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INTRODUCTION 
 

The liver’s significance in the synthetic and metabolic 

activities of the organism is essential, but it can be 

impaired by various chemicals [1]. Some cyanogenetic 

chemicals together with lipopolysaccharide (LPS) and 

carbon tetrachloride (CCl4) might cause acute liver 

injury (ALI), and there are established experimental cell 
models for evaluating the hepatoprotective activities of 

medicines [2, 3]. When kupffer cells (KCs) are 

stimulated by LPS, they begin to release the pro-inflam-

matory cytokine including the tumor necrosis factor-

alpha (TNF-α) and interleukin (IL)-6, that are central and 

important factors to the development of ALI [4]. 

 
Liver injury, liver dysfunction or liver pathology is 

recognized as a heavy pathological state that causes  

the 5th high mortality worldwide [5]. ALI is a serious 

disease (clinical syndrome) that can cause massive 
necrosis or apoptosis of hepatocytes, steatosis of 

hepatocytes, inflammatory reaction, oxidative stress, 

and liver function damage, often resulting in high 
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ABSTRACT 
 

Acute liver injury (ALI) leads to abnormal liver function and damage to liver cells. Syringin (syr) and 
costunolide (cos) are the major extracts from Dolomiaea souliei (Franch.) C.Shih (D. souliei), showing diverse 
biological functions in various biological processes. We explored the underlying hepatoprotective effects of 
syr+cos against LPS-induced ALI. Cell viability and proliferation were assessed using an MTT assay and 
immunofluorescence staining. Flow cytometry analysis was used to detect cell cycle distribution and 
apoptosis. ELISA was utilized to measure liver function and antioxidant stress indexes. qRT-PCR and western 
blotting was performed to determine mRNA and protein levels respectively. Using shRNA approach to Rac1 
analyzed transcriptional targets. The results showed that syr+cos promoted L-02 cell proliferation, inhibiting 
the cell apoptosis and blocking cell cycle in G1 and G2/M phase. Syr+cos decreased the production of ALT, 
AST, LDH, MDA and ROS while increased SOD and CAT activities. Pretreated with syr+cos may decrease 
expressions of caspase-3,7,9, NF-κB, TNF-α proteins, Cyclin B, CDK1 and p-IκB proteins while p-IκB 
increased. Silencing of Rac-1 may protect the liver by increasing AKT, S473, T308 and reducing p-AKT 
proteins. Syr+cos exhibits anti-ALI activity via Rac1/AKT/NF-κB signaling pathway which might act as an 
effective candidate drug for the treatment of ALI. 
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mortality [6]. With the continued deterioration of 

hepatocyte function, liver fibrosis, cirrhosis, and 

eventually liver failure ensue. The advanced stage of 

ALI is a severe condition that currently lacks any 

specific cure apart from undergoing a liver transplant 

[7]. Although enormous progress has been made to  

cure different liver disorders, the progress in treating 

individuals with ALI is not optimal [8]. Hence, there  

is an imminent need to create new and effective 

hepatoprotective agents/drugs that hold promise for 

treating ALI in a clinical setting. 

 
Despite the significant mortality rates associated with 

ALI, effective therapies are still lacking in recent years. 

Currently, some of the most popular phytoconstituents 

with hepatoprotective properties include flavonolignans 

such as silymarin, lignans like schizandrin, and triter-

penoids such as glycyrrhizin [9–11]. However, above of 

three drugs might cause varies adverse reactions or 

further injured on organs [12]. Therefore, there is a 

pressing need for medication that is highly effective, has 

a clear mechanism of action, and low incidence of side 

effects. Natural products are valuable sources for 

developing new drugs to treat liver diseases, particularly 

those that are inflammatory-induced ALI in nature [13]. 

D. souliei has been utilized as a traditional folk medicine 

for centuries to assuaged pain and treat gastrointestinal 

ailments in the Western Sichuan and Eastern Tibet 

regions of China [14]. Earlier studies have established 

that sesquiterpene lactones, sesquiterpene lactone dimers 

(SLDs), lignans, and triterpenes are the principal 

bioactive compounds found in D. souliei [15, 16]. 

There’re barely clinical efficacy of D. souliei but focus is 

on in vivo or in vivo. Upon being extracted from D. 
souliei, these above related compounds demonstrate a 

series of pharmacological effects, including anti-bacterial 

(in vivo) [17], anti-tumor (in vitro) [18], anti-

inflammatory (in vivo) [19], and anti-oxidant activities 

(in vitro) [20].  

 
Syringin (syr) is regarded as a prominent precursor  

of lignans, which are isolated from the roots of D. 

souliei in the ethyl acetate (EA) soluble fraction. This 

substance has garnered growing interest due to its 

ability to inhibit inflammation and regulate immune 

responses [21], as well as its potential to treat conditions 

like DalN/LPS-induced fulminant hepatic failure [22] 

and alleviate acute lung injury caused by LPS [23]. In 

addition, syr was reported to exhibit anti-hyperglycemic 

activity (in vitro) [24], anti-fatigue effect (in vivo)  

[25], useful for releasing acetylcholine, increasing 

insulin secretion (in vitro) [26] and preventing cardiac 

hypertrophy and diabetic cardiomyopathy (in vitro) [27, 

28]. Costunolide (cos) is a natural sesquiterpene lactone 

with anti-cancer (in vivo) [29], anti-oxidant (in vivo) 

[30], anti-inflammatory (in vivo) [31], neuroprotective 

(in vitro) [32], and anti-diabetes (in vivo) [33] 

properties. In recent years, it was reported that cos  

also exhibits the anti-liver injury property [34]. Pilot 

studies have demonstrated the multiple pharmacological 

properties of syr or cos alone, but the specific role  

of syr+cos in hepatoprotection and the mechanisms 

involved are still unclear. To address this gap, we 

investigated the latent effects of syr+cos against ALI 

and to ascertained the hepatoprotective mechanisms 

against LPS-induced damage to L-02 hepatocytes. 

 

MATERIALS AND METHODS 
 

Materials and reagents 

 

In September of 2015, D. souliei was accumulated from 

Sichuan Province of China and subsequently identified 

and confirmed as authentic by Professor Chen in room 

315 at Southwest University of China using a voucher 

specimen/sample (NO. CMX2017-014) [35]. The LPS 

was provided by Shanghai Lianzu Biotechnology Co., 

Ltd. (Shanghai, China) for this study. The total protein 

extraction kit, MTT assay and RIPA lysis buffer were 

obtained from AmyJet Scientific Inc. (Wuhan, China). 

Primary antibodies for rabbit Cyclin B, CDK1, NF-κB 

(p65 nucleus/cytosol), Caspase 3,7,9, p-AKT (S473), p-

AKT (T308), IκB, p-IκB, and IKK α/β, Tublin, β-actin, 

mouse TNF-α, and secondary antibodies (IgG-HRP-

conjugated) were purchased from Wuhan Fine Biotech 

Co., Ltd. (Wuhan, China), Thermo Fisher Scientific  

Inc. (Shanghai, China) and Beyotime Biotechnology 

Co., Ltd. (Shanghai, China) respectively. Additionally, 

GenePharma Co., Ltd. (Shanghai, China) supplied the 

Rac1 short hairpin RNA (shRNA) plasmid (Rac1 

group) and empty plasmid vector (control group). 

 

Extraction and isolation 

 

After air-drying, 11.0 kg of the roots of D. souliei  
was processed into a powder and then extracted using 

95% ethanol via maceration at 37° C overnight, then 

evaporated under vacuum, partitioned and extracted 

with petroleum ether, ethyl acetate, and n-butanol 

sequentially. 296 g of a residue from petroleum ether 

part was finally obtained from a total of 14 fractions. 

Among above fractions, syr (20 mg, molecular 

formula: C17H24O9) and cos (20 mg, molecular 

formula: C15H20O2), which were crystallized and 

recrystallized from fraction C and fraction E 

respectively (Figure 1A). Syr with the purity of 

99.09%, which was confirmed using spectrographic 

method of 1H-NMR (Supplementary Figure 1) and 
13C-NMR (Supplementary Figure 2) respectively by 

comparing with previous literature [36]. Cos with the 

purity of 99.19%, was confirmed using spectrographic 

method of 1H-NMR (Supplementary Figure 3) and 
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13C-NMR (Supplementary Figure 4) respectively by 

comparing with previous literature [37]. Furthermore, 

the reference fingerprint and HPLC fingerprints of  

D. souliei were presented in Supplementary Figures  

5, 6 respectively indicating syr and cos are the main 

compounds from D. souliei. Syr, white powder, 

molecular weight: 372.37, melting point: 174-177° C. 

Cos, white to almost white powder to crystal, 

molecular weight: 232.32, melting point: 106-107° C. 

The chemical property of compounds syr and cos was 

presented in Supplementary Files 1, 2 respectively.  

 

Cell culture and syr+cos treatment  

 

The L-02 cells were obtained from the Cell Bank  

of Typical Culture Preservation Committee (CNTCPC) 

at the Chinese Academy of Sciences (Beijing, China). 

They were then cultured in RPMI-1640 medium 

containing 10% fetal bovine serum, 100 units/mL 

penicillin, and 100 μg/mL streptomycin, and 

maintained in a humidified environment with 95%  

air and 5% CO2 at 37° C. To induce acute liver  

injury and establish ALI model, LPS was dissolved in 

RPMI 1640 medium with concentration of 60 μg/mL, 

which was added to the L-02 cells after 24 hours of 

culture. Adherent cells were detached using ethylene 

diamine tetraacetic acid (EDTA) and plated onto  

96-well plates at 70-80% confluence. Syr (molecular 

formula: C17H24O9, relative molecular mass: 327.37) 

and cos (molecular formula: C15H20O2, relative mole-

cular mass: 232.32) were obtained from the root of  

D. souliei and then dissolved in DMSO. To treat  

LPS-induced L-02 cells, syr+cos was administered  

at final concentrations of either 10 or 40 μM, with 

DMSO being used as the control. The concentration of 

dimethyl sulfoxide (DMSO) added was adjusted to 

ensure it did not exceed 0.1%. All experiments were 

conducted independently in triplicate. 

 

 

 

Figure 1. (A) The separation process diagram of syr+cos that derived from D. soulei and (B) chemical structure of syr. (C) Chemical structure 
of cos. 
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MTT cell viability assay 

 
The 3-(4,-dimethylthiazol-2-y)-2,5-diphenyl-tetrazolium 

bromide (MTT) assay was utilized to evaluate the cell 

viability (Sigma Aldrich, St. Louis, MO, USA). L-02 

cells in their logarithmic growth phase, with a density of 

approximately 70-80%, were seeded onto 96-well plates 

initially. These were then allowed to adherent growth 

overnight. Subsequently, different concentrations of 

syr+cos (10 and 40 μM) as well as 40 μM silymarin 

(sily) were added to LPS (60 μg/mL) induced L-02 cells 

(with cell density approaching 70-80%) and were 

cultured for a duration of 48 hours. DMSO was utilized 

as the control. At specified time points/intervals (1-7 

days), the L-02 cells were treated with MTT (5 mg/mL, 

20 μL per well) and incubated for 4 hours at 37° C. 

After incubation, formazan crystals were dissolved  

in DMSO (150 μL) at room temperature, and the 

absorbance was measured at 560 nm using a micro- 

plate reader (Bio-Rad 550; Bio-Rad Laboratories,  

Inc., Hercules, CA, USA). The analysis of data was 

carried out utilizing GraphPad Prism 8.0 (GraphPad 

Software, Inc., La Jolla, CA, USA). All experiments 

were conducted independently in triplicate. 

 
BrdU staining 

 
To monitor cell proliferation, BrdU staining was 

performed. Initially, 1×106 L-02 cells were seeded onto 

24-well plates and were adherent growth overnight in a 

37° C incubator. 40 μM of syr+cos was then added to the 

medium, with DMSO being used as the control. After 48 

hours, 10 μg/mL of BrdU (Sigma Aldrich, USA) was 

added to the cells for a duration of 2 hours, followed by 

fixation with 4% paraformaldehyde for 15 minutes. The 

cells were then treated with 2 mol/L HCl and 0.3% 

TritonX-100, followed by washing with phosphate-

buffered saline (PBS) three times for 5 minutes. The cells 

were blocked with 10% goat serum for 1 hour at room 

temperature (Beyotime Biotechnology Inc., Shanghai, 

China). Subsequently, the cells were incubated with  

BrdU primary antibody (dilution 1:500, Sigma Aldrich, 

St. Louis, MO, USA) at 4° C overnight, and washed  

with PBS three times for 5 minutes. The cells were then 

incubated with BrdU secondary antibody (dilution 1: 200, 

Sigma Aldrich, St. Louis, MO, USA) for a duration of  

2 hours. The fluorescent signals were observed under a 

fluorescent microscope (Leica DMIL, Wetzlar, Germany), 

and BrdU-positive cells in random fields were counted. 

Relative fluorescence quantitative analysis was deter-

mined using ImagePro 6.0 software. 

 
Flow cytometry analysis 

 
Cells were cultured in medium supplemented with 5  

μM demethylzeylasteral and were harvested for flow 

cytometry analysis, with DMSO being used as the 

control. For the cell cycle assay, cells treated with  

syr were collected after 48 hours, washed with cold  

PBS, fixed in 75% ethanol at 4° C for 48 hours, and 

then incubated in a PBS solution containing 1 μL PI 

(BD, San Jose, CA, USA) and 1 μL RNaseA (Sigma 

Aldrich, USA) at 37° C for 30 minutes. BD accuri C6 

flow cytometry (BD, USA) was then used to analyze 

cell cycle changes. Conversely, for the cell apoptosis 

assay, cells were treated with demethylzeylasteral and 

then collected after 48 hours, washed twice with cold 

PBS, and incubated in 100 μL of binding buffer (BD, 

USA) containing PI (5 μL) and AnnexinV-APC (BD, 

USA, 2.5 μL) at room temperature for 20 minutes. Flow 

cytometry, along with FlowJo software, was used to 

analyze the cell cycle and apoptosis of L-02 cells. All 

experiments were independently performed in triplicate. 

 
ALT, AST and LDH assay  

 
L-02 cells were incubated in 6-well microtiter plates at 

a density of 1×106 cells/well per well and treated with 

60 μg/mL LPS for 4 hours before being treated with syr 

for 48 hours. The cells were washed three times with 

PBS and the culture medium was discarded. To collect 

the treated cells, 100 μL phosphate-buffered saline 

(PBS) was added followed by lysis with 100 μL of 

Triton-100 cell lysis buffer (Beyotime Institute of 

Biotechnology, Shanghai, China). Uniform collection of 

L-02 hepatocytes was achieved through full mixing  

and blowing of the lysate. After centrifugation at 3000 

rpm for 10 minutes at 4° C, commercially available kits 

(Nanjing Jiancheng Bioengineering Research Institute, 

Nanjing, China) were employed to measure the levels  

of ALT, AST, and LDH, as per the manufacturer’s 

instructions, respectively. 

 
MDA, CAT and SOD assay  

 

Biochemical analysis was conducted by assessing  

the levels of MDA, CAT, and SOD in the cell culture 

supernatant using commercial kits procured from  

the Institute of Biological Engineering of Nanjing 

Jiancheng (Nanjing, China) and Beyotime Institute of 

Biotechnology (Shanghai, China) for their respective 

assays. 

 
ROS assay 

 
To quantify intracellular ROS levels, the DCFH-

DA/H2DCFDA (2’,7’-dichlorofluorescein diacetate)-

cell reactive oxygen species detection kit (Abcam, 

Cambridge, UK) was utilized. DCFDA was oxidized by 
ROS in viable cells to form 2’,7’-dichlorofluorescein 

(DCF), which is highly fluorescent at 529 nm. The cells 

were washed 3 times with PBS before adding DCFDA 
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diluted to a final concentration of 20 μM. The cells  

were then incubated for 45 min at 37° C in the dark. 

After washing with PBS three times, fluorescence was 

measured with a multimode microplate reader (Tecan 

Trading AG, Männedorf, Switzerland) at excitation and 

emission wavelengths of 495 nm and 529 nm, 

respectively. The ROS level was calculated as the 

absorbance ratio between the experimental cells and the 

control cells and expressed as a percentage. 

 

In order to measure the levels of intracellular ROS,  

the DCFH-DA/H2DCFDA (2’,7’-dichlorofluorescein 

diacetate)-cell detection kit (Wuhan Chemstan Bio-

technology Co., Ltd., Wuhan, China) for ROS was 

employed. The viable cells oxidized DCFDA with ROS 

to produce 2’,7’-dichlorofluorescein (DCF), which 

emits highly fluorescent light at 529 nm. Prior to adding 

the DCFDA diluted to a final concentration of 20 μM, 

the cells were washed 3 times with PBS and then 

incubated for 45 min at 37° C in the dark. Following 

three additional washes with PBS, the fluorescence  

was measured using a multimode microplate reader 

(Thermo Fisher Scientific Inc., Waltham, MA, USA) 

with excitation and emission wavelengths of 495 nm 

and 529 nm, respectively. The absorbance ratio between 

the experimental cells and control cells was used to 

calculate the percentage of ROS level respectively. 

 

Construction of pLKO.1-shGFP and pLKO.1-Rac1 

vector  

 

Sangon Biotech Company in Shanghai, China designed 

and synthesized primers for the Rac1 gene based on  

the coding sequence (CDS) region of the gene in 

Genbank (Table 1). LPS-induced L-02 cells were 

seeded at a density of 1 × 105 cells/well in 24-well 

plates and pretreated with syr+cos when the cell density 

reached 70~80%. Following the washing of cells  

with cold PBS, total RNA was extracted from them 

using TRIzol (Invitrogen, USA) in accordance with the 

manufacturer’s instructions (n=5). The Rac1 gene was 

amplified in triplicate using the extracted total RNA as a 

template through reverse transcription polymerase chain 

reaction (RT-PCR). The amplified products, including 

pLKO.1, were subjected to agarose gel electrophoresis 

and EB staining for detection (5 μL). After recovery  

and purification, the amplified products were digested 

with BamH and EcoR digestion enzymes. The Rac1 

fragment was then ligated to the pLKO.1 carrier using 

T4 ligase after gel recovery. The competent DH-5alpha 

was transformed and inoculated in a culture dish coated 

with ampicillin at 37° C for 14 hours. The colonies were 

selected, inoculated in liquid culture medium containing 
ampicillin, and cultured for 12 hours. The plasmid 

underwent a series of procedures, including extraction, 

digestion using BamH I, EcoR I, and Hind III, and 

subsequent analysis by agarose gel electrophoresis, 

polymerase chain reaction (PCR), and sequence analysis. 

Finally, the recombinant plasmid containing the Rac1 

gene was successfully constructed. 

 

Plasmid transfection and shRNA interference 

 

L-02 cells induced by LPS were cultured on a 24-well 

plate, and when the cell density reached approximately 

70~80%, the pLKO.1-Rac1 vector was added to serum-

free 1640 medium and mixed for 15 minutes before 

being cultured in full medium for 6 hours. Three 

shRNA sequences targeting the Rac1 gene in L-02 cells 

were designed using the online software BLOCK-iT™ 

RNAi Designer (https://rnaidesigner.thermofisher.com/ 

rnaiexpress/design.do), ThermoFisher’s RNAi website) 

and are listed in Table 2. The cells were transfected 

using lipofectamine 3000 transfection reagent according 

to the manufacturer’s instructions. RNA and protein 

were extracted 48 hours after transfection, and the 

shRNA with the highest transfection efficiency was 

selected for subsequent experiments. 

 

Total RNA extraction and real-time fluorescence 

quantitative PCR 

 

We isolated total RNA from LPS-induced L-02 cells 

transfected with pLKO.1-Rac1 using Trizol reagent 

(Invitrogen, Carlsbad, CA, USA) according to the 

manufacturer’s instructions. The expression level of 

Rac1 mRNA was then quantified using the SYBR 

Premix Ex Taq™ II kit (Takara, China) for quantitative 

reverse transcription PCR (qRT-PCR). We used tubulin 

mRNA levels for normalization, and the specific primer 

pairs are listed in Table 3. We calculated the relative 

expression of Rac1 mRNA compared to tubulin mRNA 

using the 2-ΔCT method. 

 

Western blot analysis 

 

After collection, cells with a density of approximately 

70~80% were lysed in RIPA lysis buffer supplemented 

with phenylmethyl sulfonyl fluoride. The cell lysates 

were denatured at 100° C for 30 minutes, and the 

resulting extracts were centrifuged at 12000 g at 4° C for 

10 minutes. The protein samples were then separated on a 

10% and 12% SDS-PAGE gel respectively at 100 V and 

transferred onto nitrocellulose membranes (Beyotime 

Institute of Biotechnology, Shanghai, China) using a 

semi-dry transfer system. The blots were blocked for  

2 hours at room temperature in 10% skim milk and  

then incubated overnight at 4° C with primary antibodies 

dissolved in 10% fetal calf serum PBS. The primary 
antibodies used for western blotting were rabbit CDK1 

(1:1000), Cyclin B (1:1000), Caspase 3,7,9 (1:1000), NF-

κB p65 (1:1000), TNF-α (1:1000), Rac1 (1:1000), AKT 

https://rnaidesigner.thermofisher.com/rnaiexpress/design.do
https://rnaidesigner.thermofisher.com/rnaiexpress/design.do
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Table 1. Primer sequence design of Rac1. 

Primers Sequence 

Forward primer of Rac1  5′-AAGCTAGGATCCCAGGCCATCAAGTGTGTG-3′ 

Reverse primer of Rac1 5′-AGGCGCCGAATTCTTACAACAGACGGCATTT-3′ 

 

Table 2. Sequence design of shRNA. 

Number of shRNA  Sequence 

shRNA#1 CGCAAACAGATGTGTTCTTAA 

shRNA#2 GCTAAGGAGATTGGTGCTGTA 

shRNA#3 CCTTCTTAACATCACTGTCTT 

 

Table 3. Primer sequence design. 

Primers Sequence 

Forward primer of Rac1 5′-GTAAAACCTGCCTGCTCATCA-3′ 

Reverse primer of Rac1 5′-GGACGCAATTCATAATCTTC-3′ 

Forward primer of Tublin 5′-ATTCAACGGCACAGTCAAGG-3′ 

Reverse primer of Tublin 5′-GCAGAAGGGGCCGGAGATGA-3′ 

 

(1:1000), p-AKT (1:1000), IκB (1:1000), p-IκB 

(1:1000), IKK α/β (1:1000), p-AKT (S473) (1:1000), p-

AKT (T308) (1:1000) Tublin (1:1000) and β-actin. The 

secondary antibody used was goat anti-rabbit (1:2000) 

(Beyotime Institute of Biotechnology, Shanghai, China) 

at room temperature for 1 hour, and the blots were 

washed with PBST for 5 minutes, repeated 3 times. 

Finally, the target proteins were visualized and quanti-

tated using the ECL system and Image Jet software 

(Amersham, Buckinghamshire, UK) with Tublin as the 

internal standard. 

 

Molecular docking verification 

 

The 2D structures of syr and cos were obtained from the 

PubChem database (https://pubchem.ncbi.nlm.nih.gov) 

and saved in “SDF” format. The 3D structure of the 

protein corresponding to the core target, which includes 

CDK1, Cyclin B, Caspase 3, 7, 9, NF-κB, and TNF-α, 

was downloaded from the PDB database (https://www. 

rcsb.org) and saved in “PDB” format. Chem3D 14.0 

software and PyMOL 2.5 software were utilized to 

remove the original ligands and water molecules and 

add hydrogen atoms, respectively. Molecular docking 

was performed between the core target protein receptor 

and the small molecule ligands of syr and cos using 

Discovery Studio 2019 software. The binding activity 

was evaluated using the LibDock score, and Discovery 

Studio 2019 software was used to draw the binding 

mode diagram between the core target protein receptor 

and the small molecule ligand of syr and cos. The 

resulting diagrams were displayed in both 3D and 2D 

structures. 

 

Statistical analysis 

 

Triplicate samples and data were collected and analyzed. 

Mean standard deviation (SD) and statistical significance 

were calculated using Excel (Microsoft, Albuquerque, 

NM, USA) and SPSS 20.0 (IBM, Armonk, NY, USA). 

The results were presented as mean ± SD for the three 

replicates and analyzed using one-way ANOVA followed 

by Dunnett’s multiple comparison tests. P-values less  

than 0.05 and 0.01 were considered significant and very 

significant, respectively. 

 

Data sharing statement 

 

All the data that support the findings of the study are 

included in the article or available from the corresponding 

author, upon reasonable request after publication. 

 

RESULTS 
 

Effects of syr+cos on cell viability 

 

Syr is a kind of phenylpropanol glycosides compound, 

and its chemical structure was shown in Figure 1B.  

Cos is a kind of sesquiterpenoid compound, and  
its chemical structure was shown in Figure 1C. To 

determine whether syr+cos could protect LPS-induced 

L-02 cells against ALI. L-02 cells were exposed to LPS 

https://pubchem.ncbi.nlm.nih.gov/
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at 60 μg/mL concentration while syr+cos at 10 μM and 

40 μM respectively administrated for consecutive 7 days. 

As shown in Figure 2, the cell viability of L-02 cells was 

decreased significantly (P < 0.01) in LPS treatment group 

compared with control group. However, the cell viability 

were significantly increased at concentration of 10 μM (P 

< 0.05) and 40 μM (P < 0.01) respectively while pretreated 

with syr+cos compared with LPS treatment group. As 

well as the sily treatment group (P < 0.01). Therefore, the 

growth of L-02 cells were significantly promoted with 

syr+cos in vitro. Furthermore, cell proliferation was more 

obvious in 40 μM syr+cos treatment group compared with 

10 μM syr+cos treatment group. 

 

Effects of syr+cos on cell proliferation 

 

In the DNA synthesis phase (S phase), BrdU can replace 

thymine and infiltrate into the replicated DNA molecule, 

and then stained with fluorescent labeled BrdU antibody, 

thus the cell proliferation can be detected [38]. Using 

BrdU method to investigate the effects of syr+cos on  

the proliferation of L-02 cells. Compared with the control 

group, immunofluorescence microscopy result revealed 

that the quantity of L-02 cell staining was decreased in the 

nucleus of cells with LPS treatment group. Nevertheless, 

the quantity of L-02 cell staining was increased in the 

nucleus of cells treated with 40 μM syr+cos compared to 

LPS treatment group (Figure 3). Therefore, the 

proliferation of L-02 cells was markedly promoted while 

pretreated with syr+cos. 

Effects of syr+cos on cell cycle 

 

The cell cycle process is regulated by several molecules 

through distinct mechanisms in numerous diseases [39]. 

To assess the impact of syr+cos on the cell cycle 

progression of L-02 cells, PI staining was performed. 

After treating the cells with syr+cos for 48 hours, their 

cell cycle distribution was analyzed by flow cytometry,  

as illustrated in Figure 4. Compared with control group,  

the proportion of G2/M phase cells in LPS treatment 

group increased from 16.94 ±0.09% to 35.27 ±0.23%. 

Compared with LPS treatment group, the percentage of 

G2/M phase cells in 40 μM syr+cos treatment group 

decreased from 35.27 ±0.11% to 28.80 ±0.56%, the 

proportion of S phase cells increased from 21.53 ±0.36% 

to 25.99 ±0.41%, and the proportion of G1 phase cells 

decreased from 40.24 ±0.82% to 37.10 ±0.57%. It was 

proved that syr+cos has an hepatoprotective effect against 

ALI on the cell cycle of LPS-induced L-02 cells by 

blocking in G1 and G2/M phase.  

 

Effects of syr+cos on cell apoptosis 

 

Apoptosis may be a basic biological development of 

cells, which plays a vital role in removing unwanted or 

abnormal cells in cellular organism [40]. The various 

populations of cells could also be discovered once  

cells area unit double stained with annexin V [41]. The 

apoptosis rate of L-02 cells significantly decreased from 

51.73 ±0.11% (LPS treatment group) to 20.05 ±0.23% 

 

 

 

Figure 2. Effects of syr+cos on the cell viability of L-02 cells. Note: The data represent the mean ± SD per group. **P < 0.01 or *P < 0.05 
vs control group; ##P < 0.01 vs LPS treatment group. 
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Figure 3. Effects of syr+cos on L-02 cell proliferation by BrdU immunofluorescence detection (100×). Note: The data represent 
the mean ± SD per group. **P < 0.01 vs control group; ##P < 0.01 vs LPS treatment group. 

 

 
 

Figure 4. Effects of syr+cos on cell cycle in L-02 cells. Note: The data represent the mean ± SD per group. **P < 0.01 vs control group; #P 
< 0.05 vs LPS treatment group. 
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(40 μM syr+cos group) after 48 h syr+cos 

administration (Figure 5). It was revealed that syr+cos 

administration may significantly reduce the apoptosis  

of LPS-induced L-02 cells, thus protecting L-02 cells 

from ALI. 

 

Effects of syr+cos on liver function and biochemical 

measurement  

 

To further assess the hepatoprotective activity of 

syr+cos, the release of ALT, AST, and LDH into the 

culture medium was measured. Compared with control 

group, ALT, AST and LDH levels were markedly 

improved in LPS-induced group (Figure 6). Compared 

with LPS-induced group, ALT, AST (Figure 6A) and 

LDH (Figure 6B) levels were markedly suppressed 

when administrated with syr+cos. The levels of MDA 

(Figure 6C), ROS (Figure 6D), SOD (Figure 6E), and 

CAT (Figure 6F) activities were confirmed by using 

appropriate ELISA kits respectively. The levels of 

SOD, CAT were reduced while increased in MDA  

and ROS in LPS-induced group. However, administra-

ted with varies concentration of syr+cos which may  

reverse this trend. The data indicated syr+cos exhibits 

the potent antioxidant potential and hepatoprotective 

activity. 

Effects of the syr+cos on the expression levels of NF-

κB, TNF-α, caspases-3, 7, 9, Cyclin B, CDK1, IKK 

α/β, IκB, p-IκB, and p65 (nucleus or cytosol) 

 

The expression levels of NF-κB, TNF-α, caspases-3, 7, 

9, Cyclin B and CDK1 proteins were presented (Figure 

7A). The expression levels of IKK α/β, IκB, p-IκB 

proteins were displayed in Figure 7B. The expression 

levels of p65 (nucleus or cytosol) proteins were shown 

in Figure 7C. 

 

TNF-α is considered the most crucial pro-inflammatory 

cytokine in the pathology of ALI. TNF-α is an activator 

of the NF-κB signaling pathway, and the release of NF-

κB amplifies the pro-inflammatory response cascade 

which finally lead severe inflammation occurred [42, 

43]. Compared with the control group, the expression  

of NF-κB and TNF-α proteins was markedly increased 

in LPS treatment group (**P<0.01). Compared with  

the LPS treatment group, the expression level of  

NF-κB and TNF-α proteins was markedly reduced  

in syr+cos treatment group (##P<0.01). The results 

revealed that syr+cos might exhibit hepatoprotective 

effect against LPS-induced L-02 hepatocytes ALI by 

down-regulating the expression of NF-κB and TNF-α 

proteins respectively. 

 

 
 

Figure 5. The results of annexin V and PI double staining after syr+cos treatment (L-02 cells were treated with 40 μM for 48 
h, the apoptotic cells were quantified by flow cytometry). Note: The data represent the mean ± SD per group. **P < 0.01 vs control 
group; ##P < 0.01 vs LPS treatment group. 
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Figure 6. Effects of syr+cos on liver function (A) ALT, AST, (B) LDH and indicators related to oxidative stress (C) MDA, (D) ROS, (E) SOD 

and (F) CAT respectively. Note: The data represent the mean ± SD (n = 5) per group. **P < 0.01 vs control group; ##P < 0.01 vs LPS 
treatment group. 
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Caspases, a family of cysteine proteases that are 

conserved through evolution, which play a momentous 

role in the inflammatory and cell death responses in 

ALI [44]. This family comprises both initiator caspases 

(e.g. caspases 8, 9, and 10) and effector caspases  

(e.g. caspases 3, 6, and 7) [45]. Compared with control 

group, the expression of caspase-3, 7, 9 proteins was 

markedly expanded in LPS treatment group (**P<0.01). 

Compared with the LPS treatment group, the expres-

sion level of caspase-3, 7, 9 proteins was significantly 

decreased in syr+cos treatment group (##P<0.01). The 

results revealed that syr+cos could protect LPS-induced 

L-02 hepatocytes ALI by inhibiting the expression of 

apoptosis proteins (caspase-3, 7, 9). 

 

Cyclin B binds to CDK1, forming the cyclin B-CDK1 

complex, which is required for entry into mitosis and 

progression through the cell cycle [46]. Generally spea-

king, Cyclin B is considered to be the principal cyclin 

protein which may regulate CDK1 activity during the 

 

 
 

Figure 7. (A) Effects of syr+cos on inflammatory pathway, cell cycle and apoptosis-related proteins respectively. (B) Effects of syr+cos on NF-

κB related signaling pathway. (C) Effects of syr+cos on p65 (nucleus) and p65 (cytosol). Note: The data represent the mean ± SD (n = 5) per 
group. **P < 0.01 vs control group; ##P < 0.01 vs LPS treatment group. 
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transition from phases G2 to phases M [47]. CDK1 

kinase mainly regulates G2/M phase, when the content 

of Cyclin B accumulates to a certain value, Cyclin  

B and CDK1 bind to each other to form a complex, 

CDK1 makes substrate protein phosphorylation, and 

leads to chromosome condensation, nuclear fibronectin 

phosphorylation, and finally disintegration of nuclear 

membrane [48]. Compared with the control group,  

the expression of Cyclin B and CDK1 proteins was  

markedly reduced in LPS treatment group (**P<0.01). 

Compared with the LPS treatment group, the expression 

level of Cyclin B and CDK1 proteins was markedly 

increased in syr+cos treatment group (##P<0.01). The 

results showed that syr+cos could protect LPS-induced 

L-02 hepatocytes ALI by promoting the expression of 

Cyclin B and CDK1. 

 

NF-κB as the most important nuclear transcription 

factor in cells, is involved in the transmission of many 

intracellular signaling pathways and the transcription 

and regulation of genetic information [49]. Its signaling 

pathways mainly include activation of IκB kinase, IκB 

protein degradation and nuclear transport of p65. It  

was reported that the NF-κB signaling pathway was 

activated when the IKK complex (IKKα, IKKβ and 

IKKγ) was activated by an upstream signal [50]. Then, 

IKK complex especially IKKα/β could be degraded  

by ubiquitination and promote p65 phosphorylation. 

Therefore, we detect the protein expression level of  

IκB, p-IκB, and IKK α/β, as well as the changes in  

the p65 (nucleus or cytosol) protein level [51]. IκB 

kinase, causing IκB phosphorylation and degradation 

(proteasome dependent ubiquitination degradation), 

release of p65 and p50 heterodimers, exposure of  

nuclear localization sequences, and rapid entry into  

the nucleus. In the present study, it was found that 

compared with the control group, the expression of IκB 

and IKK α/β proteins was markedly increased while  

p-IκB reduced in LPS treatment group (**P<0.01). 

Compared with the LPS treatment group, the expression 

level of IκB and IKK α/β proteins was significantly 

reduced while p-IκB increased in syr+cos treatment 

group (##P<0.01). The results showed that syr+cos 

could protect LPS-induced L-02 hepatocytes ALI  

by attenuating expression of IκB and IKK α/β and 

promoting the expression of p-IκB. In addition, the 

western blot analysis result of cytosol and nucleus p65 

proteins showed that the p65 protein translocated from 

cytosol to the nucleus after administrated with LPS. 

However, cos+syr administration may significantly 

reduce this translocation. 

 

Results of molecular docking  

 

Discovery Studio 2019 software was utilized to 

examine active ingredients and highly connected  

targets identified through the application of network 

pharmacology. Molecular docking visualization results 

indicated that syr+cos effectively entered the active site 

of the key target protein, and interacted with specific 

amino acid residues through hydrogen bonding and 

protein interactions. Among them, syr forms 4 hydrogen 

bonds with the PHE37, VAL150, PRO195, and SER78 

residues of Cyclin B protein (Figure 8A); 5 hydrogen 

bonds were formed with the GLN5, ILE6, GLN49, 

TYR8, and GLY47 residues of CDK1 protein (Figure 

8B); 4 hydrogen bonds were formed with GLU225, 

GLU222, GLN241, LYS221 residues of NF-κB protein 

(Figure 8C); 6 hydrogen bonds were formed with 

SER118, TYR103, ASN116, CYS114, GLN113, and 

GLN126 residues of TNF-α protein (Figure 8D); 5 

hydrogen bonds were formed with GLU124, TYR195, 

TYR197, PRO201, and GLU190 residues of Caspase 3 

protein (Figure 8E), 3 hydrogen bonds were formed 

with TYR523, ASN448, and PRO227 residues of 

Caspase 7 protein (Figure 8F); 6 hydrogen bonds  

were formed with the PRO271, SER272, GLY225, 

TYR153, SER144, and GLY147 residues of Caspase 9 

protein (Figure 8G). The molecular function of those 

binding sites may influence the stability of binding  

of compound. Cos forms 1 carbon hydrogen bond 

(ASN236) and 3 alkyl (DT6, LEU235, VAL187) 

residues of Cyclin B protein (Figure 9A); 1 hydrogen 

bond (LYS26) and 3 alkyl (HIS65, VAL164, GLU163) 

were formed with the residues of CDK1 protein (Figure 

9B); 1 hydrogen bond (TYR9), 1 alkyl (CYS72) and 2 

carbon hydrogen bond (CYS65, PHE61) were formed 

with residues of NF-κB protein (Figure 9C); 3 alkyl 

(CYS76, CYS96, VAL95) and 1 carbon hydrogen bond 

(ARG77) were formed with residues of TNF-α protein 

(Figure 9D); 2 hydrogen bond (THR38, PHE37), 2  

alkyl (PRO195, LEU34) and 1 carbon hydrogen bond 

(PRO35) were formed with residues of CASP3 protein 

(Figure 9E); 3 alkyl (PHE221, TYR223, VAL292)  

and 1 carbon hydrogen bond (PRO227) were formed 

with residues of CASP7 protein (Figure 9F); 2 alkyl 

(LYS73, VAL124) was formed with residues of CASP9 

protein (Figure 9G). The biological activity of a protein 

typically depends on the presence of a small number  

of functional residues (e.g. above amino acid residues 

combined with compounds in different ways or 

competitive activation vs deactivation with the molecule 

substrates). Although residues are predicted to be 

functional, conservation patterns are often more 

complicated. In addition, the hydrogen bond lengths 

formed between the compound and the key target are all 

1-3, which indicating that the hydrogen bond distance 

between amino acids and the compound is relatively 

close and the binding is relatively tight. All of the core 
targets, syr had the strong binding ability (presented as 

LibDock score) with Cyclin B (133.704), CASP 7 

(90.1649), NF-κB (98.5878), CASP 9 (65.4471), TNF-α 
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Figure 8. Molecular docking of syr with 7 proteins. (A) Cyclin B, (B) CDK1, (C) TNF-α, (D) NF-κB, (E) CASP3, (F) CASP7, and (G) CASP9 

respectively. 

 

 
 

Figure 9. Molecular docking of cos with 7 proteins. (A) Cyclin B, (B) CDK1, (C) TNF-α, (D) NF-κB, (E) CASP3, (F) CASP7, and (G) CASP9 

respectively. 
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(108.556), CDK1 (95.7877), CASP 3 (86.8322) respec-

tively. Cos had the strong binding ability with Cyclin B 

(70.359), CASP 7 (958.214), NF-κB (73.6911), CASP 9 

(71.5776), TNF-α (68.4741), CDK1 (68.4288), CASP 3 

(85.3545) respectively (Table 4). 

 

The efficiency of RNAi silencing Racl gene 

expression 

 

L-02 cells were exposed to Lentivirus containing Racl 

shRNA interference plasmid or GFP negative control 

plasmid, and incubated for 48 hours. The qRT-PCR and 

western blot analyses were utilized to assess the mRNA 

(Figure 10A) and protein levels (Figure 10B) of Racl 

respectively. Results indicated a significant reduction  

in Racl expression in the shRacl#1, shRacl#2, and 

shRac1#3 groups compared to the shGFP control group, 

indicating effective interference. The group with the 

highest efficiency of interference was identified as 

shRacl#1 and selected for subsequent experiments 

(Figure 10). 

 
Expression of Rac1/AKT signaling pathway after 

rac1 gene silencing 
 
Previous research suggests that changes in Racl protein 

expression may lead to the phosphorylation of AKT 

protein in cells [52]. In this study, shRNA was utilized 

to silence Racl gene expression in L-02 cells, and 

protein expression of Racl, AKT, and p-AKT were 

evaluated through western blot. Results indicated a 

significant enhancement in AKT protein expression, 

and a reduction in p-AKT protein expression, in the 

Racl interference group compared to control. However, 

treatment with 40 μM syr+cos can reverse this trend 

significantly (Figure 11A). PI3K is a phosphatidylinositol 

3-kinase generated by the binding of extracellular 

receptors and corresponding ligands, which can promote 

the formation of a second messenger phosphatidylinositol 

(3,4,5) triphosphate (PIP3) [53]. After phosphorylation 

by T308 and S473, it can fully activate the kinase 

(AKT), a key downstream of PI3K, serine/threonine. 

AKT is generally believed to be activated on the plasma 

membrane, and after activation, it enters the cytoplasm 

or nucleus [54]. The S473 site disrupts the hydro-

phobicity of AKT, which fully activates AKT activity. 

After exercising their function, T308 and S473 are 

dephosphorylated to terminate AKT signaling [55]. 

Therefore, in order to confirm whether the drug 

activates AKT, we used western blot analysis to detect 

the phosphorylation level of AKT Thr308/Ser473 site 

following reviewer’s suggestion. The specific results 

are shown in Figure 11B. The result revealed that a 

significant reduce in S473 and T308 protein expression, 

and an increase in t-AKT protein expression, in the  

Racl interference group compared to control. However, 

treatment with 40 μM syr+cos may increase  

the expression of S473, T308 and t-AKT proteins 

significantly. In addition, the condition of the nucleus 

was observed through cellular immunofluorescence 

staining, while the expression of p-AKT was verified 

through fluorescence staining. DAPI staining is shown 

in Figure 11C, and there is no bright blue fluorescence 

in the control group, indicating normal liver cells  

and no nuclear apoptosis. The LPS group showed 

dense and dense staining of the liver nuclei with  

bright blue fluorescence, indicating that LPS induced a  

large number of liver cell apoptosis. Compared to  

LPS group, LPS+40 μM syr+cos group was able to 

significantly reduce LPS induced liver cell apoptosis. 

The fluorescence staining results are consistent with 

western blot results. This indicates that syr+cos may 

significantly increase the expression level of p-AKT 

protein, reduce the rate of nuclear apoptosis, and thus 

achieve a protective effect against LPS induced L-02 

cell damage. 

 

DISCUSSION 
 

Liver injury can be caused by various substances  

or factors, such as viruses, alcohol, drugs, toxins, and 

hypoxia, that directly damage hepatocytes [56]. It may 

lead to pathological changes, which including inflam-

mation, fibrosis, apoptosis, and necrosis of hepatocytes, 

finally resulting in liver dysfunction and various liver 

diseases [57]. The repair and regeneration process after 

liver injury is generally accomplished through the 

coordinated efforts of hepatocytes and KCs [58]. To 

better understand the related genes and signaling 

pathways involved in liver repair, it is crucial to clarify 

the mechanisms and pathways of genes involved [59]. 

Analysis of key node genes in the literature suggests 

that apoptosis, cell cycle, and inflammation might play 

significant roles in the development and progression of 

hepatocyte injuries [60, 61]. 

 

Previous studies reported that syr could protect 

hepatocytes from injury by promoting hepatocyte 

proliferation and immune-related ways [62]. It was  

also reported that cos may remarkably suppress the 

proliferation of HepG2 hepatocellular carcinoma cells  

and inhibited autophagy [63]. In order to further investi-

gate the hepatoprotective effect of syr+cos against LPS-

induced ALI in L-02 cells, the proliferation, cell cycle and 

apoptosis of L-02 cells were detected. It was revealed that 

the repair process of liver is complex, which including  

the ability of resting hepatocytes to enter the cell cycle 

induced by cytokines in the initiation phase, and  

the ability of proliferating cells to proliferate through 

continuous division (through G1, S, G2 and M phases) 

until the recovery of liver function [64]. It has also been 

reported that about 95% of the resting phase (G0 phase) 
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Table 4. The results of molecular docking. 

Compound Target PDB LibDock score 

syringin Cyclin B 1bu2 133.704 

syringin CASP 7 1f1j 90.1649 

syringin NF-κB 1ikn 98.5878 

syringin CASP 9 1jxq 65.4471 

syringin TNF-α 1tnr 108.556 

syringin CDK1 4yc6 95.7877 

syringin CASP 3 7seo 86.8322 

costunolide Cyclin B 1bu2 70.359 

costunolide CASP 7 1f1j 58.214 

costunolide NF-κB 1ikn 73.6911 

costunolide CASP 9 1jxq 71.5776 

costunolide TNF-α 1tnr 68.4741 

costunolide CDK1 4yc6 68.4288 

costunolide CASP 3 7seo 85.3545 

 

hepatocytes will synchronously enter the cell cycle 

through proliferation when liver injury occurs, thus 

increasing the overall number of hepatocytes [65]. Based 

on the above reports, BrdU fluorescence staining was 

used to reflect cell proliferation. The results indicated that 

compared with LPS treatment group, the amount of 

BrdU-positive cells in syr+cos treatment group increased 

by 10%. It was proved that syr+cos administration could 

proliferate L-02 cells. In addition, the cell cycle dis-

tribution of L-02 cells was detected by flow cytometry 

 

 
 

Figure 10. Comparison of Rac1 gene silencing efficiency of shRac1#1, shRac1#2 and shRac1#3 construct for (A) PCR result and (B) western 
blot result respectively. 
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Figure 11. (A) The expression of Rac1, AKT, p-AKT proteins respectively. (B) The expression of IKK α/β and IκB, p-IκB proteins respectively.  
(C) The BrdU immunofluorescence results of p-AKT (100×). 
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PI staining. The results revealed that the cells in G1 and 

G2/M phases of L-02 cells were gradually decreased 

after syr+cos administration, while the cells in G1 and 

G2/M phase were gradually increased indicating that 

syr+cos could block the cell cycle in G1 phase and G2/M 

phase respectively. Previous research has demonstrated 

that drugs can promote the proliferation and regene-

ration of hepatic parenchymal cells, thereby preventing 

cell necrosis or apoptosis after liver injury and ultimately 

restoring liver function by replacing necrotic or 

apoptotic hepatocytes [66]. Our research supports this 

finding, as it was discovered that allicin notably inhibits 

L-02 cell apoptosis and reduces AST and ALT levels, 

ultimately providing protection to L-02 cells [67]. In the 

present experiment, Annexin V/PI result showed that 

syr+cos could significantly inhibit L-02 cell apoptosis at 

48 hours after treatment, thus achieving the protection 

of L-02 cells, which was basically consistent with 

Chen’s research. 

 
Apoptosis, programmed cell death controlled by genes 

to maintain intracellular homeostasis, is associated  

with the pathogenesis of numerous liver diseases, 

including fulminant hepatic failure, hepatic injury, viral 

hepatitis, hepatic fibrosis, cirrhosis, and hepatocellular 

carcinoma [68]. The caspase family of proteins is integral 

in inducing and executing apoptosis, with caspase- 

3 playing a vital role in caspase-mediated cell death 

[69]. Caspase-7 also acts as a mediator of apoptosis by 

amplifying the cascade reaction during the apoptosis 

process [70]. Upon receiving a signal, cytochrome c 

firstly binds to apaf-1 then to activate caspase-9, which 

transmits apoptotic information to caspase-3 to trigger 

the apoptotic response [71]. Additionally, caspase-3 and 

-7 have been found to play a role in regulating immune 

homeostasis, with their expression being up-regulated 

following LPS stimulation but down-regulated after 

H2O2 treatment [72]. Our study found that syr+cos 

protects L-02 hepatocytes from LPS-induced injury  

by inhibiting the expression of apoptotic proteins, 

including caspase-3, 7, and 9, as shown by western blot 

analysis. 

 
Cyclin dependent kinases (CDKs), which are typical 

serine/threonine kinases, work together with Cyclin B to 

drive the cell cycle forward [73]. The progression of 

cells through the G1, S, G2, and M phases is directly 

regulated by CDKs [74, 75]. P53 is activated to induce 

cell cycle stagnation when cells are subject to minor 

DNA damage for self-healing [76]. Cyclin B binds  

to CDK1 and is regulated by phosphorylation and 

dephosphorylation, which promotes the G2/M phase 

transition of cells [77]. It has been demonstrated that the 

expression of Cyclin B was up-regulated and the levels 

of ALT and AST were down-regulated after syr+cos 

administration, suggesting that syr+cos may activate the 

pathway related to liver regeneration, induce the expres-

sion of FXR target gene Cyclin B and promote liver 

repair in chemical liver injury [78], which was basically 

consistent with our research. In addition, it was reported 

that ALT/AST was related to the functional impairment 

progress of liver [79]. In the present study, the ratio  

of ALT/AST was lower in syr+cos treatment group than 

in LPS treatment group which indicating drug may 

significantly reduce the ratio with better prognosis. In 

present study, western blot results revealed that syr+cos 

might protect L-02 hepatocytes from LPS-induced ALI 

by increasing the expression of Cyclin B and CDK1 

proteins. 

 
TNF-α has been found to induce hepatocyte apoptosis, 

and its receptor plays a crucial role in liver injury 

caused by hepatotoxic drugs and sepsis, according to 

previous studies [80]. Furthermore, TNF-α expression 

was greatly reduced in mice with a knocked-out  

NF-κB gene [81], which when activated, triggers NF-

κB translocation/transsituation from the cytomembrane  

to the cell nucleus, finally leading to the production  

of proteins such as p65 and IκBα, as well as IκBα 

phosphorylation. Inhibition of NF-κB signaling pathway 

had been proposed as the promising treatment for  

ALI, according to earlier experiments [82]. Syr+cos  

was found to interfere with the inflammatory mediators 

activated by LPS, which are controlled by the NF-κB 

signaling pathway [83]. Western blot analysis revealed 

that syr+cos may alleviate LPS-induced injury in L-02 

hepatocytes by suppressing expression of NF-κB and 

TNF-α proteins within the NF-κB signaling pathway. 

 

In the present study, we evaluated the hepatoprotective 

effect of syr+cos against LPS-induced ALI in L- 

02 cells. Consequently, the hepatoprotective effect of 

syr+cos on LPS induced ALI through the regulation 

NF-κB signaling pathway, apoptotic pathway and cell 

cycle. It was revealed that pretreated with syr+cos 

significantly promoting L-02 cell proliferation, inhibi-

ting cell apoptosis and blocking cell cycle in G1 phase  

and G2/M phase respectively. It was also showed  

that pretreated with syr+cos significantly decreased  

the production of ALT, LDH, AST, MDA, and ROS 

while improved the levels of CAT, SOD respectively. 

Furthermore, syr+cos may downregulate the expression 

level of Caspase-3,7,9, NF-κB, TNF-α and upregulating 

the expression level of Cyclin B, CDK1 and p-IκB 

proteins. In addition, Rac1 transcriptional targets in  

the development of LPS induced L-02 cells were 

analyzed. Thus, by using short hairpin RNA (shRNA) 

approach, our study confirms that Rac-1 signaling  

is involved in ALI and that silencing of Rac-1 may  

protect the liver from ALI by increasing AKT, p- 

AKT (S473), p-AKT (T308) and reducing p-AKT 

proteins.  
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CONCLUSIONS 
 

Above that, syr+cos could be an effective candidate 

drug for the treatment of LPS-induced ALI via 

Rac1/AKT/NF-κB signaling pathway. The present study 

provided the experimental basis and data support for 

revealing the pharmacology mechanism of syr+cos on 

ALI. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. The 1H-NMR spectra of compound syringin. 

 

 
 

Supplementary Figure 2. The 13C-NMR spectra of compound syringin. 
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Supplementary Figure 3. The 1H-NMR spectra of compound costunolide. 

 

 
 

Supplementary Figure 4. The 13C-NMR spectra of compound costunolide. 
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Supplementary Figure 5. The reference fingerprint of Dolomiaea souliei (Franch.) C.Shih. 

 

 
 

Supplementary Figure 6. HPLC fingerprints for 12 batches of Dolomiaea souliei (Franch.) C.Shih. 
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Supplementary Files 
 

Supplementary File 1. Chemical property of 
compound syringin. 

 

ACS of syringin: 118-34-3 

 

Syringin, white powder, molecular weight: 372.37, 

melting point: 174-177° C. 
 
1H-NMR (MeOD, 400 MHz) δ: 6.66 (2H, s, H-2, H-6), 

6.45 (1H, d, J =15.9 Hz, H-7), 6.23 (1H, dt, J = 15.8, 

5.5 Hz, H-8), 4.85 (1H, d, J = 7.8 Hz, H-1'), 4.13 (2H, 

dd, J = 5.6, 1.6 Hz, H-9), 3.80 (6H, s, 3,5-OCH3), 3.76 

(1H, dd, J = 12.0, 2.0 Hz, H-6'a), 3.56 (1H, dd, J = 12.0, 

5.2 Hz, H-6'b), 3.33 (1H, m, H-2'), 3.37 (2H, m, H-4', 

H-5'), 3.20 (1H, m, H-3'). 

 
13C-NMR (MeOD, 100 MHz) δ: 135.89 (C-1), 105.47 

(C-2, C-6), 154.34 (C-3,5), 135.26 (C-4), 131.26 (C-7), 

130.04 (C-8), 63.57 (C-9), 105.34 (C-1'), 75.73 (C-2'), 

78.36 (C-3'), 71.34 (C-4'), 77.82 (C-5'), 62.59 (C-6'), 

57.03 (3,5-OCH3). 

Supplementary File 2. Chemical property of 
compound costunolide. 

 

ACS of costunolide: 553-21-9 

 

Costunolide, white powder, molecular weight: 232.32, 

melting point: 106-107° C. 

 
1H-NMR (CDCl3, 400 MHz) δ: 6.26 (1H, d, J =3.6 Hz, 

H-13a), 5.52 (1H, d, J=3.2 Hz, H-13b), 4.85 (1H, dd, J 

=11.6, 4.3Hz, H-1), 4.74 (1H, d, J =10 Hz, H-5), 4.57 

(1H, t, J =9.9 Hz. H-6), 1.70 (3H, s, H-15), l.42 (3H, s, 

H-14) 13C-NMR (CDCl3, 100 MHz) δ: 127.78 (C-1), 

28.68 (C-2), 41.59 (C-3), 141.57 (C-4), 129.84 (C-5), 

82.08 (C-6), 51.05 (C-7), 26.72 (C-8), 39.79 (C-9), 

138.11 (C-10), 141.72 (C-11), 170.23 (C-12), 119.13 

(C-13), 16.17 (C-14) , 17.28 (C-15). 


