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INTRODUCTION 
 

Coronary artery disease (CAD), also known as coronary 

heart disease, is the most common aging-related disease 
in adults [1, 2]. Despite advances in treatment and life-

style modifications, CAD and its complications remain 

the most common causes of morbidity and mortality 

worldwide [3]. Advanced age; smoking; hypertension; 

high levels of low-density lipoprotein, cholesterol and 

fat; and diabetes all contribute to CAD [4, 5], adversely 

affecting human life expectancy. 
 

Aging is the basis of organ function decline and  

the main risk factor for numerous diseases, including 
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ABSTRACT 
 

Coronary artery disease (CAD) is the most common aging-related disease in adults. We used bioinformatics 
analysis to study genes associated with aging in patients with CAD. The microarray data of the GSE12288 
dataset were downloaded from the Gene Expression Omnibus database to obtain 934 CAD-associated 
differentially expressed genes. By overlaying them with aging-related genes in the Aging Atlas database, 33 
differentially expressed aging-related genes (DEARGs) were identified. Gene Ontology and Kyoto Encyclopedia 
of Genes and Genomes enrichment analyses revealed that the 33 DEARGs were mainly enriched in cell 
adhesion and activation, Th17 and Th1/Th2 cell differentiation, and longevity regulation pathways. Hub genes 
were further screened using multiple algorithms of Cytoscape software and validation set GSE71226. Clinical 
samples were then collected, and the expression of hub genes in whole blood was detected by real-time 
quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and western blot at the 
transcription and translation levels. Finally, HSP90AA1 and CEBPA were identified as hub genes. The results of 
this study suggest that HSP90AA1 and CEBPA are closely related to CAD. These findings provide a theoretical 
basis for the association between aging effectors and CAD, and indicate that these genes may be promising 
biomarkers for the diagnosis and treatment of CAD. 
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neurodegenerative diseases, cardiovascular and cerebro-

vascular diseases, and tumors [6, 7]. China’s aging 

population is growing; the number of senior citizens is 

expected to reach 480 million by 2050, accounting  

for approximately 25% of Asia’s elderly population  

by that time [8]. The incidence of several age-related 

diseases, including cardiovascular diseases [9], is 

increasing on an annual basis. This trend is making  

life more challenging for older individuals and  

placing a significant economic burden on society. 

Thus, there is an urgent need to perform research on 

the aging process, explore the molecular mechanism  

of the occurrence and development of aging-related 

diseases, and identify therapeutic targets for aging-

related diseases. The correlation between CAD and 

aging-related genes (ARGs) is unclear, and which 

ARGs are essential for the development of CAD  

is unknown. Further research is needed to identify 

therapeutic biomarkers for CAD based on potential 

ARGs. 

In this study, we examined the relationship between 

ARGs and CAD using bioinformatics methods for the 

first time. We screened differentially expressed ARGs 

(DEARGs) based on the Gene Expression Omnibus 

(GEO) and Aging Atlas database. Gene Ontology 

(GO) enrichment analysis, Kyoto Encyclopedia of 

Genes and Genomes (KEGG) enrichment analysis, 

and protein–protein interaction (PPI) analysis were 

performed on the DEARGs. In addition, we used 

multiple algorithms from Cytoscape software to 

screen hub genes and validate them with a separate 

dataset. Blood samples were collected, and the 

mRNA and protein expression levels of hub genes in 

whole blood from patients in the CAD group and 

control group were detected by real-time quantita-

tive polymerase chain reaction (RT-qPCR), enzyme-

linked immunosorbent assay (ELISA), and western 

blot. Finally, the hub genes of DEARGs in CAD were 

identified. A flow chart of this study is shown in 

Figure 1. 

 

 
 

Figure 1. Study flow chart. 
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RESULTS 
 

Screening of candidate DEARGs in CAD 

 

In the GSE12288 dataset, 934 differentially  

expressed genes (DEGs) (404 upregulated and 530 

downregulated) were identified between CAD and 

control samples, with P < 0.05 as the cut-off value 

(Figure 2A). These 934 DEGs were compared with 502 

ARGs in the Aging Atlas database, and 33 DEARGs 

were identified in both datasets (Figure 2B). Among  

the 33 genes, 10 genes were upregulated (IL2, CCL7, 

PLAU, CEBPA, RET, MAP3K5, HK3, PLAUR, PCMT1, 

and STAT5A) and 23 genes were downregulated 

(SLC13A1, PIN1, FGFR3, MMP7, ATF6B, MAPK9, 

CREB3L1, IL6ST, HIF1A, PRKACB, PTPN11, TBP, 

RB1CC1, PRKCQ, FOXO1, HSP90AA1, ZAP70, 

PPM1D, TP53BP1, TNFAIP3, HSPA9, HSPD1, and 

SHC1) (Figure 2C). 

 
Functional enrichment analysis of DEARGs 

 
The functional enrichment analysis chart of the 

DEARGs shows the four most significantly enriched 

GO terms (Figure 3A, 3B). The enriched biological 

processes include positive regulation of cell adhesion, 

positive regulation of cell activation, positive regulation 

of leukocyte activation, and positive regulation of

 

 
 

Figure 2. DEARGs between CAD and control groups. (A) Volcano plot of the DEGs from GSE12288 with P < 0.05 as the threshold 

value. Red and blue dots indicate significantly upregulated and downregulated genes, respectively. (B) Venn diagram of CAD DEGs and 
ARGs. (C) Heatmap of the expression of 33 ARGs and CAD-related genes. 
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cell–cell adhesion. The enriched cellular components 

include RNA polymerase II transcription regulator 

complex, immunological synapses, protein complexes 

involved in cell adhesion, and serine-type peptidase 

complex. The enriched molecular functions are protein 

serine/threonine/tyrosine kinase activity, ubiquitin protein 

ligase binding, phosphoprotein binding, and protein 

phosphorylated amino acid binding. The KEGG enrich-

ment analysis revealed that DEARGs play key roles in 

Th17 cell differentiation; human T-cell leukemia virus  

1 infection; growth hormone synthesis, secretion, and 

action; Th1 and Th2 cell differentiation; and longevity-

regulating pathways (Figure 3C, 3D). 

Analysis of PPI networks and identification of hub 

genes 

 

PPI networks were constructed using the STRING 

database to identify interactions between DEARGs  

and further visualize the results comprising 33 nodes  

and 86 edges. Figure 4A shows the PPI network of  

the DEARGs. The circles represent genes, the lines 

represent PPIs between genes, and the results in the 

circles represent the protein structure. The colors of  

the lines represent evidence of PPIs. We used various 

algorithms from the Cytoscape software Cytohubba 

plugin, including Degree, MCC, MNC, EPC, DMNC, 

 

 
 

Figure 3. GO and KEGG enrichment analyses of 33 DEARGs. (A) Bubble plot of enriched GO terms. (B) The circle plot shows the top 

12 GO terms. The inner circle represents the z-scores, and the outer circle represents the number of genes in the GO terms. Red indicates 
upregulated ARGs, and green indicates downregulated ARGs. (C) KEGG pathways of DEARGs. (D) Chord plot of enriched KEGG pathways. 
Abbreviations: BP: biological process; CC: cellular component; MF: molecular function. 
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EcCentricity, and Closeness, to identify hub genes.  

We then created an UpSet map to visualize the results 

(Figure 4B). Finally, six hub genes were obtained: 

CEBPA, HIF1A, HSP90AA1, IL2, FOXO1, and STAT5A 

(Table 1). 

 

Validation of differentially expressed hub genes in 

GSE datasets 

 

The differences in the expression of the six hub genes 

in GSE12288 and GSE71226 are shown in Table 2. 

Among them, HSP90AA1, CEBPA, and FOXO1 were 

differentially expressed in the GSE71226 dataset, 

consistent with GSE12288, whereas HIF1A, IL2, and 

STAT5A were not differentially expressed. Figure 5A, 

5C shows the differences in the expression levels of 

HSP90AA1, CEBPA, and FOXO1 between the CAD 

and control groups in the GSE12288 and GES71226 

datasets. Receiver operating characteristic (ROC) 

curves were used to detect the diagnostic value of 

three hub genes for CAD in two datasets (Figure  

5B, 5D). HSP90AA1 (area under the curve (AUC), 

0.889), CEBPA (AUC, 1.000), and FOXO1 (AUC, 

1.000) were detected in GSE71226 with high 

accuracy. 

Validation of hub genes at the transcriptional level 

 

The mRNA expression levels of HSP90AA1, CEBPA, 

and FOXO1 in whole blood of the CAD group and 

control group were detected in 100 clinical samples. 

Figure 6A shows that the mRNA expression level of 

HSP90AA1 was lower (P < 0.05) and that the mRNA 

expression level of CEBPA (P < 0.01) was higher in the 

CAD group than in the control group. These results  

are consistent with the GSE12288 and GSE71226 

datasets. There was no significant difference in FOXO1 

expression between the two groups (P = 0.54). 

 

Validation of hub genes at the translational level 

 

The ELISA results showed that the plasma levels  

of HSP90AA1, CEBPA, and FOXO1 were consistent  

with mRNA expression (Figure 6B). The levels of 

HSP90AA1 in plasma samples of the control group  

and CAD group were 214.18 ± 135.33 and 154.08 ± 

57.13 ng/L, respectively (P < 0.01). The plasma CEBPA 

concentration was significantly higher in the CAD 

group than in the control group (127.78 ± 134.37  

vs. 55.56 ± 85.59 ng/L, respectively; P < 0.05). The 

expression level of FOXO1 was lower in the CAD

 

 
 

Figure 4. PPI network and hub genes. (A) PPI network analysis of DEARGs in the GSE12288 dataset. The circles represent genes, the 

lines represent PPIs between genes, and the results in the circles represent the protein structures. The colors of the lines represent 
evidence of PPIs. (B) UpSet map obtained by crossing the hub genes generated by the seven algorithms. 
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Table 1. Hub genes were screened using 7 algorithms of Cytoscape software Cytohubba plugin. 

Elements Closeness Degree DMNC EcCentricity EPC MCC MNC 

CEBPA 1 1 1 1 1 1 1 

HSP90AA1 1 1 0 1 1 1 1 

IL2 1 1 1 0 1 1 1 

FOXO1 1 1 1 0 1 1 1 

HIF1A 1 1 0 1 1 1 1 

STAT5A 1 1 1 0 1 1 1 

MAP3K5 1 1 0 1 1 0 0 

ZAP70 1 0 1 0 1 1 1 

PRKACB 0 1 0 1 0 0 0 

IL6ST 0 0 1 1 0 1 1 

PLAU 0 0 1 1 0 0 0 

PLAUR 0 0 1 0 0 0 0 

FGFR3 0 0 1 0 0 0 0 

MMP7 0 0 1 0 0 0 0 

MAPK9 0 0 0 1 0 0 0 

CREB3L1 0 0 0 1 0 0 0 

RET 0 0 0 1 0 0 0 

SHC1 1 1 0 0 1 1 1 

PTPN11 1 1 0 0 1 1 1 

 

Table 2. The analysis of 6 aging- and CAD-related genes in GSE12288 and GSE71226 datasets. 

Gene 
GSE12288 GSE71226 

P value Type P value Type 

CEBPA 0.000 Up 0.039 Up 

FOXO1 0.010 Down 0.007 Down 

HSP90AA1 0.007 Down 0.046 Down 

HIF1A 0.001 Down 0.259 — 

IL2 0.023 Up 0.240 — 

STAT5A 0.029 Up 0.100 — 

 

group than in the control group (26.51 ± 14.46 vs.  

31.74 ± 27.42 ng/L, respectively), but the difference 

was not statistically significant (P = 0.36). Western blot 

analysis showed that the level of HSP90AA1 protein in 

peripheral blood mononuclear cells (PBMCs) was lower 

in the CAD group than in the control group (Figure 6C), 

while the level of CEBPA protein was significantly 

higher in the CAD group than in the control group 

(Figure 6D). Possibly due to the low expression of 

FOXO1 in PBMCs, we were unable to visualize  

FOXO1 with western blot and therefore could not 

evaluate it. 

 
HSP90AA1 and CEBPA were involved in the most 

significantly enriched GO and KEGG pathways 

 
In the most enriched GO terms, CEBPA participated  

in positive regulation of leukocyte activation, positive 

regulation of cell activation, and RNA polymerase II 

transcription regulator complex, whereas HSP90AA1 

participated in ubiquitin protein ligase binding. 

HSP90AA1 was also involved in the most enriched 

KEGG pathway, namely Th17 cell differentiation 

(Table 3). 

 

DISCUSSION 
 

With the gradual aging of the worldwide population, it 

is becoming more critical to study and formulate healthy 

aging strategies. Aging is a multifactorial progressive 

process influenced by genetic and epigenetic regulation, 

post-translational regulation, host–microbiome inter-

actions, metabolic regulation, lifestyle, and many other 
factors [10–14]. The Aging Atlas database used in this 

study focuses on big data generated by omics techniques, 

providing a wider range of valuable resources for the 
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aging research community and other life scientists 

[15]. The major risk factor for cardiovascular disease 

is aging [16]. The study of ARGs associated with  

CAD has important clinical significance and social 

value. 

In this study, DEARGs were identified for the first time 

by bioinformatics analysis, and the role of ARGs in the 

pathogenesis of CAD was discussed in the context of 

such analysis. We screened 33 DEARGs of CAD from 

the GEO dataset and Aging Atlas database. The GO 

 

 
 

Figure 5. Validation of hub genes expression levels and diagnostic value in GSE12288 and GSE71226 datasets. (A) Differential 

expression of HSP90AA1, CEBPA, and FOXO1 in GSE12288. (B) ROC curves of HSP90AA1, CEBPA, and FOXO1 in GSE12288. (C) Differential 
expression of HSP90AA1, CEBPA, and FOXO1 in GSE71226. (D) ROC curves of HSP90AA1, CEBPA, and FOXO1 in GSE71226. 
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analysis revealed that DEARGs were enriched in 

processes related to positive regulation of cell adhesion 

and protein serine/threonine/tyrosine kinase activity. 

KEGG pathway analysis showed that DEARGs were 

involved in Th17 cell differentiation; human T-cell 

leukemia virus 1 infection; growth hormone synthesis, 

secretion, and action; Th1 and Th2 cell differentiation; 

and longevity-regulating pathways. 

 

 
 

Figure 6. Differential expression of hub genes at transcription and translation levels in clinical samples. (A) Relative mRNA 

levels of HSP90AA1, CEBPA, and FOXO1 by RT-qPCR analysis in whole blood among controls (n = 50) and patients with CAD (n = 50). 
(B) Plasma expression levels of HSP90AA1, CEBPA, and FOXO1 in controls and patients with CAD. (C) Western blot analyses of HSP90AA1 
protein levels in PBMCs, including representative blot images and a densitometric summary of the blot analysis after normalization to 
GAPDH. (D) Western blot analyses of CEBPA protein levels in PBMCs, including representative blot images and a densitometric summary of 
the blot analysis after normalization to GAPDH. *P < 0.05, **P < 0.01. Vertical bars represent standard error. 
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Table 3. The most significantly enriched GO terms and KEGG pathway analysis involved in HSP90AA1 and 
CEBPA. 

ID Description P value Hub gene 

GO:0002696 Positive regulation of leukocyte activation 5.0285E-07 CEBPA 

GO:0050867 Positive regulation of cell activation 6.5504E-07 CEBPA 

GO:0090575 RNA polymerase II transcription regulator complex 0.0005793 CEBPA 

GO:0031625 Ubiquitin protein ligase binding 1.3112E-05 HSP90AA1 

hsa04659 Th17 cell differentiation 4.4253E-09 HSP90AA1 

 
Six hub genes (HSP90AA1, IL2, CEBPA, FOXO1, 

HIF1A, and STAT5A) were obtained using seven 

algorithms in the Cytoscape plugin. HSP90AA1, CEBPA, 

and FOXO1, which exhibited consistently differential 

expression, were selected based on analysis of a single 

GEO dataset. Clinical sample verification revealed no 

statistically significant difference in the expression of 

FOXO1 between the CAD and control groups, and the 

gene could not be detected by western blot because  

of low expression in PBMCs. Therefore, HSP90AA1 

and CEBPA were identified as the final hub genes. 

HSP90AA1 is associated with the most significantly 

enriched GO term (ubiquitin protein ligase binding) and 

the most enriched KEGG pathway (Th17 cell differen-

tiation). The significantly enriched GO items in which 

CEBPA participates are positive regulation of leukocyte 

activation, positive regulation of cell activation, and 

RNA polymerase II transcription regulator complex. 

 

Heat shock proteins (HSPs) are a class of highly 

conserved stress proteins that have molecular chaperone 

activity and are involved in various aspects of protein 

biogenesis, including folding, oligomer assembly, 

transport to specific subcellular compartments, and 

controlled switching between active/inactive confor-

mations [17]. Furthermore, HSPs are tightly controlled 

by cellular regulatory mechanisms that protect cells and 

tissues from the misfolding of denatured proteins by 

regulating transcription and translation [18]. HSP90AA1 

is the most widely studied member of the HSP family, 

and its primary role is to maintain protein homeostasis 

and protect cells. Animal experiments have confirmed 

that HSP90 (AA1) plays an important role in myocardial 

ischemia/reperfusion (I/R) injury and cardiac protection 

[19–23]. HSP90 (AA1)-mediated anti-apoptosis plays a 

crucial role in preconditioning cardiac protection [20, 

21]. Liraglutide preconditioning elevates HSP90AA1 

levels, inhibits the inflammatory response and C5a/NF-

κB signaling, alleviates I/R-induced cardiocyte apoptosis, 

and protects the heart [24]. According to a study by Zhu 

et al. [25], knockdown of HSP90AA1 can enhance the 

cardiomyocyte apoptosis induced by oxygen–glucose 

deprivation, and inhibition of miR-1 can lead to increases 

in HSP90AA1 and Bcl-2; these processes are conducive 

to protection against myocardial I/R injury. HSP90AA1 

also plays a relevant role in longevity. HSP90AA1-

mediated regulation of a mammalian transcription factor 

EB ortholog was found to be involved in the extended 

lifespan of Caenorhabditis elegans in the absence of its 

food source bacteria [26]. 

 

CEBPA is a myeloid transcription factor, and mutations 

in this protein play a crucial role in the pathogenesis of 

hematologic tumors [27, 28]. However, such mutations 

have not been thoroughly studied in cardiovascular 

disease and in promoting atherosclerosis. One study 

showed that CEBPA mediates epicardial activation 

during heart development and injury and that disrupt-

tion of CEBPA signaling in the epicardial tissue in 

adults reduces injury-induced neutrophil infiltration and 

improves cardiac function [29]. Together with PPARγ, 

CEBPA regulates the adipogenesis process and is 

involved in the sequence expression of adipocyte-

specific proteins [30–36]. CEBPA is upregulated in 

unstable plaques, and overexpression of CEBPA  

may contribute to the occurrence and development of 

atherosclerosis [37, 38]. However, Bristol et al. [39] 

observed that CEBPA and CEBPB bind the TNFR1 

promoter, increase its expression through a positive 

feedback mechanism, and induce an increase in TNF 

expression. TNF-α promotes the development of athero-

sclerosis [40–42]. CEBPA has also been studied in 

relation to aging. Aging exacerbates acute and chronic 

alcohol-induced liver injury in mice and humans  

by inhibiting the sirtuin 1-CEBPA-mirNA-223 axis  

of neutrophils [43]. Podocyte CEBPA deficiency can 

aggravate podocyte senescence and kidney injury in 

senescent mice [44]. 

 

In summary, 33 DEARGs were identified between the 

control and CAD samples by bioinformatics analysis. 

Based on the dataset and clinical sample validation, 

HSP90AA1 and CEBPA were the final hub genes. The 

results of this study suggest that HSP90AA1 and CEBPA 
are closely related to CAD, providing a theoretical basis 

for the association between aging effectors and CAD. 

These genes may be promising biomarkers for the 

diagnosis and treatment of CAD. 



www.aging-us.com 14839 AGING 

MATERIALS AND METHODS 

 
Aging-related database and microarray data 

 
In total, 502 ARGs were obtained from the Aging Atlas 

database (https://ngdc.cncb.ac.cn/). The microarray was 

downloaded from the NCBI GEO database containing 

two transcription profiles (GSE12288 and GSE71226.) 

The GSE12288 dataset was used as a training set and 

included 110 patients with CAD and 112 healthy 

individuals. The GSE71226 dataset was used as the 

validation set. 

 
Analysis of DEARGs 

 
The DEGs from the CAD group and the  

control group within the GSE12288 dataset were 

analyzed using the R language software package 

limma (version 4.2.1). Genes in each sample that met 

the criteria of P < 0.05 were retained. The results of 

the differential expression analysis were visualized 

using the “ggplot2” package to create volcano plots. 

The DEGs were then compared with 502 ARGs to 

identify DEARGs. The specific and overlapping 

components of DEGs and ARGs were analyzed, and 

the results were visualized as Venn diagrams using the 

“ggplot2” and “VennDiagram” packages. Furthermore, 

the “ComplexHeatmap” package was used to create  

a heatmap representing the expression patterns of 

DEARGs. 

 
GO and KEGG 

 
GO functional annotation refers to the use of  

standard expression terms to describe the biological 

function of genes and proteins in different databases. 

GO annotations contain three aspects of biological 

content: Biological Processes, Cellular Components, 

and Molecular Functions [45]. KEGG is a bioinfor-

matics resource on genomes that establishes links  

from the collection of genes within the genome to  

the high-level functioning of cells and organisms [46].  

GO and KEGG enrichment analyses were performed 

using R software to determine the potential biological 

function of these DEARGs in CAD. Specifically, the  

R software “ClusterProfiler” package was used for 

enrichment analysis after ID conversion of the input 

DEARGs list, and the “ggplot2” package was used for 

visualization of the enrichment analysis results. 

 
PPI network and hub genes 

 
The list of proteins was uploaded to an online website 

called STRING (https://string-db.org/), thereby building 

the PPI network to analyze the internal connections 

among DEARGs. Using the Cytohubba plugin in 

Cytoscape software, 7 algorithms (Closeness, Degree, 

DMNC, EcCentricity, EPC, MCC, and MNC) were 

selected to obtain the top 10 genes in each algorithm. 

The unique and common parts of each group of data 

were analyzed. The “ggplot” package was used to create 

an UpSet diagram for visualization of the results. We 

screened the first six genes as hub genes for further 

research. 

 
Validation of hub genes and mapping of ROC curve 

 
We used the validation set GSE71226 to verify whether 

the differential expression of hub genes was consistent 

with GSE12288, and we screened out genes with  

the same differential expression. Differences in the 

expression levels of hub genes between the control 

group and the CAD group were further verified in the 

GSE12288 and GSE71226 datasets, and the diagnostic 

value of hub genes in patients with CAD was tested by 

ROC curves. 

 
Collection of clinical samples 

 
The clinical study included 50 patients with CAD  

and 50 control patients treated in Tai’an Central 

Hospital. The patient’s clinical data are shown in Table 

4. All participants underwent coronary angiography, 

and stenosis was assessed by a cardiologist. Samples 

meeting the following criteria were included in the 

CAD group: at least one major coronary artery with 

stenosis of > 50% [47] and patient age of 50–80 years. 

The degree of coronary artery stenosis in the control 

group was < 50%, and the age and sex of the patients in 

the control group were consistent with those of the 

patients in the CAD group. Patients with a history of 

diabetes, cancer, kidney failure, liver disease, or other 

chronic diseases requiring immunosuppressants, anti-

inflammatory drugs, or steroids were excluded. The 

Medical Ethics Committee of Tai’an Central Hospital 

approved the research procedure, which was performed 

in accordance with the Declaration of Helsinki (revised 

in 2013). All patients provided written informed consent 

prior to the trial. 

 
RNA isolation and RT-qPCR 

 
On the second day of admission, 2 mL of fasting venous 

whole blood was obtained from each patient and placed 

in ethylenediaminetetraacetic acid anticoagulation 

tubes. After mixing, 300 µL of whole blood was 

extracted from each tube. Total RNA was extracted 

from whole blood cells by TRIpure Reagent LS 

(Aidlab, Beijing, China). Next, cDNA was synthesized 

with a HiFiScript gDNA Removal RT MasterMix kit 

https://ngdc.cncb.ac.cn/
https://string-db.org/
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Table 4. Anthropometric and laboratory profile of study population. 

Parameter Controls (n = 50) CAD (n = 50) P value 

Gender (male/female) 23/27 26/24 0.689 

Age (years) 63.74 ± 7.95 66.76 ± 7.51 0.073 

Hypertension (yes/no) 17/33 26/24 0.106 

Smokers (yes/no) 3/47 7/43 0.318 

LDL-Cholesterol (mmol/L) 2.47 ± 1.06 2.52 ± 0.87 0.581 

HDL-Cholesterol (mmol/L) 1.22 ± 0.38 1.07 ± 0.28 0.103 

Total-Cholesterol (mmol/L) 3.91 ± 1.01 4.09 ± 1.08 0.495 

Triglyceride (mmol/L) 1.50 ± 0.77 1.70 ± 1.12 0.389 

WBC (109/L) 6.11 ± 1.27 6.61 ± 1.71 0.228 

 
(CoWin Biotech, Jiangsu, China). A MagicSYBR 

Mixture kit (CoWin Biotech) was used for RT-qPCR. 

Three duplicate holes were designated for each gene in 

each sample. GAPDH was used an endogenous control. 

The specific primers were HSP90AA1 F: 5′-TATAAG 

GCAGGCGCGGGGGT-3′, R: 5′-TGCACCAGCCTGC 

AAAGCTTCC-3′; CEBPA F: 5′-GCAAACTCACCGC 

TCCAATG-3′, R: 5′-TTCTCTCATGGGGGTCTGCT-

3′; FOXO1 F: 5′-AGATGAGTGCCCTGGGCAGC-3′, 

R: 5′-GATGGACTCCATGTCACAGT-3′; and GAPDH 

F: 5′-CCTCAAGATCATCAGCAATG-3′, R: 5′-CCAT 

CCACAGTCTTCTGGG-3′. 

 
ELISA and western blot analysis 

 
Three milliliters Ficol-Hypaque (TBD, Tianjin, China) 

was placed into a 15-ml centrifugation tube. The 

remaining whole blood samples from the previous step 

were carefully absorbed and added to the surface of the 

separation solution. Centrifugation was performed at 

550 × g on a horizontal rotor centrifuge for 30 min. The 

first layer obtained by density gradient centrifugation was 

blood plasma. The expression levels of HSP90AA1, 

CEBPA, and FOXO1 in plasma were detected with an 

ELISA kit (Meimian, Jiangsu, China). Three duplicate 

holes were set up for each gene in each sample. The 

second layer obtained by centrifugation comprised 

PBMCs. This second layer of cells was gently absorbed, 

suspended with phosphate-buffered saline, and centri-

fuged at 250 × g for 10 min. If red blood cell pre-

cipitation was present, the supernatant was discarded  

and precipitated with red blood cell lysate (TBD).  

After the precipitated cells were washed with cold 

phosphate-buffered saline, 100 µL of cold RIPA lysis 

buffer (Bestbio, Shanghai, China) containing protease 

inhibitors was added for oscillatory centrifugation, and 

the supernatant was obtained. The protein concentration 

was then determined using a BCA kit (Beyotime, 

Shanghai, China). The protein (40 µg/lane) was isolated 

by 7.5% SDS polyacrylamide gel electrophoresis and 

transferred to an activated polyvinylidene fluoride mem-

brane. After sealing the membrane with 5% skim milk, it 

was incubated with monoclonal antibodies to CEBPA 

(1:800, cat# 18311-1-AP; Proteintech, Rosemont, IL, 

USA), HSP90 (1:2000, cat# 13171-AP; Proteintech), and 

FOXO1 (1:1000, cat#AB179450; Abcam, Cambridge, 

UK) at 4°C overnight. GAPDH (1:500, cat#10494-1-AP; 

Proteintech) was used as the control. Incubation was  

then performed with horseradish peroxidase-conjugated 

AffiniPure goat anti-rabbit IgG (H+L) secondary anti-

body (1:2000, cat#SA00001-2; Proteintech) at room 

temperature for 1 h. Protein bands were detected using an 

electrochemiluminescence kit (Proteintech) and chemi-

luminescence system (Bio-Rad Laboratories, Hercules, 

CA, USA). All western blot experiments were repeated 

multiple times. 

 

Statistical analysis 

 

Statistical analyses were conducted using R version 

4.1.2. Student’s t-test or the Mann–Whitney U-test  

was used for statistical analysis between two groups 

based on the normality of data. Data are presented  

as mean ± standard deviation. The chi-square test was 

used for categorical variables. P < 0.05 was considered 

statistically significant. 
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