a sole 

prognostic indicator for OS, we integrated clinical 

parameters with the DRG score and then conducted 

univariate and multivariate Cox regression analyses.  

In the TCGA cohort, both stage and DRG score can  

be used as independent predictors of OS in LUAD 

patients (Figure 5A, 5B). We subsequently developed  

a nomogram in the TCGA cohort that incorporates  

DRG score, age, and stage. This nomogram provides  

a quantitative approach for personalized predictions of 

LUAD patients (Figure 5C). The calibration curves for 1, 

3, and 5 years were elegantly depicted in Figure 5D.  

By employing DCA, we observed that the nomogram 

surpassed individual independent prognostic factors in 

providing clinical benefits for predicting the prognosis  

of LUAD patients (Figure 5E). In summary, our findings 

strongly substantiate the clinical relevance of the nomo-

gram for predicting the prognosis of LUAD patients. 

 

Correlations of DRG score with TMB and ICGs 

 

The mutational landscape of various DRG sub- 

groups was depicted with waterfall plots (Figure 6A, 

6B). In the entire dataset, TP53, CTNNB1, and TTN 

were the most commonly mutated genes in LUAD. 

Missense mutations were the most common type of 

somatic mutations. The high-risk group showed a  

higher prevalence of genetic mutations. Furthermore, 

patients with high DRG scores were discovered to  

be more likely to carry significant gene mutations, 

especially in TP53. Previous studies have clearly shown 

a link between higher TMB scores and increased 

responsiveness to immunotherapeutic treatments. In our 

analysis, we found a notably higher TMB score in the 

high-risk group (p = 4.74e-0.5), and we also identified  

a positive correlation between DRG score and TMB  

score (p = 5.58e-08) (Figure 6C, 6D). Based on 

previous evidence showing the relationship between 

ICG expression profiles and clinical responses to check-

point blockade immunotherapy, our study conducted a 

thorough analysis of the correlation between the DRG 
score and ICGs. Our analysis uncovered significant 

correlations between the five genes in the model and the 

majority of ICGs (Figure 6E, 6F). 

Estimation of the DRG prognostic model in 

immunotherapy response 

 

We used the TIDE algorithm to predict immunotherapy 

response in LUAD patients using transcriptomic data. 

Our results demonstrated that the TIDE score was 

significantly lower in the low-risk group of patients 

compared to the high-risk group, indicating a potential 

increased responsiveness to immunotherapy in the low-

risk group (Figure 7A). Furthermore, the low-risk cohort 

displayed an increased immune dysfunction score along 

with a reduced immune exclusion score, as shown  

in Figure 7B, 7C, respectively. Employing the TIDE 

algorithm, we distinguished immunotherapy responders 

from non-responders and noted that responders were 

linked to a lower DRG score (Figure 7D, 7E). Patients 

with both a high DRG score and a low TIDE score 

demonstrated the worst prognosis, as depicted in Figure 

7F. Our study highlights the clinical potential of the 

TIDE algorithm in guiding immunotherapy decisions 

for LUAD patients. Furthermore, we included a GEO 

cohort for immunotherapy validation, with results 

presented in Supplementary Figure 2. Our risk signature 

also demonstrates strong validation performance. 

 

Correlations of DRG score with CRSGs and 

chemotherapeutic sensitivity 

 

Our findings have shown a significant association 

between the expression levels of CRSGs and those  

of ERO1A, KRT18, GALNT2, PPIA, and CAPN12 

(Figure 8A). Furthermore, we observed that as the DRG 

score increased, there was a corresponding increase in 

the expression levels of ITGB1, SOD2, and UBE2T, 

while a simultaneous decrease was observed in the 

expression levels of TLR9. This phenomenon suggests  

a potential connection between the DRG score and  

the effectiveness of chemoradiotherapy (Figure 8B– 

8E). To evaluate whether the DRG score could serve as 

a promising biomarker for predicting chemotherapy 

response in LUAD patients, we performed a thorough 

drug sensitivity analysis using the “oncoPredict” R 

package. Our results indicated that patients in the  

high-risk group had lower estimated sensitivity  

scores for docetaxel, gefitinib, dasatinib, and erlotinib 

(Figure 8F–8I), suggesting that patients with a high 

DRG score were more likely to benefit from 

chemotherapy. 

 

Single-cell sequencing characterization of the TME 

in LUAD 

 

Recently, single-cell RNA sequencing has emerged as a 
powerful technique for characterizing the molecular 

characteristics of individual cells. This technology 

enables a precise understanding of the TME by 
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facilitating the analysis of the transcriptomic landscape 

of specific cells [10]. To explore the role of the DRG 

score in the TME, we conducted a more comprehensive 

study by extracting and refining TME data obtained 

through single-cell RNA sequencing. Our analysis of 11 

samples revealed successful integration without any 

noticeable batch effects, rendering them suitable for 

further analyses (Figure 9A). Utilizing the tSNE 

algorithm, we identified and labeled seven distinct cell 

clusters among the 37,364 quality-controlled cells based 

 

 
 

Figure 5. Construction and validation of a nomogram. (A) Univariate Cox regression analysis of the DRG score and clinical 

characteristics in the TCGA cohort. (B) Multivariate Cox regression analysis of the DRG score and clinical characteristics in the TCGA cohort. 
(C) Using DRG score and other clinical features to construct prognostic nomogram in the TCGA cohort. (D) Calibration curves of the 
nomogram. (E) DCA indicated that the nomogram achieved the optimal clinical benefit. ***P < 0.001. 
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on their lineage marker genes. The primary annotated 

cellular clusters included various types of immune cells, 

such as B lymphocytes, myeloid cells, natural killer 

cells, and T lymphocytes (Figure 9B). We examined the 

expression patterns of key genes in seven distinct cell 

clusters. Our results show that PPIA had significantly 

increased expression in NK cells, myeloid cells,  

and endothelial cells, whereas ERO1A predominantly 

 

 
 

Figure 6. Associations between the DRG score and TMB as well as ICGs. (A, B) A comparative analysis of mutational profiles in two 
risk groups of LUAD. (C) Correlations between TMB and the DRG score within various gene clusters. (D) Disparities in TMB score among 
high-risk and low-risk groups. (E) Correlations between the expression of ICGs and the five genes included in the DRG prognostic model. (F) 
Correlations between the expression of ICGs and the DRG score. *P < 0.05, **P < 0.01, ***P < 0.001. 
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showed high expression levels in myeloid cells (Figure 

9C). Additionally, the DRG score was predominantly 

enriched in myeloid cells (Figure 9D). To investigate 

the potential association of hub genes with myeloid 

cells, we categorized them into four distinct subgroups: 

alveolar macrophages (Alveolar Mac), dendritic cells 

(DCs), monocyte macrophages (mo-Mac), and mono-

cytes (Figure 9E). Our analysis results have shown that 

the Alveolar Mac clusters have demonstrated increased 

expression levels of PPIA, whereas the DCs clusters 

have shown elevated expression levels of CAPN12. 

Furthermore, the majority of hub genes (4 out of 5) 

showed statistically significant upregulation in mo-

MAC cells, except for PPIA (Figure 9F). Importantly, 

the DRG score was mainly observed in mo-MAC cells, 

as opposed to DCs and alveolar Mac cells (Figure 9G). 

 

Validation of the prognostic model 

 

To further demonstrate the feasibility of the prognostic 

model, we conducted qRT-PCR testing on LUAD cells, 

RNA-seq analysis on clinical tissues, and protein 

content testing at the IHC level. Initially, we integrated 

the GTEx database, which contains normal tissues, and 

the TCGA database, which contains tumor tissues, to 

examine mRNA expression levels. Our investigation 

showed a significant increase in the expression levels 

of the five signature genes in tumor tissues compared to 

normal tissues (Figure 10A). Furthermore, we validated 

the expression profiles of the five genes relevant to  

the proposed model. The investigation employed three 

distinct LUAD cell lines: A549, H1299, and HCC827, 

in addition to a normal bronchial epithelial cell  

line, BEAS2B. The analysis findings were consistent 

with data obtained from RNA-seq of clinical tissues 

(Figure 10B). Furthermore, in the IHC slices from the 

HPA database, these genes exhibited higher protein 

expression in most tumor samples compared to normal 

bronchial epithelial tissues, showing stronger staining. 

However, CAPN12 did not have corresponding anti-

bodies (Figure 10C). Overall, the presented findings 

reinforce the stability and reliability of the risk 

signature. 
 

DISCUSSION 
 

Cell death is crucial for maintaining an organism’s 

balance, fostering its growth and development, and 

 

 
 

Figure 7. Estimation of the DRG prognostic model in immunotherapy response. Difference in TIDE score (A), dysfunction score 

(B), and exclusion score (C) in two risk groups. (D) Assessment of DRG score divergence between responder and non-responder cohorts 
using the TIDE algorithm. (E) The proportion of patients with different response to immunotherapy in two risk groups. (F) The Kaplan-Meier 
OS curves among four groups classified by the DRG score and TIDE score. ****P < 0.0001. 
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preventing hyperproliferative and malignant  

disorders from arising [11, 12]. Recently, researchers 

identified a previously unknown type of cell death 

called disulfidptosis, which differs from the known 

forms of programmed cell death (ferroptosis, pyroptosis, 

necroptosis, and cuproptosis). Cellular death in this 

manner is triggered by disulfide stress resulting from an 

excess of cysteine, and it has been observed to occur in 

situations marked by a lack of glucose availability [7]. 

Up to now, no studies have specifically investigated  

the connection between disulfidptosis and the TME,  

or its impact on immunotherapy. 

Using the gene expression profiles of DRGs,  

we successfully identified two distinct molecular  

clusters associated with disulfidptosis in the TCGA- 

LUAD cohort. Patients diagnosed with LUAD in the  

C2 subgroup displayed reduced survival rates and 

presented advanced clinicopathological characteristics. 

It is reasonable to speculate that these differences may 

partly arise from different responses to therapeutic 

treatments. In line with the aforementioned assumption, 

we confirmed significant variations in the expression 

of therapy-associated genes among distinct molecular 

clusters, which include CRSGs and ICGs. This suggests 

 

 
 

Figure 8. Correlations of the DRG score with CRSGs and chemotherapeutic sensitivity in LUAD. (A) Correlations between the 

expression of CRSGs and five genes in the DRG prognostic model. (B–E) Correlations between the expression of CRSGs and the DRG score. 
(F–I) Difference in chemotherapeutic sensitivity between high- and low-risk groups. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 
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that the therapeutic response differs among DRG 

clusters, with C1 showing an up-regulated expression 

profile in ICGs and C2 in CRSGs. Furthermore,  

C1 exhibited higher values in immune, stromal, and 

ESTIMATE scores compared to C2. Previous studies in 

the context of LUAD have shown that neoplastic lesions 

with distinctive TIME profiles are likely to demonstrate 

different responses to both chemotherapy and 

immunotherapeutic treatments [13–15]. 

 

An increasing amount of evidence has demonstrated the 

role of disulfides in initiating and advancing tumors at 

the transcriptomic level [16]. During our investigation, 

we conducted a thorough examination of mRNA 

 

 
 

Figure 9. The distribution of the DRG score in tumor microenvironment. (A) The integration performance of the 11 samples 

exhibits a high degree of efficacy. (B) tSNE plot showed seven cell types from 37,364 cells. (C) The different expression of hub genes in 
seven cell clusters. (D) The DRG score exhibited a predominant distribution within the myeloid cellular population. (E) Myeloid cells were 
classified into alveolar macrophages (Alveolar Mac), dendritic cells (DCs), monocyte macrophages (mo-Mac), and monocytes. (F) Distinctive 
characteristics of hub genes across four myeloid cell types. (G) DRG score was primarily manifested in mo-MAC. 



www.aging-us.com 2767 AGING 

transcriptome variations within distinct disulfide 

patterns. We identified 1,421 DEGs associated with  

the DRG cluster. To enhance the assessment of the 

disulfidptosis pattern in LUAD patients, we created a 

DRG prognostic model incorporating ERO1A, KRT18, 

GALNT2, PPIA, and CAPN12. Endoplasmic reticulum 

oxidoreductin 1-α (ERO1A) plays a crucial role as a 

regulator of protein disulfide isomerase, and recent 

research has suggested that both protein disulfide 

isomerase and ERO1A are significant factors in tumor 

prognosis [17]. KRT18, also referred to as CK18, is a 

cytoskeletal protein. Dysregulation of KRT18 is linked 

 

 
 

Figure 10. Validation of the expression patterns of five signature genes. (A) The gene mRNA expressions of five signature genes in 

the normal and tumor tissues. (B) Five signature genes expression in normal and LUAD cell lines. (C) Immunohistochemistry of the ERO1L, 
KRT18, GALNT2, PPIA in the normal and tumor groups from the HPA database. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 
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to the development and progression of a wide range of 

cancers [18]. Knocking down KRT18 in NSCLC reduces 

cell migration and significantly enhances chemotherapy 

sensitivity [19]. N-Acetylgalactosaminyltransferases 

(GALNTs) form a family of glycosyltransferases 

responsible for synthesizing mucin-type O-glycans. 

GALNT2, among these family members, is notably 

overexpressed in NSCLC tissues, and its overexpression 

is strongly correlated with a poor prognosis. Down-

regulating GALNT2 has been shown to hinder the 

proliferation, migratory potential, and invasiveness of 

NSCLC cells. Simultaneously, it exerts a pro-apoptotic 

effect and triggers cell cycle arrest [20]. In a recent 

study conducted by Jia et al., it was found that PPIA,  

an immune-related gene, can serve as a potential 

prognostic biomarker for predicting lymph node 

metastasis and prognosis in lung adenocarcinoma [21]. 

Emerging evidence suggests that signature genes may 

play important roles in lung cancer. In this investigation, 

we formulated a risk assessment system that categorizes 

LUAD patients into either a high-risk or low-risk  

group using signature genes. Our analysis revealed a 

significant difference in clinical outcomes between  

the high-risk group and the rest of the patients, as 

demonstrated in both the TCGA training and testing 

datasets. Furthermore, ROC curves confirmed the 

outstanding predictive performance of the signature in 

evaluating the prognosis for individuals with LUAD 

over 1-year, 3-year, and 5-year periods. The distribution 

plots and Kaplan-Meier curves confirmed a decrease in 

overall survival time with increasing DRG scores in 

both the TCGA training and testing cohorts. Furthermore, 

our study showed that the nomogram provided improved 

clinical utility for predicting the outcome of patients 

with LUAD compared to individual prognostic factors. 

Overall, the findings indicate that the DRG score is  

an independent prognostic factor for predicting the 

outcome of LUAD patients. 

 

Despite the significant progress made in the therapeutic 

management of LUAD over the past decade, there is 

still a compelling need for further advancements in this 

field. Various standard-of-care multimodal treatments, 

such as surgery, radiation therapy, immunotherapy,  

and chemotherapy, have been proposed. However, the 

effectiveness of these treatments is constrained by the 

diversity in treatment responses and outcomes among 

LUAD patients [22]. Specifically, the pathological 

characteristics of LUAD, such as mutations and 

resistance to therapy, play a crucial role in influencing 

the clinical response to treatment [23]. Therefore, further 

research is crucial for obtaining a better understanding 

of the prognostic implications and treatment responses 
related to intratumoral heterogeneity and TMB in 

LUAD patients. In line with previous research, our 

findings show a notable difference in TMB levels 

among various subgroups categorized by DRG scores. 

Patients with elevated DRG scores had a greater chance 

of carrying essential gene mutations, especially in  

the TP53 gene. Earlier studies have already confirmed  

a positive connection between high TMB scores and 

enhanced response to immunotherapy. In our present 

analysis, we observed a significantly higher TMB  

score in the high-risk group and discovered a positive 

correlation between DRG score and TMB score. Given 

the possible connection between TMB and a positive 

clinical response to immunotherapy, we carried out a 

comprehensive investigation to evaluate the effectiveness 

of immunotherapy in different LUAD subpopulations. 

Our study found 52 ICGs that showed differential 

expression in the five signature genes. Furthermore, our 

investigation uncovered a positive correlation between 

the DRG score and the biomarkers CD276, PVR, and 

KIR2DL4. This discovery emphasizes the potential 

usefulness of these biomarkers as valuable predictors  

of treatment responses in a clinical setting. In this  

study, we employed the TIDE algorithm to predict  

the effectiveness of immunotherapy in LUAD patients, 

using transcriptomic data. Our results showed a 

significant increase in the TIDE score in the high-risk 

group compared to the low-risk group. These results 

strongly suggest that patients in the low-risk group may 

obtain more significant clinical benefits from immuno-

therapy interventions. Importantly, patients in the low-

risk group demonstrated higher dysfunction scores  

and lower exclusion scores. Furthermore, utilizing the 

TIDE algorithm, we identified individuals responding 

and not responding to immunotherapy and observed that 

responders were linked to lower DRG scores. Taken 

together, these observations suggest that individuals 

classified as low-risk may have increased susceptibility 

to immunotherapeutic interventions. Furthermore, we 

examined the relationship between disulfidptosis patterns 

and the response of LUAD patients to radiation and 

chemotherapy. Our findings have shown a positive 

correlation between the expression levels of CRSGs and 

the DRG score. Targeting DRGs can enhance therapeutic 

outcomes. In particular, our study demonstrated that 

patients with a high DRG score exhibited increased 

responsiveness to docetaxel, gefitinib, dasatinib, and 

erlotinib, which suggested improved clinical results. 

Based on our research findings, it is clear that the  

DRG score holds the potential to serve as a reliable 

prognostic marker for forecasting the effectiveness of 

immunotherapy and chemotherapy in LUAD patients. 

 

Single-cell RNA sequencing has emerged as a  

powerful technology for characterizing the molecular 

features of individual cells, enabling a highly accurate 
understanding of the TME [10, 24]. To investigate the 

role of the DRG score in the TME, we conducted a 

more detailed study by extracting and refining TME 
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data from single-cell RNA sequencing. Our findings 

indicate that PPIA was significantly upregulated in NK 

cells, myeloid cells, and endothelial cells, while ERO1A 

exhibited high expression levels primarily in myeloid 

cells. Moreover, the DRG score exhibited significant 

enrichment in myeloid cells. In order to explore the 

possible relationship between hub genes and myeloid 

cells, we categorized them into four distinct subgroups: 

alveolar macrophages (Alveolar Mac), dendritic cells 

(DCs), monocyte macrophages (mo-Mac), and mono-

cytes. Our analysis revealed a significant increase in 

PPIA expression within Alveolar Mac clusters, along 

with a notable elevation in CAPN12 expression within 

DCs clusters. Furthermore, the majority of the hub 

genes (4/5) exhibited significant upregulation in mo-

MAC cells, with the exception of PPIA. Importantly, 

the DRG score was primarily observed in mo-MAC 

cells, as opposed to DCs and alveolar Mac cells. 

 

However, despite the positive findings, several 

unresolved issues demand our attention. First and 

foremost, we must recognize that the retrospective 

creation of the DRG risk signature was based on 

publicly available databases, potentially introducing 

inherent selection biases. To determine the generali-

zability and robustness of our results, it is crucial to 

conduct extensive prospective and multicenter clinical 

investigations. Moreover, it is essential to recognize that 

several key clinical factors, such as chemoradiotherapy 

and surgery, were not included in the datasets being 

analyzed. As a result, their incorporation in future 

studies is imperative. This limitation might have 

impacted the accuracy of the analyses related to 

treatment response and disulfidptosis state. Additionally, 

to validate the expression of signature genes, it is 

essential to include a larger number of clinical 

pathology samples. Furthermore, conducting additional 

experiments in vivo and in vitro is crucial to 

comprehensively understand the roles of signature 

genes within the disease’s context. 

 

CONCLUSIONS 
 

In summary, our study offers a comprehensive  

analysis of DRG expression profiles in LUAD  

and introduces a novel risk model for evaluating 

therapy response and patient prognosis. This model,  

in particular, relies on a 5-DRG signature of genes 

(ERO1A, KRT18, GALNT2, PPIA, and CAPN12), 

and we have explored these genes’ roles in LUAD, 

considering their impact on the tumor’s immune 

microenvironment, clinical characteristics, prognosis, 

and therapy approaches. The findings of this study are 

clinically significant and suggest that disulfidptosis 

may be a potential therapeutic target for individuals 

with LUAD. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. External validation of the DRG prognostic model in GEO cohort. The Kaplan-Meier OS curves for 

patients in the high- and low-risk groups in the GSE30219 (A), GSE50081 (B), GSE72094 (C), and GSE26939 cohorts (D). ROC curves showed 
the prognostic performance of the DRG prognostic model in the GSE30219 (E), GSE50081 (F), GSE72094 (G), and GSE26939 cohorts (H). 

 

 

 
 

Supplementary Figure 2. External validation of risk signature. (A) Kaplan-Meier analysis in IMvigor-210 cohort. (B) Responses to 
immunotherapy in different groups. (C) Proportion of response to immunotherapy in different groups. ***P < 0.001. 
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Supplementary Tables 
 

Supplementary Table 1. Summary of 10 disulfidptosis-related genes. 

Gene 

GYS1 

NDUFS1 

OXSM 

LRPPRC 

NDUFA11 

NUBPL 

NCKAP1 

RPN1 

SLC3A2 

SLC7A11 

 

 

Supplementary Table 2. Chemoradiotherapy sensitivity–related genes. 

Gene Doi Characteristic 

ITGB1 https://doi.org/10.7150/ijbs.52319  Negative 

XRCC1 PMCID: PMC8290768 Negative 

TLR9 https://doi.org/10.1016/j.ccell.2021.12.009  Positive 

ZBTB38 https://doi.org/10.1186/s12967-022-03372-0  Negative 

UBE2T https://doi.org/10.1016/j.canlet.2020.06.005  Negative 

GPX4 https://doi.org/10.3389/fonc.2022.913669  Negative 

SOD2 https://doi.org/10.1007/s00228-015-1824-0  Negative 

 

 

Supplementary Table 3. Primer sequences for mRNAs. 

Species Gene Primer Sequence 

Homo sapiens ERO1L 
Forward GGCTGGGGATTCTTGTTTGG 

Reverse AGTAACCACTAACCTGGCAGA 

Homo sapiens KRT18 
Forward TGGAAACCCAGCTCTGACTC 

Reverse TGGGGCTTTCTTGGTCTTCT 

Homo sapiens PPIA 
Forward GGTGGTTCGTGGTGAACG  

Reverse AGCTTGTTGTCCACAGTCAGCAAA 

Homo sapiens GALNT2 
Forward GCTGGGCATCGCCTACTAC 

Reverse GGTTAAAGTCTGGCCACCGT 

Homo sapiens CAPN12 
Forward ACTGACCTCCTTCTTGGTGC 

Reverse GTGGCCAAGGTAGCAGCTTA 
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