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INTRODUCTION 
 

Pancreatic cancer is one of the most lethal malignancies 

in the world, with a high death rate and poor prognosis 

[1]. Annually, there are approximately 57,600 newly 
diagnosed cases of pancreatic cancer, with 47,050 

deaths [2]. Pancreatic cancer survival rates remain  

low compared with those of other malignancies despite 
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ABSTRACT 
 

Background: Tumor initiation and progression are closely associated with glycosylation. However, glycosylated 
molecules have not been the subject of extensive studies as prognostic markers for pancreatic cancer. The 
objectives of this study were to identify glycosylation-related genes in pancreatic cancer and use them to 
construct reliable prognostic models.  
Materials and Methods: The Cancer Genome Atlas and Gene Expression Omnibus databases were used to 
assess the differential expression of glycosylation-related genes; four clusters were identified based on 
consistent clustering analysis. Kaplan–Meier analyses identified three glycosylation-related genes associated 
with overall survival. LASSO analysis was then performed on The Cancer Genome Atlas and International 
Cancer Genome Consortium databases to identify glycosylation-related signatures. We identified 12 GRGs 
differently expressed in pancreatic cancer and selected three genes (SEL1L, TUBA1C, and SDC1) to build a 
prognostic model. Thereafter, patients were divided into high and low-risk groups. Eventually, we performed 
Quantitative real-time PCR (qRT-PCR) to validate the signature. 
Results: Clinical outcomes were significantly poorer in the high-risk group than in the low-risk group. There 
were also significant correlations between the high-risk group and several risk factors, including no-smoking 
history, drinking history, radiotherapy history, and lower tumor grade. Furthermore, the high-risk group had a 
higher proportion of immune cells. Eventually, three glycosylation-related genes were validated in human PC 
cell lines. 
Conclusion: This study identified the glycosylation-related signature for pancreatic cancer. It is an effective 
predictor of survival and can guide treatment decisions. 

mailto:bsli@sdfmu.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


www.aging-us.com 13711 AGING 

improvements in diagnostic and therapeutic techniques 

[3]. Therefore, it is increasingly necessary to develop 

new prognostic indicators that accurately predict the 

patient’s prognosis and guide treatment. 

 

Protein glycosylation is one of the most important  

post-translational modifications of proteins. It involves 

carbohydrate transfer to proteins by glycosyltransferases 

and glycosidases [4–7]. Glycosylation is generally 

classified as N-linked or O-linked. N-glycosylation 

occurs when glycans from lipid-linked oligosaccharides 

are transferred to asparagine residues in the protein  

[8], while O-glycosylation occurs when glycans are 

linked to the hydroxyl groups of serine or threonine 

residues [9]. N-glycans contain three mannose and  

two N-acetylglucosamine (GlcNAc) subunits as the 

common pentasaccharides; this can be modified by 

adding galactose, GlcNAc, fucose, and sialic acid 

moieties [10]. 

 

Glycosylation aberrations are proposed hallmarks of 

most cancers [11]. Glycosylation regulates key steps of 

cancer biology, including tumor invasion, metastasis, 

and cellular signaling [12–15]. Moreover, abnormal 

glycosylation is an important indicator to induce tumor 

immune regulation because it provides recognition 

antigens for T cells [11, 16]. Abnormal glycosylation 

patterns identified in pancreatic cancer include O-

GlcNAc, sialylation, aberrant branching, O-glycan 

structures, fucosylation, and altered mucins [17]. This 

alters multiple tumor-promoting signaling pathways, 

augments metastatic phenotypes, and remodels the 

tumor immune microenvironment [18]. 

 

Several prognostic models for pancreatic cancer  

were developed using post-translational regulatory 

biomarkers, including alternative splicing [19] and  

N6-methyladenosine modification [20]. Despite being  

a prominent hallmark of over 300 post-translational 

modifications [21], no systematic research has been 

conducted on the relationship between glycosylation and 

pancreatic cancer. This study developed a glycosylation-

based three-gene prognostic model in pancreatic cancer 

and demonstrated its predictive ability. 

 

RESULTS 
 

Identification of differentially expressed 

glycosylation-related genes in pancreatic cancer 

 

Differentially expressed glycosylation-related genes 

(DE-GRGs) were identified in The Cancer Genome 

Atlas (TCGA)-pancreatic cancer cohort based on the 

mRNA expression profile in TCGA (Supplementary 

Table 1). Matching the mRNA sequencing data for 

differential expression between pancreatic cancer and 

adjacent tissues using the Gene Expression Omnibus 

(GEO) database (Supplementary Tables 2 and 3) 

identified 12 DE-GRGs in pancreatic cancer (Figure 1A). 

Spearman’s correlation analysis revealed that most DE-

GRGs were significantly correlated (Figure 1B). For 

example, BGN, CD55, GCNT3, VCAN, ST6GALNAC1, 

SPON2, THBS2, and TUBA1C positively correlated 

with syndecan-1 (SDC1), while CA4 negatively 

correlated with SDC1. Gene Ontology (GO) enrichment 

analysis showed a correlation between the expression  

of these GRGs and several processes, including 

glycoprotein metabolism, glycosaminoglycan (GAG) 

catabolism, aminoglycan catabolism, GAG binding, 

lysosomal lumen, Golgi lumen, endoplasmic reticulum 

(ER)-Golgi intermediate compartment, extracellular 

matrix (ECM) structural constituent conferring com-

pression resistance, and an ECM structural constituent 

(Figure 1C). Additionally, the Kyoto Encyclopedia  

of Genes and Genomes (KEGG) pathway analysis 

revealed that these genes were mainly involved in 

mucin-type O-glycan biosynthesis, and complement  

and coagulation cascades. Lastly, analysis of the genetic 

changes revealed that seven DE-GRGs had a mutation 

rate of >1%, with the highest mutation rate found in F5 

genes (5%). Amplification and missense mutations 

accounted for most mutations (Figure 1D). 

 
Determination of pancreatic cancer subtypes using 

DE-GRGs 

 

TCGA-pancreatic cancer samples were divided  

into four clusters (group 1 (C1), group 2 (C2), group 3 

(C3), and group 4 (C4)) based on 12 DE-GRGs (Figure 

2A–2D). Kaplan–Meier plots showed significant 

survival disparities between these four groups, group C4 

had the worst prognosis and group C2 had the best 

prognosis (Figure 2E). Further analysis was conducted 

on the distribution of the tumor, node, and metastasis 

(TNM) stage and pathological grade among the four 

subgroups. The samples in cluster-1 showed higher T 

classifications, but low clinical stage and histological 

grade; cluster-2 had higher N classification, clinical 

stage, and pathological grade; cluster-3 had higher N 

classification, but lower clinical stage and histological 

grade; and cluster-4 had lower T classification, N 

classification, clinical stage, and histological grade 

(Figure 3). 

 
C1, C2, C3, and C4 immune status and stemness 

 

Immunedeconv (combining CIBERSORT, EPIC, MCP-

counter, quanTIseq, TIMER, and xCell software) was 

used to assess the immune infiltration among these four 

groups [22]. This analysis used the most widely used 

algorithm, CIBERSORT [23]. There were significant 

differences in the counts of CD8+ T cells (p < 0.001), 
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regulatory T cells (Tregs) (p < 0.05), memory B cells 

(p < 0.01), resting natural killer (NK) cells (p < 0.05), 

activated NK cells (p < 0.05), monocytes (p < 0.05), M0 

macrophages (p < 0.001), M1 macrophages (p < 0.05), 

and neutrophils (p < 0.05) (Figure 4A). Additionally, 

the R software tools ggplot2 and pheatmap were used to 

analyze the four immune checkpoint gene subtypes 

(ICGs) and significant differences were discovered 

between them (all p < 0.01, Figure 4B). The TIDE 

algorithm was used to predict cancer immune responses 

[22]. Clusters C1 and C4 performed better than clusters 

C2 and C3 (all p < 0.05, Figure 4C). This finding 

 

 
 

Figure 1. The differential expression, interaction, functional enrichment, and mutant landscape analysis of GRGs in PC. (A) 

Genes differentially expressed between TCGA and GEO. (B) A heatmap showing the correlations between 12 GRGs. (C) GO and KEGG 
analysis of 12 GRGs in PC. (D) Mutant landscape of 12 GRGs. 
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indicates that clusters C2 and C3 might achieve more 

clinical benefit following ICBs. Finally, examination of 

the mRNA stemness index (mRNAsi) levels of the four 

subtypes using the one-class logistic regression (OCLR) 

algorithm [24] revealed significant differences between 

clusters C1 and C2 (p < 0.01), C1 and C3 (p < 0.0001), 

C2 and C4 (p < 0.001), and C3 and C4 (p < 0.0001) 

(Figure 4D). 

Development and validation of a glycosylation-

related prognostic signature 

 

The three DE-GRGs shown by Kaplan–Meier analysis 

were strongly linked with pancreatic cancer patient 

survival (Figure 5A). We analyzed the prognostic value 

of these three genes using the TCGA-pancreatic cancer 

dataset. The results showed that high expression of 

 

 
 

Figure 2. Clustering of PC molecular subgroups based on 12 GRGs. (A) Cumulative distribution function (CDF) curve. (B) CDF delta 

area curve, which shows how the area under the CDF curve changes between k and k-1 for each category number. The horizontal axis 
represents the number k, and the vertical axis represents the change in area under the CDF curve; each line represents a relative change. 
(C) A heatmap representing the consensus matrix for k = 4 derived from consensus clustering. Rows and columns in the matrix represent 
samples, and the degrees of consistency are represented by white to dark blue. (D) The heatmap of 12 GRGs in 4 clusters. (E) The KM 
survival curve of different groups in TCGA data sets. 
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these genes was associated with poorer prognosis  

for patients (Supplementary Figure 1). LASSO Cox 

regression analysis was used to construct prognostic 

characteristics based on the three GRGs (Figure 5B, 

5C). Risk score = (0.2152) × SEL1L + (0.3895) × 

TUBA1C + (0.1383) × SDC1. Pancreatic cancer 

patients were assigned a risk score, which divided them 

into high- and low-risk categories. The relationship 

between risk score, survival status, and GRG expression 

was shown in Figure 5D. High-risk scores were 

 

 
 

Figure 3. An analysis of clinical characteristics in four clusters. The horizontal axis represents the different sample groups. The 

vertical axis indicates how much clinical information is present in each grouped sample. The table above shows the clinical feature 
significance p-value (-log10) (based on the chi-square test). (A) T staging; (B) N staging; (C) M staging; (D) clinical stage; (E) clinical grade. 
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inversely connected with survival and positively 

correlated with risk of death. High-risk pancreatic 

cancer patients had considerably lower survival periods 

than low-risk pancreatic cancer patients (Figure 5E), 

and this prognostic model accurately predicted 1-, 3-, 

and 5-year survival rates with areas under the receiver 

operator characteristic (ROC) curves of 0.648, 0.72, and 

0.845, respectively (Figure 5F). 

 

The predictive utility of this signature underwent 

additional validation utilizing pancreatic cancer samples 

from the International Cancer Genome Collaboration 

(ICGC) database (Figure 6A, 6B). Risk scores were 

used to classify pancreatic cancer patients as high- or 

low-risk in line with the above results (Figure 6C). The 

survival rate was lower in the high-risk group compared 

to that in the low-risk group (p < 0.01, HR = 1.635, 

Figure 6D). The area under the curves (AUCs) were 

0.36, 0.509, and 0.649 for 1, 3, and 5 years of survival, 

respectively, based on the three-gene model (Figure 

6E). In parallel, the glycosylation-related signature was 

compared with other prognostic models for pancreatic 

cancer [25, 26]. Our prognostic signature showed a 

higher prognostic predictive value than a mitophagy-

related signature and pyroptosis-related signature based 

on the 3-, 5-, and 7-year decision curve analyses (DCA) 

(Figure 6F). 

A prognostic nomogram that uses prognostic 

signatures from TCGA to predict overall survival in 

pancreatic cancer cohorts 

 

Age and risk-score based prognostic signatures were 

independent risk factors for OS of pancreatic cancer 

using univariate and multivariate Cox regression 

analyses (p < 0.05) (Figure 7A, 7B). These two factors 

were integrated to develop a nomogram for over- 

all survival prediction (Figure 7C). The regression 

coefficients for each influencing factor were added to 

obtain the total score. The overall score was converted 

to the probability that each outcome would occur  

to calculate the predicted value of each outcome.  

There was a better correlation between the nomogram 

predictions and actual survival rates for the first, third, 

and fifth years based on calibration plots (Figure 7D). 

 

Relationship between the glycosylation-related 

signature and clinical features 

 

The glycosylation-related signature was evaluated in 

stratified cohorts of patients with pancreatic cancer 

according to smoking history (yes or no), drinking 

history (yes or no), grade (G1/2 or G3/4), T stage (T1/2 

or T3/4), N stage (N0 or N1), and radiotherapy (yes  

or no). Kaplan–Meier curves showed that the high-risk 

 

 
 

Figure 4. Immune and stemness analysis in four clusters. (A) Analysis of immune infiltration by C1, C2, C3, and C4 based on the 

CIBERSORT algorithm; the horizontal axis represents immune cells, while the vertical axis displays immune scores (*p < 0.05, **p < 0.01, 
***p < 0.001). (B) Comparison of immune-checkpoint gene expression in C1, C2, C3, and C4; the horizontal axis shows different immune 
checkpoint genes, while the vertical axis displays the expression level (*p < 0.05, **p < 0.01, ***p < 0.001). (C) A statistical table showing the 
immune response and the distribution of scores for the different groups, according to the prediction. (D) A comparison of stemness for C1, 
C2, C3, and C4 using mRNAsi scores and the OCLR algorithm. 
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group exhibited a shorter OS than the low-risk  

group in no-smoking (Supplementary Figure 2A), 

drinking (Supplementary Figure 2B), no-radiotherapy 

(Supplementary Figure 2C), T1/2 staging (Supple-

mentary Figure 2D), N0/1 staging (Figure 7E), and 

G1/2 (Figure 7F) groups. This indicated that this 

prognostic signature should be used with consideration 

for the effects of clinical factors. 

Glycosylation-related signature to predict immune 

infiltration 

 

The process by which immune cells enter tumor  

tissues via circulation is known as tumor immune cell 

infiltration. Tumor-associated immune cells may serve 

as targets for drugs that can improve survival rates 

because they are linked to clinical outcomes [27]. This 

 

 
 

Figure 5. The prognostic signature of PC based on 3 GRGs in the TCGA database. (A) Log-rank test identifies 3 GRGs correlated to 

OS in PC patients. (B) Lambda parameter shows the coefficients of 3 GRGs. Lambda is represented horizontally, while coefficients are 
represented vertically. (C) The partial likelihood deviance versus log(λ) was calculated using the LASSO Cox regression model. (D) The 
relationship between risk score and living status. Graphs in the middle indicate the risk score, scatter diagrams in the middle, and gene 
expression heat maps below. (E) The KM survival curve of the risk model in the TCGA data set. Several groups were tested by log-rank and 
HR (high expression), representing the risk factors of high expression versus low expression. (F) ROC curves for the risk model and AUCs 
over various periods (one year, three years, five years). Plots revealed better consistency between the nomogram predictions and actual 
observations (Figure 7D). 
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study analyzed whether a glycosylation-related signature 

derived from GRGs was related to immune infiltra- 

tion. The glycosylation-related signature was positively 

associated with B cells (Figure 8A), CD8+T cells (Figure 

8C), neutrophils (Figure 8D), and myeloid dendritic  

cells (Figure 8F), but not with CD4+T cells (Figure 8B) 

and macrophages (Figure 8E). Hence, we conclude that 

patients with high GRG expression may have a poorer 

prognosis owing to tumor immune infiltration. 

The biological functions and pathways of the 

glycosylation-related signature 

 

GeneMANIA was used to construct an interactive 

network to investigate whether SEL1L, TUBA1C and 

SDC1 were related. Twenty additional binding partners 

were identified (Figure 8G). Next, GO and KEGG to 

analysis were used for pathway enrichment of 23 genes. 

GO analysis showed that these 23 genes were mainly 

 

 
 

Figure 6. The prognostic signature of PC based on 3 GRGs in the ICGC database. (A) Lambda parameter shows the coefficients of 
3 GRGs. (B) The partial likelihood deviance versus log(λ) was calculated using the LASSO Cox regression model. (C) The relationship between 
risk score and living status. (D) The KM survival curve of the risk model in the ICGC data set. (E) ROC curves for the risk model and AUCs 
over various periods (1 year, 3 years, 5 years). (F) Comparisons of 3 prognostic signatures in PC through DCA curve. 
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involved in GAG catabolic processes, aminoglycan 

catabolic processes, GAG metabolic processes, micro-

tubules, vacuolar lumen, lysosomal lumen, structural 

constituent of the cytoskeleton, GTPase activity, and 

GTP binding (Figure 8H). Moreover, the majority of 

these 23 genes were engaged in prion disease, gap 

junctions, and phagosomes according to KEGG 

pathway analysis (Figure 8H). 

 

 
 

Figure 7. Nomogram construction for patients with PC in the TCGA database. The forest plot of the univariate (A) and 

multivariate (B) association between risk scores and clinicopathological characteristics. (C) A nomogram based on two independent 
prognostic factors was developed to predict the OS in patients with PC over 1, 3, and 5 years. (D) The calibration plot for internal validation 
of the nomogram. Survival analyses using the glycosylation-related signature in patients with different N staging (E) and clinical grade (F). 
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The relationship between SEL1L, TUBA1C, and 

SDC1 expression and clinical features 

 

As mentioned above, glycosylation-related signatures 

based on three GRGs (SEL1L, TUBA1C, and SDC1) 

were affected by various clinical features. We classified 

pancreatic cancer patients into subgroups based on age 

(<45 or >45), sex (male or female), grade (G1, 2, 3, 

or 4), T stage (T1/2 or T3/4), N staging (N0 or N1), M 

stage (M0 or M1), clinical stage (I, II, III, or IV), 

 

 
 

Figure 8. Immune status and biological functions of glycosylation-related signature. (A–F) The relationship between the 

abundance of six kinds of immune cells (B cells, CD4+T cell, CD8+T cell, neutrophil, macrophage, and dendritic cell) and the risk score of the 
glycosylation-related signature. (G) A regulatory network consisting of eight genes and 20 potential binding proteins was constructed using 
the GeneMANIA database. (H) GO and KEGG analyses for 28 genes. 
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chemotherapy (yes or no), and radiotherapy (yes  

or no), and compared the expression levels of 

SEL1L/TUBA1C/SDC1 between them. There was an 

insignificant correlation between the GRGs and age 

(Figure 9A) or sex (Figure 9B). High expression of 

TUBA1C and SDC1 was negatively correlated with 

grade (Figure 9C). No significant results were observed 

between the GRGs and clinical stage (Figure 9D).  

High TUBA1C expression positively correlated with  

T staging (Figure 9E), and N staging (Figure 9F)  

and M staging (Figure 9G) were adversely linked  

with high expression of SEL1L. Similarly, there was  

no correlation between the expression of GRGs and 

chemotherapy (Figure 9H) or radiotherapy (Figure 9I). 

 

The biological significance of SEL1L/TUBA1C/ 

SDC1 in pancreatic cancer 

 

TCGA-pancreatic cancer data were classified according 

to NRG expression levels, SEL1L, TUBA1C, and 

SDC1, and each group was analyzed using GO and 

KEGG. The cutoff was set so that the top 50% 

represented high expression of SDC1, SEL1L, and 

TUBA1C and the bottom 50% represented low 

expression of these genes.  

 

High expression of SDC1 in TCGA-pancreatic  

cancer cohort resulted in 269 upregulated genes  

and 85 downregulated genes (Figure 10A, 10B). The 

269 upregulated genes were associated with pan- 

creatic physiological functions (including epidermal 

development, keratinocyte differentiation, and ECM 

organization) and activation processes such as the 

PI3K-Akt signaling pathway, Wnt signaling pathway, 

and ECM receptor interaction (Figure 10C, 10D). The 

85 downregulated genes were mainly involved in 

physiological processes, including protein secretion, 

vitamin metabolic process, and humoral immune 

response, together with activation processes, such as  

the PPAR signaling pathway and protein digestion 

(Figure 10E, 10F). 

 
High expression of TUBA1C in TCGA-pancreatic cancer 

cohort included 143 upregulated genes and 42 down-

regulated genes (Supplementary Figure 3A, 3B). The  

143 upregulated genes were associated with pancreatic 

 

 
 

Figure 9. Comparisons of clinical characteristics between 3 GRGs. Age (A), gender (B), clinical grade (C), clinical stage (D), T staging 
(E), N staging (F), M staging (G), chemotherapy history (H), and radiotherapy history (I) of high and low SEL1L/TUBA1C/SDC1 expression 
groups. 
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physiological functions (including epidermal 

development, keratinocyte differentiation, and ECM 

organization) and activation processes, such as PI3K- 

Akt signaling, the estrogen signaling pathway, and  

ECM receptor interaction (Supplementary Figure 3C, 

3D). The 42 downregulated genes were mainly  

involved in physiological processes, including negative 

regulation of proteolysis, vitamin metabolic processes, 

and humoral immune responses (Supplementary 

Figure 3E, 3F). 

 

 
 

Figure 10. Differential expression and enrichment analysis of high and low SDC1 expression groups. (A) Volcano plots show 

the differential gene expression between SDC1 high expression and SDC1 low expression groups using fold-change values and adjusted p-
values. (B) Heatmap showing differential gene expression (only 50 genes were displayed due to a large number of genes). (C–F) KEGG and 
GO analyses revealed the signaling pathways associated with up-regulated and down-regulated genes in the SDC1 high/low expressed 
groups. An enriched pathway is considered when p < 0.05 or FDR <0.05. 
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High expression of SEL1L in TCGA-pancreatic  

cancer cohort included 48 upregulated genes and  

7 downregulated genes (Supplementary Figure 4A,  

4B). The 48 upregulated genes were associated with 

pancreatic physiological functions (including epidermal 

development, positive regulation of keratinocyte 

differentiation, and ECM organization) and activation 

processes such as pancreatic secretion, protein digestion 

and absorption, and fat digestion and absorption 

(Supplementary Figure 4C, 4D). 

 

Correlation between SEL1L/TUBA1C/SDC1 

expression, immune status, and stemness 

 

Immune infiltration data from the high- and low-

expression SEL1L, TUBA1C, and SDC1 pancreatic 

cancer groups were gathered using CIBERSORT 

algorithms. High levels of SDC1 expression positively 

correlated with naive B cells (p < 0.01), CD8+ T cells 

(p < 0.001), and monocytes (p < 0.001), and poorly 

correlated with M0 macrophages (p < 0.001) (Figure 

11A). High SEL1L levels positively correlated with M1 

macrophages (p < 0.05), M2 macrophages (p < 0.05), 

resting myeloid dendritic cells (p < 0.01), activated mast 

cells (p < 0.01), and neutrophils (p < 0.01), and poorly 

correlated with memory B cells (p < 0.05), follicular 

helper T cells (p < 0.01), and Tregs (p < 0.001) 

(Supplementary Figure 5A). High TUBA1C levels 

positively correlated with M0 macrophages (p < 0.05) 

and M1 macrophages (p < 0.05), but poorly correlated 

with naive B cells (p < 0.05) and CD8+ T cells (p < 

0.05) (Supplementary Figure 5E). 

 

 
 

Figure 11. Comparison of immune status and stemness between groups that express high and low levels of SDC1.  (A) An 

analysis of immune infiltration was obtained using the CIBERSORT algorithm for the high expression group of SDC1 and the low expression 
group of SDC1; the horizontal axis represents immune cells, while the vertical axis displays immune scores (*p < 0.05, **p < 0.01, ***p < 
0.001). (B) Comparison of immune-checkpoint gene expression in SDC1 high expression group and SDC1 low expression group. (C) Table 
showing immune response statistics and immune response scores for different groups. (D) With the OCLR algorithm, SDC1 low expression, 
and SDC1 high expression groups were compared for stemness. (E) The correlation between SDC1/TUBA1C and GDSC drug sensitivity in PC. 
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Next, we examined the relationship between ICGs  

and SEL1L, TUBA1C, and SDC1. SDC1 expression 

strongly correlated with SIGLEC15 (p < 0.001) and 

poorly correlated with CTLA4 (p < 0.05), LAG3  

(p < 0.05), PDCD1 (p < 0.05), and TIGIT (p < 0.01) 

(Figure 11B). SEL1L expression positively correlated 

with three out of eight ICGs including CD274 (p < 

0.001), HAVCR2 (p < 0.01), and PDCD1LG2 (p < 

0.001) (Supplementary Figure 5B). TUBA1C expres-

sion strongly correlated with CD274 (p < 0.05) and 

SIGLEC15 (p < 0.01) (Supplementary Figure 5F). The 

TIDE algorithms revealed that high SDC1 expression 

correlated with a poor immune response (Figure 11C), 

whereas the expression of SEL1L and TUBA1C was not 

closely related to the immune response (Supplementary 

Figure 5C and 5G). There was no crucial correlation 

between stemness and the expression of SDC1 (Figure 

11D), SEL1L (Supplementary Figure 5D), or TUBA1C 

using the OCLR algorithms (Supplementary Figure 5H). 
 

Drug-sensitivity analysis of SEL1L/TUBA1C/SDC1 

in pancreatic cancer 
 

Gene expression-drug correlation analysis is neces-

sary to develop a therapeutic target. Drug-sensitivity 

analysis showed that the expression of SDC1 and 

TUBAC1 was positively correlated with some or most 

medications (Figure 11E). Remarkably, high SDC1 

expression was significantly associated with nearly  

all the existing drugs. This indicated that SDC1 might 

be a possible therapeutic target for pancreatic cancer. 
 

Validating the expression of SEL1L/TUBA1C/SDC1 

in vitro and in vivo 
 

The SEL1L/TUBA1C/SDC1 mRNA expression levels 

were compared in normal and pancreatic cancer tissues 

using TCGA. Pancreatic cancer samples had a higher 

expression of TUBA1C and SDC1 compared with the 

standard samples, while SEL1L expression was lower 

in vitro and in vivo (Figure 12A). A comparison of 

SEL1L/TUBA1C/SDC1 mRNA expression levels in 

various pancreatic cancer cell lines using the Cancer 

Cell Line Encyclopedia (CCLE) database showed that 

most pancreatic cancer cells expressed less SEL1L 

than SDC1 or TUBA1C (Figure 12B). Additionally, we 

compared the levels of SEL1L/TUBA1C/SDC1 expres-

sion in normal and pancreatic cancer tissues using the 

Human Protein Atlas (HPA) database. In the HPA 

database, the expression levels of TUBA1C, SDC1, and 

SEL1L displayed a comparable pattern (Figure 12C). 
 

Validation of the glycosylation-related signature by 

qRT-PCR 
 

In order to further validate 3 GRGs expression in the lab, 

qRT-PCR in normal pancreatic cells (hTERT-HPNE) 

and 3 pancreatic cancer cell lines (AsPC-1, BxPC-3, 

PANC-1) were carried out. The mRNA expression 

levels of SDC1 and TUBA1C were significantly 

increased and the expression of SEL1L was relatively 

lower in PC cell lines compared to hTERT-HPNE 

(Figure 13A–13C), which were consistent with our 

bioinformatics analysis results. 

 

DISCUSSION 
 

Protein glycosylation is the most common post-

translational modification that serves diverse biological 

functions [28]. Almost all proteins are glycosylated  

in at least one way during their synthesis [29]. A new 

hallmark of cancer is aberrant glycosylation, which 

plays a critical role in tumor biology [11]. This may 

offer an opportunity to predict and treat cancer out-

comes. Glycosylation-related gene-based signatures 

predicted the prognosis of ovarian cancer and head and 

neck squamous cell carcinoma [30, 31]. However, the 

role of GRGs in pancreatic cancer is poorly studied; 

therefore, this study determined their correlation. 

 

Precision medicine is a new approach for obtaining  

and integrating information from biomedical research 

and clinical practice [32]. The higher success rates of 

precision medicine in treating HER2-positive breast 

cancer [33] and EGFR-positive lung cancer [34] high-

light its potential to widely change clinical practice. Our 

study divided samples into four clusters (C1, C2, C3, and 

C4) based on the DE-GRG dataset of pancreatic cancer, 

and examined the differences between the clusters. 

Survival probability was significantly different between 

these four clusters using Kaplan–Meier plots: C4 and 

C2 had the worst and best prognosis, respectively. 

Immune infiltration and ICG analysis of the four groups 

revealed significant differences in the immune micro-

environment. TIDE analysis confirmed differences  

in immune responses among the four clusters. These 

findings show that glycosylation is closely associated 

with pancreatic cancer and highlight its prognostic value. 

 
We identified three GRGs closely related to pancreatic 

cancer: SEL1L, TUBA1C, and SDC1. Syndecan 1 

(SDC1) is a transmembrane heparan sulfate proteo-

glycan component that has a variety of functions in  

the development, proliferation, adhesion, and angio-

genesis of tumor cells [35, 36]. In general, SDC1 is 

downregulated in gastrointestinal cancers. Loss of 

epithelial SDC1 is associated with poor prognosis in 

hepatocellular carcinoma, colorectal cancer, and gastric 

cancer patients, together with high tumor volume and 

high histological grade [37, 38]. Nevertheless, SDC1 

levels are solely elevated in pancreatic cancer (the 

only gastrointestinal malignancy) which speeds up 

tumor growth [39]. Serum SDC1 is a promising new 
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biomarker for patients with pancreatic cancer [40]. 

Suppressor Enhancer Lin12 1-like (SEL1L) is a  

single-transmembrane protein that resides in the ER  

and destroys misfolded proteins [41–44]. The SEL1L 

variant genotype rs12435998 contributes to survival 

time in pancreatic cancer patients who have received 

combined chemotherapy and pancreaticoduodenectomy 

[45]. SEL1L expression reduces pancreatic carcinoma 

cell aggressiveness in vivo and in vitro [46]. Moreover, 

SEL1 regulates the adhesion and proliferation of β-cells 

through interaction with β1 integrin signaling [47]. 

Tubulin Alpha 1c (TUBA1C) is a subtype of α-tubulin 

that is highly correlated with microtubule structure  

that is essential for cell division and mitosis [48,  

49]. Moreover, TUBA1C plays a vital role in cell cycle 

signaling pathways [50] and can significantly affect 

tumor growth and progression [51, 52]. Patients with 

pancreatic cancer have shorter OS when TUBA1C is 

 

 

 
Figure 12. Validation of the mRNA/protein expression levels of SDC1/SEL1L/TUBA1C in vitro and in vivo. (A) The mRNA 

expression levels of SDC1/SEL1L/TUBA1C of PC and normal pancreas in TCGA database. (B) The mRNA expression levels of 
SDC1/SEL1L/TUBA1C of PC cell lines in the CCLE database. (C) The protein expression levels of SDC1/SEL1L/TUBA1C of PC and normal 
pancreas in the HPA database. 
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overexpressed [53]. The findings of our study on 

SDC1/TUBAC/SEL1L are consistent with those of 

previous studies. 

 

We created a three-gene signature that precisely  

predicts the prognosis of individuals with pancreatic 

cancer on the basis of these three GRGs using data from 

TCGA and ICGC cohorts. Both datasets showed that 

low-risk patients had a superior OS compared to high-

risk patients. A recent study predicted the prognosis of 

pancreatic cancer using a two-gene signature (CASP4 

and NLRP1) based on genes related to pyroptosis [25]. 

Additionally, the usefulness of a three-gene signature 

(PRKN, SRC and VDAC1) was evaluated based on 

genes related to mitophagy to predict survival in 

pancreatic cancer patients [26]. Decision curve analysis 

revealed that the proposed model provided better 

clinical benefits. Furthermore, our study developed 

independent prognostic indicators (age scores and risk 

scores) and a nomogram to accurately predict 1-, 3-, and 

5-year survival rates. This may help improve indivi-

dualized treatment strategies for patients with pancreatic 

cancer. These results showed that glycosylation-related 

signatures were significantly associated with pancreatic 

cancer patient prognosis and were better predictors of 

pancreatic cancer outcomes. 

 

Recent advances in immunotherapy have led to notable 

improvements in the treatment of a wide variety of 

cancers [54]. Thus, we looked into the potential effects 

of signals related to glycosylation in the immunological 

microenvironment. High-risk patients in TCGA cohort 

had immunological ratings that were noticeably greater 

than those of low-risk patients. Higher immune  

scores are linked to poorer prognosis in patients with 

pancreatic cancer [55, 56]. Correlations between the 

signature and the immune landscape indicated that this 

signature could help predict the number of CD8+ T 

cells, B cells, neutrophils, and myeloid dendritic cells. 

This might explain why high-risk patients had a poor 

prognosis. 

 

Drug-sensitivity analysis using the Genomics of Drug 

Sensitivity in Cancer (GDSC) database showed that 

SDC1 expression was closely related to existing drugs. 

Interestingly, a previous study found that SDC1+ cell 

lines were susceptible to indatuximab ravtansine in 

breast cancer [57]. Hepatocellular carcinoma cell lines 

are platinum-resistant when syndecan-1 (SDC1) is up-

regulated [58]. Our results indicate that SDC1 may  

be a therapeutic target for the treatment of pancreatic 

cancer. 

 

This study had a few limitations. First, it used public 

datasets without verifying or validating the results using 

in vitro or in vivo models. Thus, the glycosylation-

related signature must be validated in large-scale pro-

spective studies to demonstrate its robustness. Second, 

our nomogram was not externally validated because of 

the lack of specific clinical data for ICGC. Furthermore, 

our results were inconsistent with respect to immune 

infiltration, tumor stemness, and ICB. Nevertheless, 

there is no gold standard approach in the growing field 

of GRGs and their role in cancer. Therefore, we 

integrated as many analytic strategies and sources as 

possible to solidify our findings. 

 

 
 

Figure 13. The expression of the glycosylation-related signature in cell lines. (A–C) qRT-PCR results of the glycosylation-related 

signature in PC cell lines (AsPC-1, BxPC-3, PANC-1) and control cell lines (hTERT-HPNE). *p < 0.05, **p < 0.01, ***p < 0.001. 



www.aging-us.com 13726 AGING 

In conclusion, our findings indicate that pancreatic 

cancer and normal tissues express differential GRGs 

and that pancreatic cancer samples can be divided  

into four subgroups. We established a prognostic 

model based on SDC1/TUBAC/SEL1L with favorable 

prediction performance for pancreatic cancer. The 

prognostic signature significantly correlated with 

clinical outcomes, immune infiltration, and pathway 

enrichment. The findings of this study provide insights 

into the role of GRGs in the prediction of clinical 

outcomes in pancreatic cancer. 

 

MATERIALS AND METHODS 
 

Screening and integrating data 

 

TCGA (https://portal.gdc.cancer.gov/), GEO (https:// 

www.ncbi.nlm.nih.gov/geo/), and the ICGC (https:// 

dcc.icgc.org/) databases were used to obtain trans-

criptome fragments per kilo base per million mapped 

reads (FPKM) data and clinical details. The Genotype-

Tissue Expression (GTEx) dataset of normal pancreatic 

samples was obtained from the UCSC Xena website 

(https://xenabrowser.net/) to investigate differentially 

expressed genes. Additionally, 636 GRGs were 

downloaded from the Molecular Signatures Database 

(MSigDB, http://www.gsea-msigdb.org/gsea/msigdb/). 

We then extracted GRGs that co-existed in TCGA, 

GSE16515, and GSE15471 datasets for further ana-

lysis. Mutations in GRGs in pancreatic cancer were 

analyzed using cBioPortal (http://www.cbioportal.org/). 

Prognostic model construction and validation relied on 

TCGA, GEO, and ICGC cohort datasets using log2(x + 

1) to ensure that gene expression levels were maintained 

across training and testing. Moreover, GRG mutations 

in pancreatic cancer were examined using cBioPortal 

(https://www.cbioportal.org/). 

 

Enrichment analysis 

 

R (version 4.0.5)’s limma package was used to compare 

DE-GRGs in pancreatic cancer tissues to those in 

healthy pancreatic tissues. The DE-GRG screening 

thresholds were set to |logFC| > 1 and p < 0.05. Cluster 

profiles were used to enrich genes with GO and KEGG 

to identify potential signaling pathways involved in DE-

GRGs. Spearman’s correlation was applied using the R 

package ggplot2 to detect correlations between DE-

GRGs. p < 0.05 were regarded as significant (*p < 0.05). 

 

Consistent clustering of molecular subgroups  

 

A consensus analysis was performed using the Consensus 

Cluster Plus package of R [59] and a survival analysis 

to compare the prognostic differences between the 

subgroups. The PAC structure identifying the default 

cluster number is repeated 100 times to extract 80%  

of the sample with clusterAlg = “hc,” and innerLinkage 

= “ward. D2”. A heatmap (v1.0.12) was used to analyze 

clustering with R software 4.0.3. Gene expression  

heat maps were compiled for genes with variance 

greater than 0.1. The top 25% of genes were extracted 

and displayed after sequencing according to variance 

depending on the input target gene number. We 

compared different subtypes and clinical features using 

ggplot2 and heatmaps from R (v4.0.3). The threshold 

for statistical significance was fixed at p < 0.05. 

 
Assessment of immune infiltration, immune 

checkpoint genes (ICGs), response prediction, and 

stemness 

 

CIBERSORT (a component of the R software package 

immunedeconv (https://grst.github.io/immunedeconv)) 

was used to examine the immune infiltration of  

various subtypes [22]. The relationship between GRG 

expression and eight common ICGs was examined 

(SIGLEC15, TIGIT, CD274, CTLA4, HAVCR2, 

LAG3, PDCD1, PDCD1LC2, and HAVCR2). Immune 

checkpoint blockade treatment responses were pre-

dicted using the TIDE algorithm (ICB) [22]. The 

mRNAsi was determined using an OCLR approach 

[24]. We identified the gene expression profile of 

11,774 genes using the mRNA expression signature. 

Spearman’s correlation analysis was performed on 

RNA expression data. The minimum value was 

subtracted from the maximum value, and the result 

was divided by the maximum value to assign a range 

of (0,1) to the dryness index. Visualization was 

accomplished using the R software tools ggplot2 and 

heatmap (v4.0.3). 

 
Prognostic signature establishment and validation 
 

We used the survival R package and the log-rank  

test to conduct a Kaplan–Meier analysis to determine 

the prognostic value of the DE-GRGs on overall 

survival. P < 0.05 were regarded as significant in 

statistics. A prognostic model was created using 

LASSO Cox regression analysis of DE-GRGs from  

the Ggrisk program [60]. A regression coefficient (β) 

was developed from multivariate Cox regression 

analysis, and the Prognosis Index (PI) = (βmRNA1 × 

expression level of mRNA1) + (βmRNA2 × expression 

level of mRNA2) + … + (βmRNAn × expression level of 

mRNAn). The patients were divided into low- and 

high-risk subgroups in accordance with their median 

risk scores. The prediction power of the prognostic 

model was evaluated using Kaplan–Meier survival 

analysis. A time-related ROC analysis was carried out 

to assess the prognostic capacity of the risk model 

using the timeROC program. 

https://portal.gdc.cancer.gov/
https://xenabrowser.net/
http://www.gsea-msigdb.org/gsea/msigdb/
http://www.cbioportal.org/
https://www.cbioportal.org/
https://grst.github.io/immunedeconv
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The ICGC database was used to validate the 

glycosylation-related signature risk-score model. The 

risk scores were calculated in the same manner, and 

patients were categorized based on the median risk 

score. Kaplan–Meier and ROC curve analyses were 

performed. The clinical benefit of the prognostic 

signature was assessed using DCA [61]. 

 
Developing and evaluating a predictive nomogram 

 
Univariate and multivariate Cox proportional hazards 

regression analyses were used to determine whether  

the predictive power of the prognostic model was 

independent of conventional clinical characteristics. The 

1-, 3-, and 5-year survival probabilities of pancreatic 

cancer were evaluated using an independent prognostic 

factor nomogram [62]. Calibration plots were used  

for internal validation to verify their accuracy. 

 
Analysis of drug response and sensitivity in GRGs 

 
Glycosylation-related genes were analyzed using 

GSCALite for drug sensitivity [63]. Correlations were 

determined by Spearman’s correlation analysis between 

mRNA expression levels of GRGs and the 50% inhi-

bitory concentration values for small molecules against 

various cells in the GDSC database. 

 
Evaluation of GRG expression 

 
The expression of GRGs was evaluated using ggplot2 

and the ggdendro package to visualize expression in cells 

from the CCLE (http://www.broadinstitute.org/ccle) 

database. HPA (https://www.proteinatlas.org/) provided 

immunohistochemistry data for clinical samples. 

 
Quantitative real-time PCR (qRT-PCR) 

 
Validation of the mRNA expression levels of SDC1/ 

SEL1L/TUBA1C in PC cell lines (AsPC-1, BxPC-3, 

PANC-1) and a control cell line (hTERT-HPNE) was 

done. The PC cell lines were kindly provided by Suzhou 

Haixing Biosciences Co., Ltd. (Suzhou, China), and  

the normal pancreatic cell line was obtained from 

Wuhan Sunncell Biotech Co., Ltd., (Wuhan, China). 

The PC cell lines and hTERT-HPNE were maintained 

in RPMI 1640 media with 10% Gibco FBS. All the cells 

were cultured at 37°C with 5% CO2. Total RNA were 

isolated from cells using the SPARKeasy bacterial/ 

cell RNA kit (Sparkjade, Shandong, China) and reverse 

transcription was subsequently performed using the 

HiScript III RT SuperMix for qPCR (+gDNA wiper) 

(#R323, Vazyme, China). qRT-PCR was performed with 

ChamQ Universal SYBR qPCR Master Mix (#Q711, 

Vazyme) on a QuantStudio™ 1 Plus System (Thermo 

Fisher Scientific, USA). GAPDH mRNA was employed 

as a reference gene for normalization of expression,  

and the 2−ΔΔCt method was applied to quantify changes 

in the expression of target mRNAs within samples. 

Primer sequences are listed in Supplementary Table 4. 

All experiments were repeated at least three times. 

 

Statistical analysis 

 

Log-rank, Chi-square, Wilcoxon, and Kruskal-Wallis 

tests were used to compare the variables. The threshold 

for statistical significance was fixed at p < 0.05. R was 

used to perform all statistical analyses. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Relationship between the expression of three glycosylation-related genes and the prognosis of 
PC patients. Survival analyses using the TCGA-pancreatic cancer dataset with the expression of SDC1 (A), SEL1L (B), TUBA1C (C). 
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Supplementary Figure 2. Survival curves stratified by different clinical features in TCGA. Survival analyses using the glycosylation-
related signature in patients with different smoking history (A), drinking history (B), radiotherapy history (C), and T staging (D). 
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Supplementary Figure 3. Differential expression and enrichment analysis of high and low TUBA1C expression groups. (A) 
Volcano plots show the differential gene expression between TUBA1C high expression and TUBA1C low expression groups using fold-
change values and adjusted p-values. (B) Heatmap showing differential gene expression (only 50 genes were displayed due to a large 
number of genes). (C–F) KEGG and GO analyses revealed the signaling pathways associated with up-regulated and down-regulated genes in 
the TUBA1C high/low expressed groups; an enriched pathway is considered when p < 0.05 or FDR <0.05. 
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Supplementary Figure 4. Differential expression and enrichment analysis of high and low SEL1L expression groups. (A) 
Volcano plots show the differential gene expression between SEL1L high expression and SEL1L low expression groups using fold-change 
values and adjusted p-values. (B) Heatmap showing differential gene expression (only 50 genes were displayed due to a large number of 
genes). (C, D) KEGG and GO analyses revealed the signaling pathways associated with up-regulated and down-regulated genes in the SEL1L 
high/low expressed groups; An enriched pathway is considered when p < 0.05 or FDR <0.05. 
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Supplementary Figure 5. Comparison of immune status and stemness between groups that express high and low levels of 
SEL1L/TUBA1C. (A) An analysis of immune infiltration obtained using the CIBERSORT algorithm for the high/low expression group of 
SEL1L. (B) Comparison of immune-checkpoint gene expression in the high/low expression group of SEL1L. (C) Table showing immune 
response statistics and immune response scores for the high/low expression group of SEL1L. (D) Stemness for the high/low expression 
group of SEL1L. (E) An analysis of immune infiltration obtained using the CIBERSORT algorithm for the high/low expression group of 
TUBA1C. (F) Comparison of immune-checkpoint gene expression in the high/low expression group of TUBA1C. (G) Table showing immune 
response statistics and immune response scores for the high/low expression group of TUBA1C. (H) Stemness for the high/low expression 
group of TUBA1C. (A and E) The horizontal axis represents immune cells, while the vertical axis displays immune scores (*p < 0.05, **p < 
0.01, ***p < 0.001). 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1 to 3. 

 

Supplementary Table 1. GRGs expression profile of PC in TCGA. 
 

Supplementary Table 2. GRGs expression profile of PC in GSE16515. 
 

Supplementary Table 3. GRGs expression profile of PC in GSE15471. 
 

Supplementary Table 4. Primers of genes. 

SDC1 
F: GAGCTGAAAGGCCGGGAAC 

R: CTGCTCGATGCTCTCTTGGG 

SEL1L 
F: GACTCCTTGCACTAACGCGA 

R: TGCAAAAGGAAATGGTGATGTGT 

TUBA1C 
F: AATGGAGCAGCTGAGGGAAC 

R: GCACTCACGCTTGTAAATGGG 

GAPDH 
F: GGAGTCCACTGGCGTCTTCA 

R: GTCATGAGTCCTTCCACGATACC 

 

 


