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INTRODUCTION 
 

Glioma is a common intracranial tumor with constant 

evolution, frequent recurrence and poor prognosis [1]. 

The 2021 edition of the WHO Classification of Tumors 

of the Central Nervous System classifies gliomas into 

grades 1 to 4, with grades 1 and 2 being low-grade 

gliomas and grades 3 and 4 being high-grade gliomas [2, 

3]. Subtypes defined by genomic and epigenomic 

alterations present distinct prognostic outcomes, such as 

IDH mutation and 1p19q chromosomal deletion [4]. 

Despite recent progress in the therapy for glioma, 

including chemotherapy, surgery, and radiotherapy, 

patients are still associated with unfavorable outcomes. 

Recent studies have demonstrated that the expression of 

molecular biomarkers is an essential factor for cancerous 

prognosis [5–9]. As a result, the molecular differences 

among various gliomas can help oncologists identify the 

prognostic biomarkers and therapeutic targets for glioma 

patients. 
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ABSTRACT 
 

Glioma is a common intracranial tumor and is generally associated with poor prognosis. Recently, numerous 
studies illustrated the importance of 5-methylcytosine (m5C) RNA modification to tumorigenesis. However, the 
prognostic value and immune correlation of m5C in glioma remain unclear. We obtained RNA expression and 
clinical information from The Cancer Genome Atlas (TCGA) and The Chinese Glioma Genome Atlas (CGGA) datasets 
to analyze. Nonnegative matrix factorization (NMF) was used to classify patients into two subgroups and compare 
these patients in survival and clinicopathological characteristics. CIBERSORT and single-sample gene-set algorithm 
(ssGSEA) methods were used to investigate the relationship between m5C and the immune environment. The 
Weighted correlation network analysis (WGCNA) and univariate Cox proportional hazard model (CoxPH) were used 
to construct a m5C-related signature. Most of m5C RNA methylation regulators presented differential expression 
and prognostic values. There were obvious relationships between immune infiltration cells and m5C regulators, 
especially NSUN7. In the m5C-related module from WGCNA, we found SEPT3, CHI3L1, PLBD1, PHYHIPL, SAMD8, 
RAP1B, B3GNT5, RER1, PTPN7, SLC39A1, and MXI1 were prognostic factors for glioma, and they were used to 
construct the signature. The great significance of m5C-related signature in predicting the survival of patients with 
glioma was confirmed in the validation sets and CGGA cohort. 
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Epigenetic modifications which include DNA 

methylation, histone modification, and chromatin 

remodeling have been reported to play roles in the 

occurrence and progression of malignant tumors [10, 

11]. In the past decades, with the advanced development 

of high-throughput sequencing technologies, the 

concern of scientists has been shifted to RNA 

modification [12]. RNA modifications are widely 

distributed in messenger RNA (mRNA), transfer RNA 

(tRNA), and long non-coding RNA (lncRNA), with 

over 100 types identified at present [13]. RNA 

modification is an approach to regulate genes at post-

transcriptional level, including N1-methyladenosine 

(m1A), N6-methyladenosine (m6A), 5-methylcytosine 

(m5C) and N7-methylguanosine (N7G) [13]. Among 

them, m5C is a widespread mRNA modification driven 

by the NOL1/NOP2/sun domain and TRDMT1 in 

eukaryotes [14–16]. At the post-transcriptional level, 

m5C RNA modifications can be dynamically regulated 

by a series of mediator proteins known as “writers, 

erasers, and readers” [17]. The “writers” are RNA-

methylases NSUN1-7, DNMT1, DNMT2, DNMT3A, 

and DNMT3B [18]. The main “eraser” is TET2, which 

acts as a demethylase [19]. And ALYREF is an 

essential “reader” protein, which can recognize and bind 

to m5C sites on mRNA. Previous researches have 

illustrated that RNA modification can dynamically 

regulate important biological processes, including 

protein synthesis, cell proliferation, cell differentiation, 

and even stress response [20, 21]. Furthermore, it is 

clearer and clearer that abnormal expression of m5C 

RNA methylase might assist the development of many 

malignant tumors. NSUN1, NSUN2, and NSUN4 have 

been proved to be up-regulated in various malignant 

tumors, including breast cancer, gallbladder cancer, 

bladder cancer, prostate cancer, and cervix cancer  

[22–25]. 

 

Tumor immune microenvironment (TIM) has also been 

proved to play an important role in the initiation and 

development of cancers, and has a dramatic effect on the 

prognosis of cancer patients [26–29]. Immune subtyping 

of tumors is important in establishing therapy strategies 

and assessing prognosis of patients [30]. Several studies 

have illustrated the correlation between TIM and RNA 

modification. As for gastric cancer, m6A modification can 

estimate the extent of tumor inflammation, TIM stromal 

activity and genetic variation. Low m6A scores showed 

inflamed TIM phenotype and strong response to anti-PD-

1/L1 immunotherapy [31]. In addition, m6A modification 

was decreased in the high-immunity phenotype of lung 

cancer, suggesting that m6A might assist immune 

activities and provide possible strategy for immuno-
therapy [32]. Nevertheless, the potential functions of m5C 

modification in TIM are still unclear, particularly in 

glioma. As a result, exploration of immune infiltration 

characteristics regulated by m5C RNA modification may 

be meaningful for the immunotherapy of glioma. 

 

Here, for the purpose of studying the potential value of 

m5C and novel prediction model for glioma, WGCNA, 

CoxPH and LASSO were performed to select candidate 

genes which may play roles in m5C and immune 

infiltration. The results were further validated by 

external datasets. In addition, the novel prediction 

model presented a high capacity for predicting patients’ 

prognosis. The possible prognostic biomarkers were 

also identified to help the clinic therapy for glioma. 

 

MATERIALS AND METHODS 
 

Dataset collection and data procession 

 

The LGG (n=510) and GBM (n=153) datasets of TCGA 

were obtained from the University of California Santa 

Cruz (UCSC) Xena browser. The transcriptome data were 

RNA-seq (level 3, HTseq-FPKM data) with complete 

clinical information, including age, grade, IDH status, 

gender, survival time. From CGGA, the gene expression 

data and corresponding clinical information of 388 GBM 

and 625 LGG were downloaded as the validation cohort. 

Batch effects were removed by “sva” packages before 

analysis [33, 34]. The single-cell data set was derived 

from the Gene Expression Omnibus (GEO) database 

(GSE103224), with a total of 8 glioma patients. We carry 

on the quality control processing, minGene=200, 

maxGene=6000, pctMT=3. Manual cell types are 

annotated automatically through previous literature as 

follows: Oligodendrocyte (OLIG1, MAG, OLIG2, PLP1, 

MOG, MBP), Astrocyte (S100B, AQP4, GFAP), 

Macrophage (AIF1, CD163, CD68), Microglial (DCX, 

STMN2, MAP2), Endothelial cell (VWF, CD34, FLT1, 

CLDN5), Fibroblasts (MYLK, PDGFRB, LUM, 

ACTA2), T cell (CD3D, CD3E, CD8A) [35, 36]. 

 

Identification of m5C subgroups by unsupervised 

clustering 
 

A total of 13 m5C regulators were extracted from TCGA 

cohorts, including 11 writers, 1 reader and 1 eraser. To 

study the potential biology mechanism of m5C, we 

clustered glioma samples into 2 subgroups by “Consensus 

Cluster Plus” (50 iterations, resample rate of 80%) based 

on the expression of 13 m5C regulators [37, 38]. To verify 

clustering effects, the principal component analysis was 

performed by “PCA” R package. 

 

Relation analysis between m5C subgroups and 

immune infiltration) 
 

The ssGSEA was used to calculate the relative enrichment 

score for each immune cell through an R package called 
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“GSVA” [39, 40]. 23 immune gene sets were collected 

from the study of Charoentong [41], including activated B 

cell, activated CD8 T cell, immature B cell, T follicular 

helper cell, activated dendritic cell, macrophage, natural 

killer T cell, neutrophil and so on. The relative abundance 

of each infiltrating cell was indicated by the enrichment 

scores calculated by ssGSEA (Supplementary Table 1). 

The proportions of 22 tumor infiltrating immune cells in 2 

subgroups were estimated by a “CIBERSORT” R 

package [42, 43]. 

 

Weighted correlation network analysis 

 

To identify m5C-related genes, WGCNA was used to 

establish a gene co-expression network based on TCGA 

datasets. M5C subgroup related modules and hub genes 

were identified by “WGCNA” R package [34, 44]. All 

samples and genes were filtered and used to establish a 

scale-free network by calculating the connection strength. 

A scale-free topology model was determined with scale-

free R2 ranging from 0 to 1. Topological overlap Matrix 

was constructed from the adjacency matrix and used to 

form modules by dynamic tree cut. The soft-thresholding 

power was set as 16, and minimal module size was [39]. 

The relationship between modules and clinical traits were 

calculated by Pearson’s correlation test, and P<0.05 was 

significant confidence. Genes with significances value 

>0.3 and module membership value >0.8 were defined as 

hub genes to perform following analysis. 

 

Construction and evaluation of m5C-related 

signature 

 

We performed a scoring system to quantify the m5C 

modification patterns in individual tumors. TCGA 

datasets were separated into a training cohort (n=332) 

and a validation cohort (n=328) by “caret” package. In 

the training cohort, univariate CoxPH was conducted to 

determine survival-related hub genes. Then, the least 

absolute shrinkage and selection operator (LASSO) 

regression model (iteration=1000) with an elastic-net 

penalty was performed for further screening, using a R 

package called “glmnet” [45]. Finally, multivariate 

CoxPH was performed for constructing a m5C-related 

signature. Based on the median of risk scores, patients 

were classified in to low and high-risk groups. 

 

RT-qPCR verification of gene expression in glioma 

tissues 

 

Total RNA was extracted from tissue specimens using 

Animal RNA Isolation Kit (Invitrogen, Beyotime, 

Shanghai, China) according to the manufacturer’s 
instructions, and RNA was reversely transcribed into 

cDNA using Transcription First Strand cDNA synthesis 

kit (Beyotime, Shanghai, China). Quantitative real-time 

PCR (qRT-PCR) analyses were quantified with 

BeyoFast™ SYBR Green (Beyotime, Shanghai, China). 

The relative expression of SEPT3, CHI3L1, PLBD1, 

PHYHIPL, SAMD8, RAP1B, B3GNT5, RER1, PTPN7, 

SLC39A1 and MXI1 were calculated based on the 2-

ΔΔCt method with GADPH as an internal reference. 

We analyzed the expression between genes in normal 

brain tissue and different glioma tissues. 

 

Single cell analysis of m5C related gene expression in 

glioma 

 

Further, to verify the importance of m5C-related genes. 

We performed the expression of SLC39A1, SEPT3, 

SAMD8, RER1, PAP1B, PTPN7, PLBD1, PHYHIPL, 

MXI1, CHI3L1, B3GNT5 in glioma tumor micro-

environment cells. The enriched cell subpopulations of 

m5C-related genes were also visualized by the R 

package “AUCell”. 

 

Statistical analysis 

 

Correlation coefficients between the expression of m5C 

regulators and infiltrating immune cells were computed 

by Spearman analysis. Survival analysis was generated 

by the Kaplan-Meier (K-M) curve and log-rank test to 

identify significance of differences. Receiver operating 

characteristic (ROC) analyses were performed to 

measure the prognostic capacity of the m5C-related 

signature. Mann-Whitney and Kruskal-Wallis tests were 

performed to determine statistical difference between 

clinical information and subgroups. 

 

Data availability statement 

 

TCGA (https://www.cancer.gov/about-nci/organization/ 

ccg/research/structural-genomics/tcga), CGGA (http:// 

www.cgga.org.cn). 

 

RESULTS 
 

Landscape of variation of m5c regulation in glioma 

 

Using transcriptome data from TCGA and CGGA 

datasets, we analyzed a total of 13 m5c regulators 

including 11 writers, a reader and an eraser in this 

study. Figure 1 summarized the mRNA levels of m5C 

regulators in glioma. Except NSUN2, NSUN3 and 

TRDMT1, 10 m5c regulators were differentially 

expressed between LGG and GBM (Figure 1A, 1B). 

NSUN6 and TET2 had higher expression in LGG, the 

others were opposite. Mutations in IDH were associated 

with a distinctive tumor-cell metabolism, so we 

analyzed the expression of m5C regulators in IDH 

status (Figure 1C, 1D). From the results, DNMT1, 

DNMT3A, DNMT3B, NSUN4, NSUN5, NSUN7 had 

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
http://www.cgga.org.cn/
http://www.cgga.org.cn/
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obviously high expression, and TET2 and TRDMT1 had 

low expression in wild type. The prognostic value of 13 

m5c regulators was revealed by univariate and multi-

variate Cox regression models (Figure 2A, 2B). 

ALYREF, DNMT3B, NSUN4, NSUN6 play a significant 

role in survival of glioma patients. Figure 2C presented a 

remarkably correlation among m5C regulators. We also 

analyzed the correlation among writers, readers and 

erasers in detail (Supplementary Figure 1). It was found 

that tumors with down-expressed eraser gene (TET2) had 

a high expression of writer or reader genes (ALYREF, 

NSUN5 and NSUN7). Tumors with up-expressed eraser 

gene (TET2) also showed high expression of writer genes 

(DNMT1, DNMT3A, DNMT3B, NSUN2, NSUN3, 

NSUN6 and TRDMT1). The above analysis displayed the 

pattern of expression alterations in m5C regulators, 

indicating that m5C regulators may play an essential role 

in the initiation and development of glioma.  

 

Identify two subgroups of gliomas by consensus 

clustering of m5C regulators 

 

To better explore the underlying biology mechanism of 13 

m5c regulators, unsupervised clustering was used to 

cluster patients with the same characteristics. The R 

package of NMF was used to classify patients into 2 

subgroups based on the expression of 13 m5c regulators, 

including 446 cases in cluster 1 and 217 cases in cluster 2 

(Figure 3A, 3B). Principal component analysis proved the 

differences between cluster 1 and cluster 2 (Figure 3C). 

Cluster 1 was characterized with high expression of 

NSUN6, TET2, TRDMT1 and NSUN3, and cluster 2 had 

high expression of NOP2, DNMT1, ALYREF, 

DNMT3A, NSUN4, DNMT3B, NSUN5 and NSUN7 

(Figure 3E and Supplementary Table 2). To further 

compare cluster 1 and cluster 2, we performed survival 

and clinical information analysis. Cluster 1 had better 

survival rate than cluster 2 (Figure 3D, p<0.05). As shown 

in the heatmap, they were significantly different in 

transcriptome subtype, X1p.19q.codeletion, karnofsky 

performance score, IDH status, age, grade and histological 

type (Figure 3E). Above results suggested that m5C RNA 

methylation is correlated with the progression and clinical 

phenotypes of glioma. 

 

The relationship between m5C regulators and 

immune infiltration 

 

Immune microenvironment has been identified as a 

critical regulator in prognosis and immunotherapy, so it 

 

 
 

Figure 1. The landscape of m5C RNA methylation regulators in glioma. (A, B) Vioplots visualized the differentially expressed m5C 

regulators between LGG and GBM in TCGA (A) and CGGA (B). (blue represents LGG and red represents GBM). (C, D) Vioplots visualized the 
differentially expressed m5C regulators with IDH status in TCGA (C) and CGGA (D). (blue represents wild type and red represents mutation type). 
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is worth to investigate the value of m5C regulators in 

immunity. CIBERSORT method, a deconvolution 

algorithm for detecting the immune cells in tumor 

tissues, was used to identify the difference in infiltrating 

immune cells among m5C-related subgroups. We found 

cluster 1 was characterized by the high infiltration of B 

naïve cell, resting Dendritic cell, Eosinophil, 

Macrophage M2, activated Mast cell, Monocyte and 

activated NK cell. Cluster 2 had high infiltration of B 

memory cell, Macrophage M0, Macrophage M1, resting 

Mast cell, Neutrophils, resting NK cell, Plasma cell, 

activated CD4 memory T cell, resting CD4 memory T 

cell, T CD8 cell, T helper cell and T regulatory cell 

(Figure 4A). Then we explored the correlation between 

separate m5C regulators and infiltrating immune cells 

by ssGSEA method. The results also presented 

significantly different immune infiltration between 

clusters (Supplementary Figure 2). We found most of 

m5C regulators were highly correlated with immune 

cells (Figure 4B). Especially, NSUN7 had obviously 

positive correlation with Gamma delta T cell, Type 1 T 

helper cell, Activated dendritic cell, Natural killer T cell 

and Mast cell. Therefore, we could conclude that m5C 

methylation might impact the immune microenviron-

ment in glioma. 

 

Identification of m5C-related module and hub genes 

by WGCNA 

 

We performed WGCNA on the TCGA datasets to 

investigate the hub genes that were mostly correlated 

with m5C methylation modification and infiltrating 

immune cell in glioma (Supplementary Figure 3). 16 

co-expression modules were identified by setting soft-

thresholding power as 16. Clinical information, 

including gender, survival time, survival status, grade, 

age, Karnofsky performance score, IDH status, 

X1p.19q.codeletion and m5C subtype, was included in 

analysis (Figure 5A, 5B). From the heatmap, the 

MEmidnightblue was the most correlated module of the 

subtype (r=0.86, P=1e-190). MEmidnightblue module 

contained 839 genes, and 295 genes (GS value >0.3 and 

 

 
 

Figure 2. Cox regression analysis and interaction of m5C regulators. (A) Univariate CoxPH of 13 m5c regulators in the TCGA dataset. 
(B) Multivariant CoxPH of 13 m5c regulators in the TCGA dataset. (C) The interaction between m5c regulators in glioma. 
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MM value >0.8) were finally defined as hub genes 

(Supplementary Table 3). 

 

Generation of m5c gene signatures 

 

We identified the roles of m5c methylation modification 

in the prognosis and immune micro-environment of 

glioma based on the patient population. Nevertheless, 

the pattern of m5c methylation modification in 

individual patients could not be accurately predicted, so 

we constructed a scoring system to quantify the m5c 

methylation pattern. TCGA cohort was randomly 

divided into a training set and a validation set. 

Univariant CoxPH and LASSO were used to filter 

survival-related hub genes in the training set (Figure 

6A, 6B). Finally, 11 genes constructed a m5c-related 

signature by multivariate CoxPH regression model 

(Supplementary Table 4). Based on the median risk 

score, patients were divided into high-risk and low-risk 

groups. Compared to the high-risk group, the low-risk 

group had obvious survival advance (Figure 6C, 

P=2.998e-15). Validation set also presented the same 

result (Figure 6D, P=5.551e-16). The ROC curve 

analyses in the training set (Figure 6E, AUC=0.852) and 

the validation set (Figure 6F, AUC=0.806) revealed 

promising prognosis value of the signature. From Figure 

7A, 7B, there were obvious differences in m5C 

regulators expression and immune cell infiltration 

 

 
 

Figure 3. Obtaining consensus clusters by m5c regulators. (A) The relationship between cophenetic, dispersion, evar, residuals, rss 

and silhouette coefficients with respect to number of clusters. (B) The consensus map of NMF clusterin in the total TCGA cohort. Patients 
were clustered into subgroups based on the expression of 13 m5c regulators. (C) Principal component analysis for the expression profiles of 
13 m5c regulators to distinguish different cluster. (D) The survival curve in cluster 1 and 2. (E) The correlation analysis of m5c regulators and 
clinical phenotypes in cluster 1 and 2. 



www.aging-us.com 12281 AGING 

between high and low groups. We also used CGGA 

datasets as an external validation and results present 

survival advance (Figure 7C, 7D). At the same time, we 

conducted QRT-PCR analysis to find SEPT3, CHI3L1, 

PLBD1, PHYHIPL, SAMD8, RAP1B, B3GNT5, RER1, 

PTPN7, SLC39A1 and MXI1 have statistically 

significant differences in normal tissue and tumor tissue 

inter-tissue inter-expression groups (Figure 8A–8K). The 

results further confirmed that the m5C signature could 

predict the survival and immune environment of glioma. 

 

 
 

Figure 4. The relationship between m5c and immune. (A) The abundance of each immune cell in two clusters. The lines in the boxes 

were the median values. The asterisks represented the p values (*P < 0.05; **P < 0.01; ***P < 0.001). (B) Spearman correlation analysis of 
immune score and m5c genes. 
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Single-cell analysis of m5c-related gene expression in 

glioma microenvironment 

 

To analyze the relationship between m5c-related genes 

and the immune microenvironment, we performed an 

analysis of their gene expression in glioma monocytic 

cells. As shown in Figure 9A, we first performed the 

identification of cell subpopulation signature genes, 

which were categorized into a total of seven clusters of 

cells, namely, Oligodendrocyte, Astrocyte, Macrophage, 

Microglial, Endothelial cell, fibroblasts, and T cells. we 

found that SAMD8, RER1, MXI1, and CHI3L1 were 

highly expressed in most of the glioma tumor 

microenvironment cells (Figure 9D). 

 

DISCUSSION 
 

Being regarded as the most aggressive primary tumor 

in the brain, glioma has become a tough task in 

neurosurgery [46, 47]. Aberrant RNA epigenetic 

modifications have been reported to play roles in the 

initiation and progression of cancer. For example, 

m6A RNA methylation regulators are important 

participants in the malignant progression of gliomas 

and are potentially helpful for prognostic prediction 

[48]. This indicates that epigenetic modification 

regulators may have a potential value in cancer 

diagnosis and the personalized therapy [49, 50]. 

Previous research only explored the effect of one  

m5C regulator on glioma, and did not systematically 

study how m5C regulator-medicated methylation 

modification patterns influence the progression of 

glioma. For instance, Wang et al. only explored the 

action mechanism of “writers” (NUSN1-7 genes) in 

glioma. However, m5C RNA modifications are not 

only regulated by “writers”, but also “erasers and 

readers”. m5C regulators can interact with each other 

and regulate the whole system together. Here, we 

studied the effect of m5c regulators on glioma, as well 

as the interaction among m5C regulators. 

 

 
 

Figure 5. Detection of m5c-related module by WGCNA. (A) The gene was clustered based on the expression level. (B) Heatmap of the 
association between gene module and the clinical phenotype of glioma. The midnightblue module was the most correlated module of 
subtype characterized. (C) The correlation analysis between membership (MM) in and gene significance (GS) in midnightblue module. 
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Figure 6. Construction of m5c-related signature. (A, B) Identification of prognostic genes and the coefficients constructed using the 

LASSO method. (C, D) Comparing survival in high- and low-risk subgroups by drawing K-M survival curves in the total TCGA cohort, training 
group (C) and validation group (D). (E) The ROC curves of patients with glioma in training group (F) and validation group. 
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Among 13 m5C regulators, most of them were 

overexpressed in GBM and wild type, suggesting the 

important role of m5C RNA modifications in glioma. 

Applying univariant and multivariant CoxPH analysis, 

we proved that ALYREF, DNMT3B, NSUN4 and 

NSUN6 were independent prognostic factors for 

glioma. It has been proved that DNMT3A inhibits the 

proliferation of human glioma cells and induces cell 

cycle arrest [51]. At the same time, this gene ALYREF 

is involved in the occurrence and development of many 

kinds of tumors [52–54]. Knockout of ALYREF 

changes multiple phenotypes of liver cancer and  

breast cancer [53, 54]. At the same time, it is found  

that circRNA_104948/miR-29b-3p/MTSS1/DNMT3B 

pathway may be a potential candidate for targeted 

therapy in patients with glioma [55]. NSUN4 and 

NSUN6 as model genes participate in the prognostic 

model of renal cell carcinoma [56]. It has been reported 

that DNMT3B may play a critical role in the IL-6-

mediated OCT4 expression and the drug sensitivity of 

sorafenib-resistant hepatocellular carcinoma [57]. We 

further explored the interaction among m5C regulators 

and found that an obvious association was shown 

among writers, erasers, and readers. For example, as an 

“eraser”, TET2 was negatively correlated with reader 

(ALYREF) and writers (DNMT3B, NSUN4 and 

NSUN6). These results showed that the interaction 

among the m5C regulators of may significantly 

influence the formation of different m5C modification 

patterns and TIM characteristics between various 

gliomas. 

 

Increasing evidence showed that m6A modification may 

take an essential part in inflammation, innate immunity, 

and anti-tumor effect via the interaction among various 

m6 A regulators [31, 58, 59]. However, the overall TIM 

 

 
 

Figure 7. Validation of m5c-related signature. The differences of immune infiltration cells (A) and m5c expression level (B) between 

high and low risk groups. (C) K-M survival curves for the glioma patients of risk groups in the CGGA dataset. (D) The area under the curve 
(AUC) of ROC curves was 0.631 in predicting survival events from the CGGA dataset. 
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characteristics mediated by multiple m5C regulators 

have not been completely identified. Exploring the 

function of different m5C modification patterns in the 

TIM will help us to understand the anti-tumor immune 

response and provide a guide for more efficient 

immunotherapy strategy. In this study, we revealed two 

different m5C modification patterns. Cluster 1 was 

characterized by the high expression of NSUN6, TET2, 

TRDMT1, and NSUN3. Cluster 2 was characterized by 

the high expression of DNMT1, DNMT3A, DNMT3B, 

ALYREF, NOP2, NSUN4, NSUN5 and NSUN7. 

NSUN6 controls glioblastoma response to temo-

zolomide (TMZ) through NELFB and RPS6KB2 

interaction [60]. TET2 loss is associated with 

glioblastoma (GBM) stem cells and correlates with low 

survival in GBM patients [61]. Knockdown of 

TRDMT1 gene, may affect cancer cell fate during 

chemotherapy for glioma [62]. NSUN3 has been 

considered to be M5 C regulators in low-grade glioma 

[63]. The expression of DNMT1 can predict the 

sensitivity of gliomas to dexitabine [64]. It has been 

proved that DNMT3A inhibits the proliferation of 

human glioma cells and induces cell cycle arrest [65]. 

Figure 4A showed that the TIM of these two clusters 

were quite different. To further explore the relationship 

between m5C and immune activities, we used 

Spearman’s analysis to evaluate the correlation between 

m5C regulators and infiltrating immune cells. We found 

that m5C regulators were strongly correlated with 

immune cells, especially NSUN7, and the correlation of 

most eraser (TET2) is oppositive with other readers and 

writers, except NSUN6. Although there has been no 

 

 
 

Figure 8. The gene of prognostic model was used to verify the correlation of glioma grade by RT-qPCR. (A–K) The box plot 

comparing the expression of key genes in different glioma grades. *P < 0.05; **P < 0.01; ***P < 0.001. 
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research about m5cmodification and immune, the 

relationship between m5C and immune deserves 

further exploration, especially NSUN7. Recent studies 

focus on the activation of dendritic cells by m6A 

methylation. Zhang et al. found that tumor with low-

expressed KIAA1429 showed more enrichment of 

dendritic cell infiltration, and KIAA1429-drived m6A 

modification can facilitate the activation of dendritic 

cells, so as to enhance the anti-tumor immune 

response [32]. 

 

Moreover, in this study, the hub genes identified by 

WGCNA were correlated with m5C and immune 

infiltration. These genes were selected as m5C-related 

signature genes. We used a scoring system to evaluate 

the m5C methylation patterns of every glioma patient—

the m5C-related signature. Similar to the two clusters 

based on 13 m5C regulators, two groups were classified 

based on the median of risk score, which were also 

related to the expression of m5C regulators and immune 

cell infiltration. This illustrated that the m5C 

modifications were important in shaping different 

immune environment landscapes. To conclude, this 

study illustrated the regulatory mechanism of m5C 

modification on immune cell infiltration in glioma 

tissues. The m5C modification pattern may serve as a 

factor which can cause the difference and complexity of 

TIM. The full-scale evaluation of glioma m5C 

modification patterns can assist our study on TIM 

characteristics and guide more effective immuno-

therapy strategies. 

 

This study has certain shortcomings and limitations. 

First, our study suffers from selection bias based on 

database analysis. Second, although the data reliability 

has been mutually verified from multiple databases, it 

still needs to be verified from more clinical 

experiments. Finally, more biologically relevant 

mechanisms need to be further verified by in vivo and in 
vitro experiments. 

 

 
 

Figure 9. Single-cell analysis of m5c-related gene expression in glioma microenvironment. (A) Heatmap demonstrating 
subpopulation signature markers. (B) UMAP demonstrating glioma cell subpopulations. (C) Violin plot demonstrating m5c gene expression in 
cellular subpopulations. (D) m5c-related genes are enriched to express cellular subpopulations. 
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CONCLUSION 
 

The full-scale evaluation of glioma m5C modification 

patterns can assist our study on TIM characteristics 

and guiding more effective immunotherapy strategies. 

This study illustrated the regulatory mechanism of 

m5C modification on immune cell infiltration in 

glioma tissues. Most of m5C RNA methylation 

regulators presented differential expression in GBM 

and wild type, suggesting the important role of m5C 

RNA modifications in glioma. Two m5C clusters were 

different in survival analysis, IDH status, X1p.19q 

codeletion, grade, and histological type. There were 

obvious relationships between immune infiltration 

cells and m5C regulators, especially NSUN7. In the 

m5C-related module from WGCNA, we found SEPT3, 

CHI3L1, PLBD1, PHYHIPL, SAMD8, RAP1B, 

B3GNT5, RER1, PTPN7, SLC39A1 and MXI1 were 

prognostic factors for glioma, and they were used to 

construct a m5C-related signature. The results further 

confirmed that the m5C signature could predict the 

survival and immune environment of glioma. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Association between writer/reader gene expression and eraser gene expression. 
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Supplementary Figure 2. The differences of separate immune infiltration cells in m5c subclusters. 
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Supplementary Figure 3. The construction of a gene co-expression network. (A) The clusters were based on the transcriptome data 

from TCGA. The color intensity represented the clinical phenotypes. (B) Soft-thresholding power analysis was used to construct the scale-free 
fit index of network topology. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 3. 

 

Supplementary Table 1. Genetic composition of 23 immune signatures. 

 

Supplementary Table 2. Different expression of m5c regulators between cluster 1 and cluster 2. 

Gene Cluster 1 Cluster 2 logFC pValue 

ALYREF 4.96004073404525 5.36418000991667 0.113005682972779 6.25596851114577E-22 

DNMT1 3.16902539073529 3.35876105713426 0.0838899467697152 2.62606717504477E-06 

DNMT3A 2.00262148385747 2.21816515840278 0.147477025900186 1.83864159236044E-10 

DNMT3B 0.581909419868778 0.763365497055556 0.391579380008811 2.08978753220134E-11 

NOP2 2.98325979971719 3.13413814140278 0.071179148489837 2.68967655732733E-07 

NSUN2 3.3024012305362 3.30018957917593 -0.000966511074496745 0.740780001003523 

NSUN3 1.28730601264027 1.24975016685185 -0.0427153257210418 0.0255068002429809 

NSUN4 1.67458119171493 1.9381427359537 0.210874496503357 6.34353266505292E-28 

NSUN5 2.27724096185068 3.17409140560648 0.479056719110833 3.25938777353229E-56 

NSUN6 2.62133585067421 1.69061105527778 -0.632757417257666 1.1719942893831E-71 

NSUN7 0.145503581262443 1.07336134429167 2.88300926981398 8.29888406740677E-93 

TET2 1.75695673890724 1.38730541231019 -0.340793239830725 1.29876107820001E-27 

TRDMT1 0.71347017771267 0.640230261712963 -0.156262257610572 5.10987663027065E-07 

 

Supplementary Table 3. Hub genes list of MEmidnightblue module. 

 

Supplementary Table 4. The multivariate Cox coefficients of m5c related signature. 

id coef HR HR.95L HR.95H pvalue 

SEPT3 0.482554120147747 1.62020732612917 1.24661623593266 2.10575773359689 0.000308316082083268 

CHI3L1 0.152505924035992 1.16474936209132 1.03059345896122 1.31636880158307 0.0145810851231528 

PLBD1 -0.654897729976483 0.51949518865556 0.332151476543233 0.812506552266219 0.00410700239776913 

PHYHIPL 0.369448460399882 1.44693635184989 1.04055660172608 2.01202395221149 0.0280701290239393 

SAMD8 -0.686252231421828 0.503459387012789 0.289174215128679 0.876535116585351 0.0152756488909879 

RAP1B 1.31919027638595 3.74039146743468 1.99591622851577 7.00957692000028 0.0000384549796866354 

B3GNT5 -0.435821669489078 0.646733047887283 0.40645557723035 1.0290512879161 0.0658978547378556 

RER1 1.32864693349636 3.77593084399798 1.68076512666403 8.48283529475284 0.00129389525860761 

PTPN7 -0.542411766298823 0.581344493228143 0.291471087299552 1.15950238130946 0.12360012303279 

SLC39A1 0.716870434802349 2.04801377822253 1.09302051566573 3.83740321034563 0.0252477509172979 

MXI1 -0.507759719971774 0.60184236509044 0.363043146687824 0.997716761002842 0.0489729242836353 

 


