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ABSTRACT 
 

Introduction: Gaining a deeper insight into the single-cell RNA sequencing (scRNA-seq) results of bladder cancer 
(BLCA) provides a transcriptomic profiling of individual cancer cells, which may disclose the molecular 
mechanisms involved in BLCA carcinogenesis. 
Methods: scRNA data were obtained from GSE169379 dataset. We used the InferCNV software to determine 
the copy number variant (CNV) with normal epithelial cells serving as the reference, and performed the pseudo-
timing analysis on subsets of epithelial cell using Monocle3 software. Transcription factor analysis was 
conducted using the Dorothea software. Intercellular communication analysis was performed using the Liana 
software. Cox analysis and LASSO regression were applied to establish a prognostic model. 
Results: We investigated the heterogeneity of tumors in four distinct cell types of BLCA cancer, namely immune 
cells, endothelial cells, epithelial cells, and fibroblasts. We evaluated the transcription factor activity of 
different immune cells in BLCA and identified significant enrichment of TCF7 and TBX21 in CD8+ T cells. 
Additionally, we identified two distinct subtypes of cancer-associated fibroblasts (CAFs), namely iCAFs and 
myoCAFs, which exhibited distinct communication patterns. Using sub-cluster and cell trajectory analyses, we 
identified different states of normal-to-malignant cell transformation in epithelial cells. TF analysis further 
revealed high activation of MYC and SOX2 in tumor cells. Finally, we identified five model genes (SLCO3A1, 
ANXA1, TENM3, EHBP1, LSAMP) for the development of a prognostic model, which demonstrated high 
effectiveness in stratifying patients across seven different cohorts. 
Conclusions: We have developed a prognostic model that has demonstrated significant efficacy in stratifying 
patients with BLCA. 
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INTRODUCTION 
 

Bladder cancer (BLCA) emerges as a leading one of the 

most commonly diagnosed solid tumors and accounts 

for the second most common malignant tumor in the 

genitourinary tract, with an incidence rate of over 

400,000 new cases per year and currently affecting over 

two million patients [1, 2]. Recent efforts in cancer 

prevention and treatment have resulted in a substantial 

decrease in mortality rates of BLCA over the past few 

decades, especially in developing countries such as 

China [3, 4]. Nevertheless, patients with BLCA face a 

high risk of cancer metastasis, and the prognosis for 

metastatic BLCA remains poor [5]. Consequently, early 

diagnosis and treatment are critical components of 

effective BLCA management. 

 

Transcriptomics has emerged as a valuable tool for 

analyzing the gene expression signatures of various 

types of cancer. The Cancer Genome Atlas (TCGA) has 

demonstrated the benefits of utilizing gene expression 

signatures and clinical features to classify patients 

based on their treatment responses and disease 

outcomes. Previous literature has focused on finding 

molecular markers of disease [6–8]. However, resolving 

intratumoral heterogeneity remains a significant 

challenge, leading to expression profiles that primarily 

represent the “average” molecular characteristics of 

highly heterogeneous cancer cells [7, 8]. scRNA-seq 

has emerged as a powerful tool for transcriptomic 

profiling of individual cancer cells, facilitating the 

clinical application of more personalized treatments [9]. 

Deeper insight into the scRNA-seq results of BLCA is 

crucial for understanding the mechanisms of BLCA 

carcinogenesis and progression [10, 11]. 

 

In this study, we investigated the heterogeneity of tumor 

cells in four distinct cell types of BLCA: immune cells, 

endothelial cells, epithelial cells, and fibroblasts. We 

evaluated the transcription factor (TF) activity of 

different immune cells in BLCA and identified 

significant enrichment of TCF7 and TBX21 in CD8+ T 

cells. Additionally, we identified two distinct subtypes 

of cancer-associated fibroblasts (CAFs), namely iCAFs 

and myoCAFs, that exhibited distinct communication 

patterns. Using sub-cluster and cell trajectory analyses, 

we identified different states of normal-to-malignant cell 

transformation in epithelial cells. TF analysis further 

revealed high activation of MYC and SOX2 in tumor 

cells. Finally, we screened out five model genes 

(SLCO3A1, ANXA1, TENM3, EHBP1, LSAMP) for the 

construction of a prognostic model, which showed high 

effectiveness in stratifying patients across seven different 

cohorts. Collectively, our findings offer new insights 

into potential precision immune treatments for BLCA. 

 

MATERIALS AND METHODS 
 

The flowchart was shown in Figure 1. 

 

Procurement and processing of transcriptome data 

 

The RNA expression profiles and corresponding 

clinical data of bladder cancer patients (n = 399) were 

 

 
 

Figure 1. Flowchart. 
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obtained from the TCGA-BLCA cohort of the TCGA 

database (http://cancergenome.nih.gov/). Samples with 

a survival time of less than 30 days were excluded. The 

remaining samples were randomly divided into a 

training group and a validation group in a 5:5 ratio. All 

data were normalized to FPKM format and then 

converted to log2 format for subsequent analysis. 

Additionally, to validate the model, the microarray data 

from GSE13507, GSE31684, GSE32894, and 

GSE48075 in the Gene Expression Omnibus (GEO) 

database (http://www.ncbi.nlm.nih.gov/geo/) were used 

as a validation set [12–15]. The batch effect was 

eliminated using the “removeBatchEffect” function in 

the “limma” package. Furthermore, the IMvigor210 

dataset was utilized for the analysis of immunotherapy. 

 

Acquisition and processing of scRNA-seq data 

 

The scRNA-seq dataset utilized in this study was 

obtained from GSE169379 [16]. The tumor samples from 

25 patients and adjacent samples from four patients  

were included. Data analysis was performed using the 

Seurat package. The h5ad file, which was processed  

in the original literature, was directly downloaded for 

cytoplasmic control. Highly variable genes were 

identified and corrected using the SCTransform method, 

while the batch effect was addressed by the Harmony 

approach. Subsequently, dimensionality reduction 

methods such as Uniform Manifold Approximation and 

Projection (UMAP), t-distributed Stochastic Neighbor 

Embedding (t-SNE), and the Louvian clustering algo-

rithm, all from Seurat, were employed. Differentially 

expressed genes (DEGs) analysis between clusters or cell 

types was performed using the FindAllMarkers function 

with the parameters set at a p-value less than 0.05, an 

absolute value of the log2 fold change greater than 0.25, 

and an expression ratio greater than 0.1. 

 

Cell annotation analysis 

 

In order to distinguish immune cells from other cell 

types, PTPRC (CD45) was employed as the marker. 

Subsequently, markers for epithelial cells (EPCAM, 

KRT18, KRT19, GRHL2), fibroblasts (COL1A1, 

COL1A2, COL3A1, ACTA2), and endothelial cells 

(PECAM1, CD34, CDH5, VWF) were used to distinguish 

the remaining cells. Based on these markers, epithelial 

cells were separated and clustered separately to investigate 

their heterogeneity within the tumor. Various visualization 

techniques, including UMAP, t-SNE, histograms, and heat 

maps, were employed to explore the cellular landscape. 

 

Subgroup analysis of specific cell group 

 

In order to perform a subgroup analysis of each cell 

group, immune cells, epithelial cells, fibroblasts, and 

endothelial cells were separated and further distinguished 

using the standard Seurat pipeline. Specific markers and 

sctype software were employed as the basis for grouping, 

and UMAP diagrams were generated for visualization. 

 

CNV analysis of epithelial cells 

 

To analyze CNV in the epithelial cells, we utilized the 

InferCNV software with normal epithelial cells serving 

as the reference. The primary objective was to identify 

malignant cells within the subsets of tumor cells. 

 

Pseudo-timing analysis of epithelial cells 

 

We performed pseudo-timing analysis on the subsets of 

epithelial cells using the monocle3 software with default 

parameters, which involved inferring developmental 

trajectories and ordering of cells based on transcriptomic 

changes. 

 

Analysis of transcription factors and tumor-related 

pathways 

 

To perform transcription factor analysis of each cell 

subgroup, we utilized the Dorothea software to calculate 

activity scores at a cellular basis, which describe the 

enrichment of transcription factors and their downstream 

targets (regulators) in each cell. 

 

Analysis of intercellular communication 

 

Intercellular communication analysis was performed 

using the Liana software. The algorithm utilized a 

combination of techniques, including “natmi,” 

“connectome,” “logfc,” “sca,” and “cellphonedb,” to 

analyze the communication between cells of each cell 

type. 

 

Establishment of a prognostic model 

 

To establish tumor-related risk characteristics, we first 

employed univariate Cox analysis to identify tumor-

related genes with prognostic value. Subsequently, we 

further screened the genes using LASSO regression to 

establish a prognostic model [12]. This approach 

enabled us to generate risk score values for each patient, 

based on which the patients in the TCGA cohort were 

divided into high and low risk score value groups. We 

also examined the correlation between the two sets of 

predictions and evaluated the accuracy of the model. 

 

Prediction of immune response 

 
To predict the immune response of BLCA patients in 

the TCGA database, we utilized the TIDE online 

website (http://tide.dfci.harvard.edu/) to obtain the 

http://cancergenome.nih.gov/
http://www.ncbi.nlm.nih.gov/geo/
http://tide.dfci.harvard.edu/
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TIDE scores of BLCA patients. We input the gene 

expression files of the TCGA-BLCA and IMvigor210 

datasets [17]. After the procedures of standardization 

and cancer type selection, the TIDE website would 

return files with TIDE scores of the samples. Based on 

the TIDE scores, the box plots and histograms were 

generated to determine the differences in immune 

response among different groups (patients of high and 

low risk-score value). 

 

Correlation analysis of the expression data of the 

tumor cells 

 

To investigate the correlation between tumor cells and 

bulk data, we employed the Scissor software to 

correlate the expression data of TCGA-BLCA with 

survival data. The alpha value was set to 0.05, and both 

negative and positive cells related to generation were 

obtained. 

 

Single-sample gene set enrichment analysis 

(ssGSEA) 

 

In this study, we used ssGSEA analysis to calculate the 

Scissor+ score for each TCGA patient, enabling us to 

measure the levels of gene set enrichment in each 

sample [13]. 

 

Statistical analysis 

 

All statistical analyses were conducted using the R 

language. Cox regression analysis was performed using 

the R packages “survival” and “survminer” for both 

univariate and multivariate Cox regression analysis. A 

significance level of P < 0.05 was used to determine the 

prognostic significance. 

 

Data availability statement 

 

All original data can be obtained from the lead author 

Zhou Sun. 

 

RESULTS 
 

Expression profile of BLCA at single-cell resolution 

 

After performing dimensionality reduction clustering 

analysis on the single-cell data, we obtained 38 clusters 

(Figure 2A). The distribution of cells from tumor 

samples and normal samples was displayed in the form 

of a UMAP (Figure 2B). We further utilized the 

expression of PTPRC (CD45) to determine the immune 

cell cluster (Figure 2C). Then, epithelial cell markers 

(EPCAM, KRT18, KRT19, GRHL2), fibroblast 

markers (COL1A1, COL1A2, COL3A1, ACTA2), and 

endothelial cell markers (PECAM1, CD34, CDH5, 

VWF) were used to distinguish the remaining cell types 

(Figure 2D). Compared to normal tissue samples (A, B, 

C, D), tumor samples contained a relatively higher 

proportion of epithelial cells, which could exhibit a 

malignant phenotype to some extent (Figure 2E). The 

bubble diagram showed the marker expression of each 

cell type (Figure 2F). 

 

Analysis of subclassification of immune cells 

 

The immune cells were isolated and subjected to 

dimensionality reduction clustering analysis alone. The 

UMAP generated a total of 12 clusters (Figure 3A). We 

observed that the sample source of the cells was mainly 

tumorous samples (Figure 3B). Six cell subtypes were 

identified through the cell annotation of immune cell 

clusters (Figure 3C). The bubble diagram showed the 

specific markers for each cell type, validating the 

accuracy of the annotation (Figure 3D). We analyzed 

the transcription factors of various immune cell types 

and found that B cells were enriched with cytokines 

such as IRF4, SPIB, RUNX3, MEF2C, POU2F2, and 

STAT2; CD8+ T cells were enriched with TCF7 and 

TBX21; γδ-T cells were enriched with SRF, RXRG, 

RXRB, and MYOD1; basophils were enriched with 

RXRG and RXRB; macrophages were enriched with 

PPARG; neutrophils were enriched with cytokines such 

as SRF, CEBPB, PPARG, and NFKB1 (Figure 3E). We 

demonstrated the highly enriched cytokine activity of 

each cell type on the UMAP diagram (Figure 3F–3J). 

 

Subclassification analysis of fibroblasts and 

endothelial cells 

 

Fibroblasts were isolated and subjected to 

dimensionality reduction cluster analysis. Ten clusters 

were identified using UMAP (Figure 4A). We divided 

fibroblasts into myofibroblasts and inflammatory 

phenotypes, shown on the UMAP plot (Figure 4B). 

From the cell communication analysis, the ligand 

receptors used by the two CAFs to communicate with 

other types of cells were illustrated in Figure 4C, 4D. 

vWF was highly activated in the iCAFs communication, 

while FN1 was highly enriched in the myoCAFs. 

Clusters 0, 1, 3, 5, 8, and 9 were identified as 

myoCAFs, given the detected up-regulation of 

myofibroblast markers, including αSMA and contractile 

proteins (TAGLN, MYLK, MYL9). Clusters 2, 4, 6, 

and 7 expressed iCAFs-specific inflammatory genes, 

such as CFD, MFAP5, and DCN (Figure 4E). Four 

clusters were clustered using UMAP from the 

endothelial cells (Figure 4F). C2 was enriched in 

transcription factors such as ERG, and C3 was enriched 
in SRF (Figure 4G). The transcriptional activity of SRF 

and ERG in different cell types was shown on the 

UAMP plot (Figure 4H, 4I). 



www.aging-us.com 12108 AGING 

 
 

Figure 2. Single-cell expression profile of BLCA. (A) Dimensionality reduction clustering analysis of the whole cell in the BLCA samples. A 

total of 38 clusters were separated by different colors. (B) UMAP dimensionality reduction diagram showed the distribution of cells from 
tumor samples and normal samples. (C) Annotation of the immune cells cluster using the specific marker of PTPRC (CD45). (D) Annotations of 
epithelial cells, fibroblasts, and endothelial cells were shown in the form of UMAP diagram. (E) The proportion of each main cell type in 
different samples. (F) The bubble diagram showed the marker expression of each cell type. Epithelial cell markers: EPCAM, KRT18, KRT19, 
GRHL2; fibroblast markers: COL1A1, COL1A2, COL3A1, ACTA2; endothelial cell markers: PECAM1, CD34, CDH5, VWF. 



www.aging-us.com 12109 AGING 

 
 

Figure 3. Analysis of subclassification of immune cells. (A) Further dimensionality reduction clustering analysis of the immune cells.  

(B) The distribution of cells from normal and tumorous tissues in the immune cells. (C) Six cell subtypes were obtained by cell annotation of 
immune cell clusters. (D) The bubble diagram showed the specific markers for each cell type. (E) The heat map showed the enriched 
transcription factors of various immune cell types. (F–J) The highly enriched cytokine activity of each cell type. 
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Figure 4. Subclassification analysis of fibroblasts and endothelial cells. (A) Ten clusters of fibroblasts were shown in the form of a 

UMAP diagram. (B) The distribution of myofibroblasts and inflammatory fibroblasts in the whole fibroblast population. (C) The bubble plot 
showed the cell communication analysis results of iCAFs with different cell types. (D) The bubble plot showed the cell communication analysis 
results of myo-CAFs with different cell types. (E) The myofibroblast markers (αSMA, TAGLN, MYLK, MYL9) and iCAFs-specific inflammatory 
marker genes (CFD, MFAP5, DCN) were shown in the form of bubble map. (F) Subclustering of the endothelial cells. (G) The heat map showed 
the enriched transcription factors of various endothelial cell types. (H) The transcriptional activity of SRF in different cell types was shown on 
the UAMP plot. (I) The transcriptional activity of ERG in different cell types was shown on the UAMP plot. 
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Analysis of subclassification of epithelial cells 

 

The UMAP diagram showed 17 subclusters of the 

epithelial cells and the sample type sources of their 

cells (Figure 5A, 5B). The vast majority of the 

epithelial cells were derived from the tumorous 

tissues. We found that c1 and c15 were similar to  

c3, c4 and c7 on the cluster correlation heat map 

(Figure 5C). In the pathway analysis, c1 and c15 were 

highly enriched in the p53 pathway, and c3,4, and 7 

were highly enriched in MAPK and hypoxia  

(Figure 5D). Therefore, c1 and c15 can be identified as 

normal epithelial cells, while c3, c4 and c7 were 

intermediate cells experiencing normal-to-tumor 

transition. c1 and c15 contained a large number of 

normal epithelial cells, which were consistent with our 

observation (Figure 5E). We analyzed the enrichment 

heat map of transcription factors (Figure 5F) and 

disclosed the activity of dominant transcription factors 

in each group as a UMAP map (Figure 5G–5I). SP1 

was mainly activated in the normal and premalignant 

cells, while MYC and SOX2 were highly activated in 

the tumorous cells. The activity of the dominant 

pathways in each cluster was also shown (Figure 5K–

5M). The trail pathway was highly enriched in the 

malignant cells. 

 

Cell trajectory and cell communication analysis of 

epithelial cells 

 

We analyzed the cell trajectory of epithelial cells and 

found that normal cells were basically in c1,15, which 

we confirmed as the starting point of cell trajectory. 

The inferred cell trajectory started from c1,15, 

through c3,4,7 (the previously confirmed intermediate 

state), to the other clusters, which generally belonged 

to tumor samples (Figure 6A–6C). Moreover, it could 

be found that the CNV-score also increased with the 

progression of the above trajectory, which further 

supported our conclusion (Figure 6D). We also 

compared the CNV-score of each cluster and found 

that c1,15 < c3,4,7 < the rest of the subpopulations 

(Figure 6E). It was also observed that the pseudo-time 

was positively correlated with the CNV-score (R = 

0.42, p < 2.2e-16) (Figure 6F). Subsequently, we 

performed cell communication analysis on various 

types of cells, focusing on the communication process 

between tumor cells and other cell types, and 

explicitly showing the communication bubble 

diagrams of tumor cells as source and target, 

respectively (Figure 6G, 6H). vWF was highly 

enriched in the endothelial cell to malignant cell 

communication. An extensive array of ligands was 
enriched in the cell communication from iCAFs to 

malignant cells, including LAMA2, COL6A3, SLIT2 

and DCN. 

Construction and verification of the prognostic model 

 

We used Scissor software to correlate the expression 

data of TCGA-BLCA with survival data and single-cell 

data, and obtained 1614 positive cells, which might 

exert a relatively greater impact on survival, and 939 

negative cells. We used UMAP to classify positive, 

negative, and background cells (Figure 7A). Then, we 

analyzed the composition of positive and negative cells. 

It could be seen that the two groups of cells were both 

abundant in tumor samples, especially for the negative 

cells (Figure 7B). The positive and negative cells were 

analyzed for DEGs, and the results of the difference and 

distribution were shown in the volcano plot (Figure 7C). 

We selected 8 highly expressed DEGs in positive cells 

and plotted the box plot, which showed the expression 

levels of these DEGs in the positive and negative cells 

(Figure 7D). In order to further explore the relationship 

between DEGs and the prognosis of BLCA patients, 

TCGA-BLCA was used for model construction, and 

GSE13507, GSE31684, GSE32894, and GSE48075 

datasets were used as validation sets. A total of 24 

prognostic genes were obtained by univariate Cox 

analysis (P < 0.05). Next, LASSO and Cox regression 

analysis were used to develop a prognostic model. 

Under the optimal regularization parameters, five model 

genes (SLCO3A1, ANXA1, TENM3, EHBP1, LSAMP) 

were finally screened out, all of which were risk factors 

(Figure 7E). We performed ROC curve analysis in all 

seven utilized datasets to further study the accuracy of 

differential gene sets in evaluating the prognosis of 

BLCA patients. The AUC values of the seven datasets 

were all greater than 0.5 (Figures 7F–7I, 8A–8C). We 

found that the BLCA of high-risk score value had a 

poor prognosis throughout all seven datasets (P < 0.05). 

 

Immunotherapy analysis of BLCA patients 

 

We used the 51 obtained DEGs to conduct the ssGSEA 

analysis to calculate the signature score of each patient 

as the risk score, which divided the patients into two 

groups (patients of high and low risk-score value). The 

immune response of the TCGA sample was obtained by 

TIDE online analysis. The BLCA patients with high 

risk-score values in the two data sets (TCGA, 

IMvigor210) showed an inferior prognosis (Figure 8D, 

8E). The chi-square test showed significant differences 

in the response to immunotherapy (Figure 8F, 8G). In 

both data sets, we found that the risk value of non-

responsive patients was significantly higher than that of 

the response group (Figure 8H, 8I). 

 

DISCUSSION 
 

Bladder cancer is one of the most common malignancies 

of the urinary tract and emerges as one of the most 
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Figure 5. Analysis of subclassification of epithelial cells. (A) The UMAP diagram showed the 17 subclusters of the epithelial cells.  

(B) The UMAP diagram showed the distribution of normal and tumorous cells in the whole epithelial population. (C) The correlation heat map 
showing the correlative relationship between different subclusters. (D) The TF enrichment analysis results, shown in the form of heat map. 
(E) The UMAP diagram showing the distribution of normal, premalignant and malignant cells in the whole cell population. (F) The enrichment 
heat map showing the predicted activity of transcription factors in different subclusters. (G–J) The predicted activity of SP1 (G), E2F4 (H), MYC 
(I), SOX2 (J) in each of the subclusters, shown in the form of UMAP map. (K–M) The activity of the dominant functional pathways, including 
p53 (K), NFkB (L), Trail (M), in each epithelial cell subcluster. 
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Figure 6. Cell trajectory and cell communication analysis of epithelial cells. (A) The cell trajectory analysis results of epithelial cells. 

(B) The cell trajectory highlighting the pseudotime results of epithelial cells. (C) The cell trajectory analysis results using lines to connect each 
subcluster, highlighting the transformation status of each cluster. (D) The CNV _ score calculated for each epithelial cell, shown on the UMAP 
diagram. (E) The box plot showing the CNV _ score of each cluster. (F) The correlation analysis results of CNV _ score and pseudotime.  
(G, H) The cell communication analysis on communication between malignant cells and various types of cells. 
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Figure 7. Construction and verification of the prognostic model. (A) The UMAP diagram showing the classification of positive, 

negative cells and background cells. (B) The column plot showing the composition of positive and negative cells. (C) The DEGs analyzed from 
positive cells and negative cells, shown in the form of the volcano plot. (D) The expression levels of the 8 prominent DEGs in the positive and 
negative cells. (E) The five model genes (SLCO3A1, ANXA1, TENM3, EHBP1, LSAMP) and their co-efficient. (F–I) The survival analysis and ROC 
curve analysis in all seven utilized datasets. TCGA-BLCA (F–H); GSE13507 (I). 
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Figure 8. Immunotherapy analysis of BLCA patients. (A–C) The survival analysis and ROC curve analysis in all seven utilized datasets. 

GSE31684 (A); GSE32894 (B); GSE48074 (C). (D) The survival analysis of the TCGA-BLCA patients of high and low riskscore value, shown in the 
form of KM curve. (E) The survival analysis of the IMvigor210 cohort of BLCA patients of high and low riskscore value, shown in the form of 
KM curve. (F) The proportion of responsive and non-responsive patients in different risk groups in TCGA-BLCA patients using the chi-square 
test. (G) The proportion of responsive and non-responsive patients in different risk groups in IMvigor210 cohort using the chi-square test.  
(H) The box plot showing risk value of non-responsive and responsive patients in TCGA-BLCA cohort. (I) The box plot showing risk value of 
non-responsive and responsive patients in IMvigor210 cohort. 
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prevalent cancers worldwide [18]. Early diagnosis  

and treatment are critical components of disease 

management [8, 19]. In this study, we combined scRNA-

seq and bulk RNA-seq to investigate the intratumor 

heterogeneity of BLCA and developed a prognostic 

model for BLCA. We investigated the heterogeneity of 

four cell types of BLCA, evaluated the TF activity of 

different immune cells in BLCA, identified two distinct 

subtypes of CAFs, identified different states of normal-

to-malignant cell transformation in epithelial cells, and 

identified five genes to construct a prognostic model. 

 

We comprehensively explored the heterogeneity of four 

cell types of BLCA, including immune cells, endothelial 

cells, epithelial cells, and fibroblasts. And we found that 

tumor samples contained a relatively larger proportion of 

epithelial cells, which could display malignant phenotype 

to a certain extent. We identified the malignant state of 

the epithelial cells in the BLCA samples. Then, we 

identified different states of normal-to-malignant cell 

transformation in epithelial cells by sub-cluster and cell 

trajectory analyses. These subclusters of the malignant 

phenotype were highly enriched with enhanced MYC TF 

activity. The canonical role of MYC is to act as a 

transcriptional regulator in a dimeric DNA-binding 

complex with MAX [20]. Although MYC-MAX dimers 

generally stimulate transcription, MYC can also repress 

target genes via association with the zinc-finger 

transcription factor Miz-1 [21]. While the number of 

transcriptionally activated target genes of MYC is 

substantial, many transcriptionally repressed targets have 

also been identified. It has been estimated that over 15% 

of all human genomic loci may be bound and regulated 

by MYC. MYC is critical in promoting cell-cycle 

progression via transcriptional activation of genes such as 

CDK4 and/or cyclin D2 [22, 23]. In addition to this 

transcriptional function, MYC has also been shown to 

interact directly with the pre-replicative complex (pre-

RC), which controls DNA replication initiation. MYC 

regulates DNA replication via transcriptional activation 

of the CDT1 gene that encodes the origin licensing factor 

Cdt1 [24]. Thus, MYC exerts transcriptional and non-

transcriptional control over DNA replication. The 

regulatory sphere of MYC extends beyond transcriptional 

regulation as it also controls the expression of miRNAs 

[25]. MYC activates miR-17-92, a well-characterized 

miRNA involved in tumorigenesis. The miRNA cluster 

attenuates the function of E2F transcription factors and 

has anti-apoptotic effects, indicating that the effect of 

MYC on cell survival and proliferation is multifaceted 

[26]. Moreover, MYC plays a critical role in cell death 

regulation. The overexpression of MYC leads to 

apoptosis in the absence of survival factors [27].  
The induction of apoptosis by MYC depends on the 

cellular context and can occur through interactions of 

ARF and MYC, or by the ARF/MDM2/p53 axis [28]. 

Disturbances in the balance between pro-proliferative and 

pro-apoptotic functions of MYC can disrupt the 

ARF/MDM2/p53 pathway or result from cooperative 

effects of MYC and anti-apoptotic proteins such as 

BCL2, which can have critical roles in tumorigenesis 

[29]. In BLCA, the downregulation of PRMT5, another 

BLCA oncogene, resulted in a significant reduction in the 

expression of c-Myc, leading to the suppression of cell 

proliferation and invasion in 5637 and T24 cells, which 

was mediated through the NF-κB signal pathway. Further 

clinical endeavours should be dedicated to transforming 

the molecular outcomes of the muti-functional role of the 

MYC into clinical trials of practical usage. 

 

Furthermore, we identified two distinct subtypes of 

CAFs, namely iCAFs and myoCAFs, which exhibited 

distinct communication patterns. We performed cell 

communication analysis focusing on the communication 

process between tumor cells and other cell types. An 

extensive array of ligands was enriched in the cell 

communication from iCAFs to malignant cells, 

including LAMA2, COL6A3, SLIT2, and DCN. It is 

worth noting that Slit2 was highly enriched in the iCAFs 

to malignant cell communication. In the breast cancer 

mouse model, Slit2 was observed to reduce fibrosis by 

upregulating the expression of matrix metalloproteinase 

13 in M1-type tumor associated macrophages (TAMs). 

Notably, an examination of patient samples demons-

trated that high Slit2 expression was significantly 

associated with improved patient survival and was 

inversely correlated with the abundance of CD163+ 

TAMs, indicating that Slit2 might serve as a therapeutic 

target to reduce fibrosis and prevent the recruitment of 

pro-tumorigenic TAMs. These evidences suggested Slit2 

as an immunotherapeutic agent for reprogramming of 

TAMs, which might be a promising direction to 

investigate in the context of CAF. Slit2, along with 11 

other immune-related genes, was found to have 

prognostic value for BLCA. Moreover, higher Robo1, 

the receptor of Slit2, and Slit2 gene expression levels 

were elevated in advanced stages of BLCA. However, 

the underlying mechanism of Slit2 in BLCA requires 

further investigation, which could be facilitated by 

studying Slit2 in the cell-to-cell communication between 

CAFs and malignant cells. 

 

Finally, we identified five model genes (SLCO3A1, 

ANXA1, TENM3, EHBP1, LSAMP) for the construction 

of a prognostic model, which showed high effectiveness 

in stratifying patients across seven different cohorts. 

ANXA1 was identified as one of the 5 genes of 

prognostic value. A growing body of evidence supports 

the notion that dysregulations in Anxa1 expression play a 
critical role in the pathogenesis of cancer, encompassing 

tumor development, invasion, metastasis, initiation, and 

acquired resistance to therapies. Recent research suggests 
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that the role of Anxa1 in tumorigenesis is context-

dependent, whereby it may act as either a tumor 

suppressor or a tumor promoter, depending on the 

specific characteristics of tumor cells or tissues involved. 

Functional studies have demonstrated that ANXA1 

modulated the suppressive function of Treg cells. The 

latest study on the function of ANXA1 in BLCA has 

demonstrated that its knockdown prevented PI16’s 

inhibitory effect on NF-κB activity and cell invasion of 

BLCA cells, suggesting that ANXA1 might function as a 

crucial chaperon of PI16 in the control of the NF-κB 

signaling pathway, and thus participate in the motility 

and invasion of BLCA cells. Nevertheless, in the research 

of ANXA1 on drug resistance and relapse in BLCA, a 

positive correlation was observed between ANXA1 

expression levels and the T stage. In vitro experiments 

found that the drug-resistant cell line pumc-91/ 

ADM showed significant downregulation of ANXA1 

expression compared to normal pumc-91 cells, 

suggesting a role of ANXA1 in BLCA drug resistance. 

Moreover, ANXA1 was shown to foster cell proliferation 

and migration in BLCA by activating the EGFR signal 

pathway. Given these findings, ANXA1 holds potential 

as a valuable biomarker for prognostication in BLCA 

patients, offering insights into the development of precise 

and personalized therapeutic strategies for BLCA in the 

future. 

 

Collectively, we studied the tumor heterogeneity in four 

cell types, immune cells, endothelial cells, epithelial 

cells and fibroblasts of BLCA. We delineated the TF 

activity of the different immune cells in BLCA, 

highlighting TCF7 and TBX21 enrichment in CD8+ T 

cells. We divided the CAFs into iCAFs and myoCAFs, 

which displayed distinct cell communication patterns. 

The subclusters and cell trajectory analysis showed 

different states of normal to malignant cell trans-

formation of epithelial cells. TF analysis showed that 

MYC and SOX2 were highly activated in the tumorous 

cells. Five model genes, namely SLCO3A1, ANXA1, 

TENM3, EHBP1, and LSAMP, were screened out  

for prognostic model construction, displaying high 

stratification efficacy in seven different BLCA cohorts. 

 

CONCLUSIONS 
 

Our study discerned the detailed heterogeneity of 

immune, endothelial, epithelial, and fibroblast cells in 

BLCA samples. We developed a prognostic model, 

demonstrating significant efficacy in stratifying BLCA 

patients. 
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