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INTRODUCTION 
 

Gastric cancer (GC) is one of the most common cancer 

types worldwide. As a highly aggressive malignancy, 

more than one million GC new cases and nearly 
760,000 deaths were reported worldwide by 2020 [1]. 

Stomach adenocarcinoma (STAD) is a common gastric 

histological cancer type with a high mortality rate [2]. 

Since most STAD patients are found at late stages, 

systemic therapy based on novel therapeutic approaches 

and targets remains a top priority [3]. Therefore, better 

risk assessment of STAD patients will help in the 

selection of treatment options. 
 

As a type of regulated cell death, immunogenic cell 

death (ICD) is usually driven by stress and accompanied 
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ABSTRACT 
 

Stomach adenocarcinoma (STAD) is a common gastric histological cancer type with a high mortality rate. 
Immunogenic cell death (ICD) plays a key factor during carcinogenesis progress, whereas the prognostic value 
and role of ICD-related genes (ICDRGs) in STAD remain unclear. The MSigDB database collecting ICDRGs were 
selected by univariate Cox regression analysis and LASSO algorithm to establish a novel risk model. The 
Kaplan-Meier survival analysis indicated a significant difference of OS rate of patients by risk score 
stratification. ESTIMATE, CIBERSORT, and single sample gene set enrichment analysis (ssGSEA) algorithms 
were conducted to estimate the immune infiltration landscape by risk stratification. Subgroup analysis and 
tumor mutation burden analysis were also analyzed to identify characteristics between groups. Differences 
in therapeutic responsiveness to chemotherapeutic drugs and targeted drugs were also analyzed between 
high-risk group and low-risk group. The impact of one ICDRG, GPX1, on the proliferation, migration and 
invasiveness of was confirmed by in vitro experiments in GC cells to test the reliability of bioinformatics 
results. This study gives evidence of the involvement of ICD process in STAD and provides a new perspective 
for further accurate assessment of prognosis and therapeutic efficacy in STAD patients. 
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by the active secretion or passive release of a large 

number of damages related molecular patterns (DAMPs), 

such as adenosine triphosphate (ATP), heat shock 

protein (HSP), calreticulin (CRT) and high mobility 

group box 1 (HMGB1) [4]. During ICD process, dying 

cells identified by expressing of pattern recognition 

receptors (PRRs) release “eat me” or “find me” signals 

[5]. These recognized signals stimulate the recruitment 

and activation of various immune cell subtypes, including 

neutrophils and macrophages, resulting in an effective 

immune response [6]. 

 
The anti-tumor immune response induced by tumor 

programmed cell death can enhance the therapeutic 

effect, however, the role of tumor microenvironment 

(TME) in STAD has not been fully reported [7]. It  

has been reported that the prognostic value of TME  

in patients with STAD and its correlation with 

immunotherapy sensitivity [8]. Possible factors affecting 

prognosis through the regulation of TME include m6A 

modification, histone lysine demethylases, nucleotide 

metabolism and neuroendocrine regulation, etc. [9–12]. 

Components such as monocytes, resting mast cells, and 

M2 macrophages were also reported to be associated 

with the expression levels of specific genes that influence 

prognosis [13]. In addition, it has been reported that the 

incidence of prognostic mutations such as TP53 is related 

to the composition of the immune microenvironment 

[14]. As an immune-related process, ICD also plays a 

role through the regulation of TME. ICD process 

effectively activates immune responses and triggers 

tumor-specific adaptive immunity by identifying DAMPs 

released by dying cells in the TME [15, 16]. A growing 

number of preclinical and clinical evidence suggests 

that many successful antitumor therapies have benefited 

from the effective induction of ICD in tumor cells [17, 

18]. Although it has been reported that ICD may be 

involved in the course of oxaliplatin combined with 

immune checkpoint inhibitors in GC patients, the effect 

of ICD on the therapeutic effect of GC and STAD  

and whether TME regulation is involved in this process 

are unclear [19]. 

 
In this study, we systematically investigated the 

relationship between ICD-related genes (ICDRGs)  

and clinicopathological features of STAD patients 

based on TCGA data. A risk model of STAD patients 

based on ICDRGs was subsequently constructed  

and its ability to predict the prognosis was verified. 

We further comprehensively analyzed the immune 

microenvironment of STAD patients and explored the 

impact of risk stratification on immune response and 

drug sensitivity treatment. The impact of one ICDRG, 

GPX1, on the proliferation, migration and invasiveness 

of GC cells was confirmed by in vitro experiments to 

test the reliability of bioinformatics results. This study 

gives evidence of the involvement of ICD process  

in STAD and provides a new perspective for further 

accurate assessment of prognosis and therapeutic 

efficacy in STAD patients. 

 

MATERIALS AND METHODS 
 

Data collection 

 

We selected 34 ICDRGs for our study based on a 

previous study [20] (Supplementary Table 1). The RNA 

sequencing (RNA-seq) data, corresponding clinico-

pathological data, somatic mutation, and copy number 

variation (CNV) files of gastric cancer (GC) were 

obtained from The Cancer Genome Atlas (TCGA) 

database and the Gene Expression Omnibus (GEO) 

database. After removing cases without survival data 

(371 from TCGA and 433 from GSE84437), a total of 

804 GC samples were enrolled. To eliminate the batch 

effect of the combined dataset, we utilized the “SVA” 

and simplify packages for background modification and 

quantitative normalization. 

 

Identification of differentially expressed ICDRGs 

 

In both normal and tumor tissues for GC, the Wilcoxon 

test was employed to conduct a comparative analysis  

of the differential expression of ICDRGs. Furthermore, 

a protein-protein interaction analysis was applied by 

using the STRING database (https://string-db.org/) to 

investigate the plausible association of ICDRGs. 

 

Somatic mutation and CNV estimation of ICDRGs 

 

We utilized the R package “Maftools” to investigate the 

somatic landscape of ICDRGs and generate waterfall 

plots to summarize the status of mutant genes. The 

GISTIC algorithm with a q-value threshold of <0.05 

was employed to detect the CNV of amplification and 

deletion in all samples. To investigate the chromosomal 

position of ICDRGs, we used the R package “RCircos”. 

Moreover, we compared the percentage numbers  

of microsatellite stability (MSS), low microsatellite 

instability (MSI-L) and high microsatellite instability 

(MSI-H) across different ICDRG score groups. 

 

Unsupervised consensus clustering analysis 

 

To functionally characterize the molecular subtypes of 

ICDRGs in GC, we conducted an unsupervised consensus 

clustering analysis using the “ConcensusClusterPlus” R 

package. This was based on the 33 ICDRGs expression 

profiles, with 1,000 iterations and a sampling of 80% 

of the data, to achieve reliable results in each iteration. 

GC patients were grouped into clusters A, B, and C 

using principal component analysis (PCA), and overall 

https://string-db.org/
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survival (OS) for each ICDRGs cluster was assessed 

using the R package “survival”. To further explore  

the biological pathway of ICDRGs subtype in GC 

patients, we used the “GSVA” R package for getting 

gene set variation analysis (GSVA). The “ESTIMATE” 

algorithm was also used to calculate the tumor purity 

and stromal, immune and ESTIMATE scores for each 

ICDRG cluster subgroup. We also conducted single-

sample gene set enrichment analysis (ssGSEA) to 

assess the 23 immune cell proportions in different 

ICDRGs clusters using the R package of “GSVA”. 

 

Establishment of gene-cluster subtypes 

 

We utilized the ICDRG subgroup-based differential 

expressed genes (DEGs) to construct a gene cluster to 

investigate the functions of ICDRGs in GC. Firstly,  

we filtered the DEGs in the ICDRG clusters A, B, and 

C, using the “limma” package, with cutoffs of |fold 

change| > 1 and p < 0.05. Subsequently, we included  

the DEGs that intersected between the three clusters  

in the subsequent analysis. To analyze the potential 

functions of the ICDRG subgroup-based differential 

expressed genes, we further conducted the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) and 

Gene Ontology (GO) analyses using the “ClusterProfiler” 

package. Additionally, we utilized the R package of 

“ConsensusClusterPlus” to separate the GC samples of 

ICDRG subgroup-based DEGs into two gene clusters. 

 
ICDRG score model establishment and validation 

 

LASSO Cox regression analysis was utilized to  

identify ICDRGs with prognostic value, followed by 

multivariate Cox analysis to filter features and establish 

a ICDRG score model. The risk score for STAD 

patients was calculated using the formula: risk score =∑ 

(coefficients × expression of signature genes). Patients 

were divided into two groups named high- and low-risk 

groups according to the median of ICDRG score. A 7:3 

division ratio was applied to split the GC samples into 

both training and test cohorts. To evaluate the accuracy 

of the score model in predicting the OS of GC patients, 

ROC curves were also analyzed. 

 
Prognostic analysis of ICDRG score model 

 

Univariate and multivariate Cox analyses were further 

employed to identify potential prognostic factors for OS 

in GC. The ICDRG score signature and major clinical 

risk variables were evaluated using ROC curves to 

predict OS in GC patients. A nomogram was constructed 

by using the R packages named “rms” and “survival” to 

evaluate the clinical survival probability for STAD 

patients at 1-, 3-, and 5-year intervals, incorporating  

the ICDRG score and independent prognostic clinical 

parameters. Decision curve analysis (DCA) curves were 

performed using the “ggDCA” R package to assess the 

diagnostic accuracy of the nomogram, ICDRG score, 

and prognostic clinical parameters. 

 

Prediction of immunotherapy response and 

chemotherapeutic drugs 

 

Tumor Immune Dysfunction and Exclusion (TIDE)  

was used to predict the immunotherapy responses for 

STAD patients by risk stratification (http://tide.dfci. 

harvard.edu). An Imvigor 210 (http://research-pub.gene. 

com/IMvigor210CoreBiologies) database was utilized 

to evaluate the PD-L1 immunotherapy response of GC 

samples. Based on the Genomics of Drug Sensitivity  

in Cancer (GDSC) (https://www.cancerrxgene.org/), the 

R package of “pRRophetic” was used to calculate the 

IC50 values of therapeutic drugs by the ridge regression. 

 

Cell culture 

 

The human gastric cancer cell lines SGC-823 and SGC-

7901 were both purchased from the Cell Bank of the 

Chinese Academy of Sciences (Shanghai, China). The 

cell culture conditions were maintained as follows: 

RPMI-1640 complete medium supplemented with 10% 

fetal bovine serum (FBS) and 1% antibiotics (100 U/mL 

penicillin and 100 ng/mL streptomycin) at 37° C in a 

humidified atmosphere of 5% CO2. 

 

Transient transfection 

 

The SGC-823 and SGC-7901 cells were seeded in 6-

well plates. Once the cell density reached 40% to 60%, 

transfections were made following the Lipofectamine 

2000 transfection reagent instructions. The transfected 

cells were collected for further experimentation after 48 

to 72 hours. 

 
CCK8 assay for cell viability 

 

After terminating the digestion of the culture  

medium, the cells were centrifuged for 5 minutes. After 

discarding the supernatant, 3 mL of fresh medium was 

subsequently added to re-suspend the cells. The cells 

were then digested with trypsin, and after centrifugation 

and removal of the supernatant, the cells were 

resuspended. The cells were seeded in 96-well plates, 

with 5 × 103cells per well. After 24 hours of adherence, 

the cells were treated with interference of GPX1 and 

cultured until the designated time points (0, 24, 48, 72, 

96 hours). According to the instructions, 10μl per 100ul 

serum-free culture medium of CCK8 solution (CCK-8; 
Biosharp, Shanghai, China) were added into the cells, 

and then incubated for 1 h at 37° C. Following that, 

absorbance was measured at 450nm with a microplate 

https://www.cancerrxgene.org/
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reader (BD Biosciences, USA). A growth curve was 

plotted based on the absorbance values and time. 

 
Clone formation experiments 

 
SGC-7901 and SGC-823 cells were seeded in small 

dishes at a cell density of 1×103 cells/mL, shaken,  

and placed in the incubator. After 5-7 days, under a 

microscope, the dishes were observed until each cell 

clone contained about 10-15 cells. The dishes were then 

removed, washed with PBS, fixed with methanol for 30 

minutes, subsequently stained with crystal violet for 

another 10 minutes, and counted by taking photographs 

with a camera. 

 
Transwell experiment 

 
SGC-823 and SGC-7901 cells were seeded in a serum-

free culture medium (1×104 cells/100uL medium) into 

the upper chamber (8um pore size, Corning, USA). A 

culture medium containing 10% FBS (600 μL) was 

slowly added to the transwell plate lower chamber. 

After 24 hours of incubation, the invasive gastric cancer 

cells were fixed with 4% polyoxymethylene for 30 

minutes at room temperature, subsequently followed by 

staining with 0.5% crystal violet for 10 minutes. The 

number of cells was counted in 5 randomly selected 

fields of view using a microscope. 

 
Cell scratch test 

 
SGC-823 and SGC-7901 cells were seeded in a 6-well 

plate. Once the cells had completely covered the 

bottom of the wells, a scratch was made using a sterile 

pipette tip at the bottom of each well. The healing of 

the scratch was photographed under a microscope at  

0 and 24 hours after the scratch was made. Three 

measurements of the scratch width were taken along 

the edge of the scratch, and the average value was 

calculated. The scratch healing rate (%) calculation 

was performed as follows: (initial scratch width - 

observed scratch width at the designated time point) / 

initial scratch width × 100%. 

 
Statistical analysis 

 
R software (version 4.2.0) was used throughout this 

study to accomplish all statistical analyses. The 

Wilcoxon test was utilized for the two groups 

comparison, and one-way ANOVA testing was used  

to analyze differences for the group number that is 

over two. Analyzing the link between two variables 

was performed using the Spearman analysis. The 

significance levels were *P<0.05, **P<0.01, and 

***P<0.001. 

Data availability statement 

 

All data and clinical information involved in this paper 

were obtained from a public database (TCGA and 

GEO), approved by the Ethics Committee and written 

informed consent from patients was not required. 

 

RESULTS 
 

Potential role investigation of ICDRGs in GC 

 

We collected 33 ICDRGs to determine the potential 

function in the development of GC. After the estimation 

of difference analysis, a clear difference was observed 

in ICDRGs expression profile in normal and tumor 

tissues for GC, in which the GC samples had a greatly 

higher level of ICDRGs (Figure 1A). To learn more 

about the interaction of 33 ICDRGs, we used the 

STRING database to explore the potential association of 

ICDRGs. As implied in Figure 1B, an unambiguous 

relation was discovered between 33 ICDRGs predicted 

by the STRING database. The somatic landscape of 

ICDRGs displayed a distinct mutation frequency in 148 

samples of 433 GC samples, in which the mutation 

frequency of PIK3CA, TLR4, EIF2AK3, NLRP3, and 

CASP8 was 15%, 5%, 4%, 4%, and 4%, respectively 

(Figure 1C). Moreover, the analysis of CNV revealed 

that the NLRP3, IL10, TNF, IFNG, IL6 and LY96 

exhibited a higher amplification, whereas the CASP1, 

IFNGR1, IFNB1, PDIA3, ATG5 and HSP90AA1 

showed higher deletion (Figure 1D). The location of 

ICDRGs on the chromosome was further explored  

and visualized in Figure 1E. Based on the univariate 

Cox analysis, the prognostic value of ICDRGs  

was estimated, and we obtained 9 prognostic features: 

IFNG, CXCR3, CASP1, PRF1, IL17RA, and CD8A 

were considered as favorable factors, and NT5E and 

IL1R1 were evaluated as risk factors (Figure 1F). 

 
ICDRG-based molecular subtypes development and 

immune infiltration assessment 

 

To further determine the molecular subtypes of ICDRG 

for GC, we enrolled 804 GC samples from the TCGA-

STAD and GSE84437 to develop an unsupervised 

consensus clustering analysis based on the expression 

profile of 33 ICDRGs. As illustrated in Figure 2A, we 

observed that the PCA plot could clearly differentiate 

the ICDRG cluster A, B, and C. The prognosis analysis 

of GC samples in ICDRG subtypes revealed that the 

clinical outcome of ICDRG cluster A was better than 

ICDRG cluster B and C (Figure 2B). To explore the 

underlying regulatory mechanisms responsible for the 
differences in clinical outcomes between the ICDRG 

subtypes, the GSVA was employed to estimate the 

difference in KEGG signaling pathways for GC. 
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Figure 1. The potential feature of ICDRGs in GC. (A) Difference analysis of 33 ICDRGs in normal and GC tissues. (B) Interaction 

evaluation of 33 ICDRGs. (C) Mutation landscape of ICDRGs. (D) CNV estimation of ICDRGs in GC. (E) Circle diagram reveals the location of 
ICDRGs on chromosome. (F) Prognostic value and correlation analysis of ICDRGs. 
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Figure 2. Development of ICDRG-based molecular subtypes for GC. (A) The PCA pattern of ICDRG-based molecular subtypes.  

(B) Clinical prognosis outcome of GC samples in ICDRG-based subgroups. (C, D) GSVA plot shows the dramatically altered KEGG signaling 
pathways between ICDRG-based subgroups. (E) ESTIMATE assessment of GC samples in ICDRG cluster A, B and C. (F) Immune infiltration 
investigation via ssGSEA algorithm. 
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Between ICDRG cluster A and B, immune-related 

regulatory pathways were clearly down-regulated in the 

ICFRG cluster B for GC, involving in NOD-like 

receptor signaling pathways, natural killer cell-mediated 

cytotoxicity and toll-like receptor pathway signaling 

(Figure 2C). Of note, we discovered that a series of 

tumor association function was greatly enriched in the 

ICDRG cluster C of the GC sample, such as bladder 

cancer, prostate cancer, renal cell carcinoma, and 

pathways in cancer (Figure 2D). Considering the GSVA 

results in ICDRG subtypes, the immune infiltration  

was assessed of GC samples in the ICDRG subgroups. 

The ESTIMATE analysis suggested a conspicuous 

difference in ESTIMATE evaluation in ICDRG cluster 

subgroups (Figure 2E). On the basis of the ssGSEA 

assessment algorithm, we detected that the fraction of 

most 23 immune cells was greatly higher of GC 

samples in ICDRG cluster A, such as activated B cell, 

MDSC, immature B cell, and CD8 + T cell (Figure 2F). 

These discoveries demonstrate that the ICDRG 

expression characteristic could accurately classify the 

GC samples into different molecular subtypes and 

closely related to immune infiltration. 

 
Establishment of gene-cluster subtypes based on the 

ICDRG subgroup-based DEGs 

 
To further explore the biological mechanism of ICDRG 

subgroups, we explored the DEGs between ICDRG 

cluster A, B and C. With the criterion cutoff set  

as |fold change| > 1 and p < 0.05, 876 overlapping  

DEGs between ICDRG subgroups were obtained 

(Supplementary Figure 1). The KEGG analysis of DEGs 

implied that cytokine-cytokine receptor interaction, 

chemokine signaling pathway, and cell adhesion 

molecules were observably enriched (Figure 3A).  

GO bubble diagram illustrated that T cell activation, 

leukocyte cell–cell adhesion, immune receptor activity, 

and external side of plasma membrane were enriched 

with DEGs (Figure 3B). Those enrichment results 

suggested that immune-associated function may parti-

cipate in the role of ICDRG subgroup-based DEGs in 

the progression of GC. Thereafter, those DEGs were 

enrolled to explore the prognosis implications for GC 

samples via univariate Cox analysis, and 244 prognostic 

variates were collected in total. On the basis of  

244 prognostic variates, an unsupervised consensus 

clustering analysis was carried out to classify the GC 

samples into 2 gene-cluster subgroups, with 422 samples 

in gene-cluster A and 382 samples in gene-cluster  

B. The analysis of clinical outcome revealed that the 

survival rate of GC samples in gene-cluster A was worse 

than in gene-cluster B (p = 0.002, Figure 3C). The 

heatmap plot implied the relationship between 244 

prognostic variates expression profile and clinical 

features, and the result showed the expression level of 

244 prognostic variates was greatly lower in gene-cluster 

B for GC (Figure 3D). The expression of ICDRGs 

suggested that most of ICDRGs were upregulated of GC 

samples which with poor prognosis, such as IL17RA, 

IL1R1, PIK3CA, and CD4 (Figure 3E). 

 
Generation of ICDRG score based on the ICDRG 

subtypes-based prognostic DEGs 

 

The ICDRG score was evaluated based on the  

ICDRG subtypes-based DEGs to divide the GC into 

different risk subgroups. The LASSO analysis selected 

31 feature variables from the ICDRG subtypes- 

based prognostic DEGs for the subsequent analysis 

(Figure 4A). Multivariate Cox analysis identified 17 

momentous variables to establish the ICDRG score 

model. In the ICDRG cluster subgroup, a noteworthy 

difference was observed between the ICDRG cluster 

subgroups, which the ICDRG score of GC samples  

in ICDRG cluster C was conspicuously higher than 

other ICDRG subgroups (Figure 4B). In the gene-

cluster subgroups, we also found that the GC samples 

with poor clinical prognosis in the gene-cluster A  

had higher ICDRG score than gene-cluster B (Figure 

4C). As displayed in Figure 4D, The Sankey plot 

revealed the relationship between ICDRG score, 

clinical status, ICDRG cluster subgroup, and gene-

cluster subgroup. In summary, those discoveries 

demonstrate that the ICDRG score developed of 

cluster-related DEGs is closely associated with the 

prognosis for GC and could distinguish the GC 

samples into different risk subgroups in ICDRG 

molecular subtypes and gene-cluster subtypes. 

 
Development and verification of ICDRG model  

for GC 

 

We developed a risk model to predict the clinical 

prognosis for each GC sample based on the ICDRG 

score. Under the division cutoff of 7:3, the GC samples 

were assigned into training and test cohorts, respectively. 

According to the median ICDRG score, the GC samples 

in the training, test, and entire cohorts were classified 

into low- and high ICDRG score subtypes (Figure 5A–

5C). The results implied that the GC samples with high 

ICDRG scores observably tend to lower survival times. 

ROC analysis of ICDRG score in the training, test and 

entire cohorts was 0.702, 0.657, and 0.688, respectively 

(Figure 5D–5F). Clinical prognosis curve analysis 

implied that the clinical outcome of GC samples with 

high ICDRG scores was observably lower than those 

with low ICDRG scores in the training, test, and entire 

cohorts (Figure 5G–5I). We thus speculate that ICDRG 

scores could accurately distinguish the GC samples  

into two risk subtypes, and the high ICDRG score  

is associated with poor prognosis in GC. 
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Figure 3. Generation of gene-cluster subgroups based on the ICDRG subtypes-based DEGs. (A, B) KEGG and GO analysis of ICDRG 

subtypes-based DEGs. (C) Prognosis analysis of GC samples in gene-cluster subgroups. (D) Heatmap shows the relationship between 
prognostic DEGs expression and clinical variates. (E) Expression profile of 33 ICDRGs in the gene-cluster subgroups. 
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Comprehensive analysis of independent prognosis 

for ICDRG score in GC 

 

In the view of ICDRG in predicting clinical prognosis 

for GC, we comprehensively analyzed the independence 

of ICDRG and different clinicopathological features  

in GC. In the training cohort, the results of univariate 

Cox analysis (p < 0.001, HR = 1.572(1.438-1.721)) and 

multivariate Cox analysis (p < 0.001, HR = 1.475(1.340-

1.624)) displayed that the ICDRG score was explored as 

 

 
 

Figure 4. Establishment of ICDRG score for GC samples. (A) LASSO analysis for selecting characteristic variates to construct ICDRG 

score model. (B) The distribution of ICDRG score in the ICDRG subgroups. (C) Analysis of ICDRG score in gene-cluster subgroups. (D) The 
Sankey diagram reveals the association of ICDRG score, clinical status, ICDRG cluster subgroup and gene-cluster subtypes. 
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Figure 5. ICDRG score model construction and clinical prognosis analysis. (A–C) ICDRG score distribution in training, validation 
and entire cohorts. (D–F) ROC curve of ICDRG score. (G–I) Clinical prognostic outcome of GC samples in the training, validation and 
entire cohorts. 
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a risk factor with poor clinical prognosis (Figure 6A). In 

the test cohort, we observed that the ICDRG score was 

considered a poor prognosis factor via the univariate 

Cox analysis (p = 0.001, HR = 1.278(1.099-1.487)) and 

multivariate Cox analysis (p = 0.034, HR = 1.182(1.013-

1.379)) (Figure 6B). In the entire cohort, the results of 

univariate Cox analysis (p < 0.001, HR = 1.427(1.323-

1.541)) and multivariate Cox analysis (p < 0.001, HR = 

1.316(1.218-1.424)) also demonstrated that the ICDRG 

score was an independent prognosis predictor which 

related to the poor clinical outcome for GC (Figure 6C). 

ROC curve analysis revealed that the AUC of 1-, 3-, and 

5 years was 0.700, 0.716, and 0.722 in the training 

cohort, 0.658, 0.643 and 0.650 in the test cohort, 0.687, 

0.691 and 0.696 in the entire cohorts, respectively 

(Figure 6D–6F). 

Nomogram establishment of ICDRG score and 

clinical features for GC 

 

Based on of ICDRG score and clinical features, we 

established a nomogram to estimate the clinical survival 

outcome of GC samples in 1-, 3-, and 5 years. As 

displayed in Figure 7A–7C, the nomogram analysis 

illustrated that the ICDRG score could accurately 

evaluate the clinical outcome of GC samples in the 

training, test and entire cohorts. The results of the DCA 

curve displayed that the accuracy of the nomogram in 

predicting clinical prognosis for GC in the training, test, 

and entire cohorts were noteworthily better than other 

parameters (Figure 7D–7F). Compared to the other 

clinical parameters, the AUC of ICDRG score in the 

training and entire cohorts was higher, indicating a 

 

 
 

Figure 6. Independent prognostic analysis of ICDRG score and clinicopathological features in GC. (A–C) The univariate and 
multivariate Cox analysis of ICDRG score and clinical features for GC in the training, test and entire cohorts. (D–F) ROC analysis of 1-, 3-, and 
5-years in the training, test and entire cohorts. 
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favorable diagnostic power than the clinical features 

(Figure 7G–7I). 

 

Immune infiltration analysis in ICDRG score 

subtypes 

 

The potential relationship of ICDRG score and immune 

infiltration was further explored and the result implied 

that the ICDRG score was positively correlated with 

macrophage, gamma delta T cell, T follicular helper cell, 

type 1 T helper cell, regulatory T cell, plasmacytoid 

dendritic cell, immature dendritic cell, natural killer  

cell, mast cell, and natural killer T cell. However, a 

noteworthy negative correlation was observed between 

ICDRG score and CD4+ T cell, CD8+ T cell, monocyte, 

neutrophil, and type 17 T helper cell (Figure 8A). 

According to the ESTIMATE assessment algorithm, the 

stromal and ESTIMATE score were higher in the high 

ICDRG score group, but the tumor purity was lower  

in the high ICDRG score group (Figure 8B). Using 

ssGSEA, we investigate the different distribution of 23 

immune cells in the high- and low-risk groups. The 

 

 

 

Figure 7. Development of nomogram based on the ICDRG score and clinical features in GC. (A–C) Nomogram construction based 

on the ICDRG score and GC-related clinical parameters in the training, test and entire cohorts. (D–F) DCA model shows the accuracy of ICDRG 
score and other GC-related clinical parameters in evaluating clinical prognosis for GC. (G–I) Diagnostic power analysis of ICDRG score and GC-
related clinical parameters. 
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results revealed that the high-risk group had higher 

proportions of macrophages, natural killer cells, and 

plasmacytoid dendritic cells while having lower pro-

portions of activated CD4 T cells, activated CD8 T 

cells, and neutrophils. (Figure 8C). In addition, we found 

that the ICDRG score had significantly higher stable/ 

progressive disease (SD/PD) compared to responders 

(CR/PR) (Figure 8D). 

 

Chemotherapy drug prediction in ICDRG score 

subgroups 

 

The IPS results revealed that the GC patients in the 

low-risk group were more sensitive to the PD-1, 

CTLA-4, and PD 1/CTLA-4 treatment (Figure 9A– 

9D). Moreover, we discovered that the ICDRG score 

subgroups respond differently to chemotherapeutic 

medicines based on the IC50 calculation. In detail, the 

high-risk score had lower IC50 levels for midostaurin 

and Saracatinib, indicating that chemotherapy may 

have a greater impact on high-risk patients. While, the 

GC patients with low-risk score were more sensitive  

to cyclopamine, doxorubicin, etoposide, gemcitabine, 

GW843682X, imatinib, parthenolide, rapamycin, 

roscovitine and sorafenib (Figure 9E–9P). These 

findings suggest that the ICDRG score might be 

immune-related and might be able to predict the GC 

chemotherapy therapy. 

 

 
 

Figure 8. Immune infiltration analysis and immunotherapy response in ICDRG score subtypes. (A) Correlations between the 
ICDRG score and immune cell infiltration. (B) ESTIMATE assessment. (C) Distribution of 23 immune cells in the high- and low- score groups.  
(D) Relationship of the ICDRG score and anti-PD-L1 immunotherapy response. 
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Connection between ICDRG score and landscape of 

somatic mutations 

 

In this study, we analyze the interaction between  

the ICDRG score and the landscape of somatic muta- 

tions. At first, we investigated the percentage of MSI  

in the high and low ICDRG score subgroups, and we 

discovered that the high-score group had a larger 

percentage of MSI-L and a lower percentage of MSI-H. 

(Figure 10A). Importantly, GC patients with MSI-H had 

risk scores much lower than those with MSS and MSI-L 

(Figure 10B). To further investigate, we examined 

tumor mutation burden (TMB) values between the high 

and low ICDRG score subgroups and discovered that 

 

 
 

Figure 9. Drug sensitivity analysis between the ICDRG score subtypes. (A–D) IPS evaluation shows the response to PD-1 and CTLA-4 

of GC in ICDRG score subtypes. (E–P) Prediction of chemotherapy drug for GC in ICDRG score subgroups. 
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Figure 10. Somatic mutation landscape and MSI in GC. (A) Percent of MSI in low- and high-risk groups. (B) Distribution of risk score in 

MSS, MSI-L, and MSI-H. (C) TMB analysis. (D) Correlation analysis of TMB and ICDRG score. (E) Kaplan–Meier plotter for GC patients stratified 
ICDRG score and TMB. (F, G) The top 15 most frequently mutated genes in low- and high-risk groups. 
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TMB was significantly lower in the ICDRG score group 

(Figure 10C). Subsequent correlation analysis displayed 

that the TMB was negatively linked with the ICDRG 

score (Figure 10D). Therefore, we combined TMB and 

ICDRG score served as a prognostic indicator, the 

differences in overall survival between different groups 

were obvious. As demonstrated by Kaplan-Meier 

analysis, we validated the cooperative effect of two 

indicators in the prognostic prediction of GC and there 

was no interference of the TMB status with the ICDRG 

scores in the prognostic predictive performance. ICDRG 

scores subgroups in high-score group exhibited worse 

prognosis in both low and high TMB status subtypes  

(p < 0.001) (Figure 10E). In addition, we showed 

comprehensive patterns of somatic variants and listed 

the top 15 most common mutated genes in the high- and 

low-risk groups. In the low-risk group, the top 5 

mutated genes were TTN (53%), TP53 (44%), AUC16 

(34%), ARID1A (26%), and LRP1B (28%), which 

exhibited high mutation frequencies than high-risk 

group (Figure 10F, 10G). Taken together, these results 

suggest that ICDRG score may act as an independent 

prognostic indicator and potential drug treatment target. 

 

Knockdown of GPX1 inhibits the proliferation, 

migration and invasion of gastric cancer cells 

 

To further investigate the role of GPX1 in gastric cancer 

development, we transfected GPX1 siRNA into human 

gastric cancer cell lines SGC-823 and SGC-7901.  

qRT-PCR results showed that GPX1 was significantly 

downregulated compared to the negative control group 

(Figure 11A). Firstly, we detected cell proliferation 

activity using CCK8 at 24, 48, 72, and 96 hours, and 

found that the proliferation ability of SGC-823 and 

SGC-7901 cells was significantly lower than that of the 

control group at 72 and 96 hours (Figure 11B, 11C). We 

also observed that knocking down GPX1 significantly 

inhibited the colony formation ability of SGC-823  

and SGC-7901 cells (Figure 11D). Next, we conducted 

scratch and transwell assays to evaluate the role of 

GPX1 in gastric cancer migration. Compared with the 

control group, the scratch continued to heal over time, 

and knocking out GPX1 inhibited the ability of cells to 

migrate into the scratch area (Figure 11E). Similarly, 

transwell analysis showed that knocking down GPX1 

significantly reduced the number of SGC-823 and SGC-

7901 cells that penetrated the lower chamber (Figure 

11F). These results indicate that knocking down GPX1 

can inhibit the proliferation, migration, and invasion 

ability of gastric cancer cells. 

 

DISCUSSION 
 

In this study, we established a risk model for STAD 

patients and explored the possible mechanisms of the 

difference in prognosis of STAD by means including 

immune infiltration, mutation burden analysis, drug 

resistance analysis. 

 

Our results show that the prognostic model established 

based on ICDRGs can effectively predict the prognosis 

of patients with STAD. ICDRGs have been shown to 

participate in tumor progression and are associated with 

anti-tumor therapy responsiveness in a variety of tumor 

types. Immunogenic death inducers can induce CD8+ T 

cell-dependent anti-tumor immunity to enhance tumor 

immunotherapy [21]. In GC, adjuvant chemotherapy 

regiments containing the ICD inducer oxaliplatin altered 

immune cell invasion and subtype by significantly 

reducing FOXP3+ Treg cells and increasing the diversity 

of CD8+ cytotoxic T cells and TCR in GC [22]. In 

addition, radiotherapy combined with 5-FU upregulated 

immunogenic cell death related molecules and increased 

the expression level of PD-L1 [23]. Therefore, the 

combined therapeutic strategy of ICD inducers and 

immune checkpoint inhibitors theoretically contributes 

to a better GC prognosis. 

 

We have verified the effect of GPX1 on the proliferation, 

migration and invasiveness of GC cells through in vitro 

experiments, thus partially proving the reliability of our 

bioinformatics results. In previous reports, 16% of GC 

patients showed abnormal methylation of GPX1 [24]. 

GPX1’s correlation with the risk of GC attacks also 

suggests a role in the development of GC [25]. Further 

mechanism studies revealed that the interaction of Ga-

binding protein α (GABPA) with GPX1 may be one  

of the causes of GC progression [26]. According to the 

current evidences, GPX1 acts as a tumor promoter in GC 

patients. However, GPX1 has a complex dichotomous 

role as a potential tumor suppressor or promoter in 

different cancers, given that it is involved in various 

signaling pathways to regulate multiple tumor-related 

biological behaviors [27]. Therefore, an in-depth and 

comprehensive mechanism study is still needed to deter-

mine the role of GPX1 in GC. 

 
Disruption of the balance between immunosuppression 

and immune activation signals has a significant impact 

on the progression of GC and patient outcomes [28]. 

Long-term chronic inflammatory manifestations in the 

presence of GC microenvironments promote tumor 

progression and reduce treatment opportunities [29]. 

Multicomponent immune cells, including lymphocytes, 

NK cells and macrophages show their involvement in 

the GC process [30]. In addition, a variety of immune-

related signaling pathways, including HIPPO, Notch 

and Wnt, are involved in GC development [31–33]. 
Based on these known pathways and immune-

mechanisms, a variety of immune-related therapies have 

been developed with clinical application potential for 
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Figure 11. The impact of GPX1 on the migration, invasion, and proliferation of gastric cancer cells. (A) Relative expression of 

GPX1 detected by qPCR in SGC-823 and SGC-7901 cells (n=3). Cell viability of (B) SGC-823 and (C) SGC-7901 cells after being treated with Si-
NC and Si-GPX1 (n=3). (D) Clone formation experiments (n=3). (E) Scratch assays. (n=3) (×40). (F) The numbers of SGC-823 and SGC-7901 cells 
that traversed the transwell membrane (n=3) (×200). 
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GC patients, including dendritic cell-based vaccines. 

adoptive T cell transfer cytokines and checkpoint 

inhibitors, etc. [34] Our results also confirmed the 

importance of immune-related metrics. By subgroup 

analysis, we found that the immune score and its related 

ESTAIMATE score were higher in cluster A group, 

which had a relatively good prognosis. This immune 

score system based on the composition of immune cells 

in tumor tissue can improve the accuracy of GC 

survival prediction and is an important supplement to 

the AJCC staging system for stage II/III GC patients 

[35, 36]. In addition, a combination of immune score 

and TNM staging had a better prognostic value than 

TNM staging alone [37]. In 2021, immune score was 

further confirmed its impact on predicting the 

therapeutic effect of gastric cancer patients receiving 

adjuvant chemo/radio-therapy [38]. However, it remains 

unclear how immune score can be used to guide GC 

treatment. In colon cancer patients, the study revealed 

that high immune score level patients benefited from 

more cycles of adjuvant chemotherapy, while those with 

low immune score levels did not [39]. This may indicate 

the need for more aggressive treatment of GC patients 

with high immune score in order to achieve better 

outcomes. Since no similar results are published in GC 

patients, future large-scale analyses of GC, immune 

score and efficacy of treatment will help further 

evaluate the clinical value of immune score. 

 

During the subgroup analysis, cluster A and cluster C 

with a good prognosis and a poor prognosis had a 

higher level of eosinophils, while cluster B had a lower 

level of eosinophils expression. The inconsistency of 

eosinophils expression level and prognosis caught our 

attention. Unforeseen effects of eosinophils have been 

found in a variety of biological processes beyond 

allergic inflammation, including carcinogenesis [40]. 

Eosinophils infiltrate a variety of tumors, and may 

regulate tumor progression directly by interacting with 

tumor cells or indirectly by forming TME. Depending 

on the type of tumor, eosinophils may have pro-tumor 

or antitumor functions [40]. Eosinophils have been 

reported to exert antitumor effects in gastric cancer  

[41]. Eosinophils produce several chemokines that are 

essential for the attractiveness of CD8 T cells in the 

TME [42]. In addition, eosinophils favor macrophage 

M1 production over M2 production through IFN-γ and 

TNF-α production during macrophage polarization [43]. 

The above evidence supports the antitumor effect of 

eosinophils in GC. However, studies on eosinophils  

in GC are far from in-depth. In fact, the functional 

plasticity of eosinophils depends on environmental 

factors that may vary in different microenvironments  

of cancer types, or even individual differences [44]. In 

addition, a literature reported that a high level of 

eosinophils infiltration in GC was a marker of optimal 

prognosis [45]. These paradoxical results call for further 

study of eosinophil function in GC. 

 

The study also has several limitations. As a retro-

spective study based on a public database, it is difficult 

to cover differences across geographic areas. In vitro 

experiments without clinical validation makes the 

validation of public database inadequate. Additionally, 

the transcriptome profiles used in this study were all 

derived from core samples of tumor tissue. Given the 

fact that the microenvironment may be different in 

different tumor regions, it is impossible to recognize the 

differences between the core and the invasive marginal 

zone. A large, international, comprehensive, multicenter 

clinical study will help to further validate our findings 

in the future. 
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Supplementary Figure 1. Identification of the DEGs of ICDRG-based molecular subtypes. 
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Supplementary Table 
 

Supplementary Table 1.  
The list of ICDRGs. 

IL17RA 

IL1R1 

PIK3CA 

CD4 

IFNG 

PRF1 

CXCR3 

CD8A 

CD8B 

P2RX7 

NLRP3 

IL10 

TLR4 

ENTPD1 

ATG5 

IFNB1 

IL6 

EIF2AK3 

IL17A 

LY96 

FOXP3 

HMGB1 

HSP90AA1 

BAX 

PDIA3 

CALR 

CASP8 

MYD88 

IFNGR1 

CASP1 

IL1B 

TNF 

NT5E 

 

 


