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INTRODUCTION 
 

Hypertensive disorders in pregnancy (HDP), defined as 

elevated blood pressure that occurs for the first time 

during pregnancy, are serious complications that affect 

4.1-19.4% of pregnant women globally [1]. After years 

of prevention and intervention, HDP remains the second 

leading cause of maternal and prenatal mortality [2]. 

Although various mechanisms including oxidative stress 

[3], chronic uterine placental ischemia [4], immune 

dysregulation [5], and vascular endothelial dysfunction 

[6] have been studied, the explicit pathogenesis of HDP 

has not been fully elucidated. 

 

Gut microbiota (GM) has been observed to change 

significantly during gestation and is crucial for 

maintaining host physiology and homeostasis [7]. 

Mounting evidence demonstrated the gut microbiota 
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ABSTRACT 
 

Background: Recent studies have shown that gut microbiota (GM) is related to hypertensive disorders in 
pregnancy (HDP). However, the causal relationship needs to be treated with caution due to confounding factors 
and reverse causation. 
Methods: We obtained genetic variants from genome-wide association studies including GM (N = 18,340) in 
MiBioGen Consortium as well as HDP (7,686 cases/115,893 controls) and specific subtypes in FinnGen 
Consortium. Then, Inverse variance weighted, maximum likelihood, weighted median, MR-Egger, and MR.RAPS 
methods were applied to examine the causal association. Reverse Mendelian randomization (RMR) and 
multivariable MR were performed to confirm the causal direction and adjust the potential confounders, 
respectively. Furthermore, sensitivity analyses including Cochran’s Q statistics, MR-Egger intercept, MR-PRESSO 
global test, and the leave-one-out analysis were conducted to detect the potential heterogeneity and horizontal 
pleiotropy.  
Results: The present study found causalities between eight gut microbial genera and HDP. The HDP-associated 
gut microbial genera identified by MR analyses varied in different subtypes. Specifically, our study found causal 
associations of LachnospiraceaeUCG010, Olsenella, RuminococcaceaeUCG009, Ruminococcus2, Anaerotruncus, 
Bifidobacterium, and Intestinibacter with GH, of Eubacterium (ruminantium group), Eubacterium (ventriosum 
group), Methanobrevibacter, RuminococcaceaeUCG002, and Tyzzerella3 with PE, and of Dorea and 
RuminococcaceaeUCG010 with eclampsia, respectively.  
Conclusions: This study first applied the MR approach to detect the causal relationships between GM and specific 
HDP subtypes. Our findings may promote the prevention and treatment of HDP targeted on GM and provide 
valuable insights to understand the mechanism of HDP in different subtypes from the perspective of GM. 
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dysbiosis in HDP patients. For example, Chen et al. 

reported that PE (pre-eclampsia) patients have a lower 

diversity of GM with some beneficial genera reduced 

such as Faecalibacterium and Akkermansia [8]. Another 

nested case-control study demonstrated the difference in 

GM composition in early pregnancy between HDP 

patients and healthy controls [9]. However, these findings 

had some limitations. Firstly, the environment of the 

human intestine is very complex and often affected by 

various factors, some covariates that cannot be measured 

may cause confounders. Secondly, most existing results 

came from observational studies, the timing of exposure 

and outcome remains unclear and it’s easy to cause 

reverse causal association. Furthermore, the previous 

studies are mainly focused on PE patients, ignoring other 

subtypes which have different pathogenesis and degree of 

organ damage. Therefore, it is crucial to explore the 

possible causal association between GM and HDP in 

specific subtypes after confounders and reverse causation 

well controlled. 

 

Mendelian randomization (MR) is a useful method for 

causal inference using genetic variants (e.g. Single 

Nucleotide Polymorphisms, SNP) as instrumental 

variables (IVs) [10]. Because the alleles from parents 

to offspring are randomly assigned, freely combined 

and the genotypes remain stable after birth. MR is 

regarded as the “most natural” randomized controlled 

trial (RCT), and its advantages such as reducing 

confounding factors as well as excluding reverse 

causality provide an effective way for causal inference 

based on observational studies [11, 12]. Furthermore, 

the ability and accuracy of genetic variants detection 

in genome-wide association studies (GWAS) have 

been greatly improved, and the measurement error has 

been reduced compared to conventional research [13]. 

Many studies have used MR analysis to explore the 

correlation between GM and some complex human 

diseases [14–16]. Therefore, our study performed a 

bidirectional multivariable MR analysis using the 

GWAS summary statistics to detect the causal 

relationship between GM and different subtypes of 

HDP, which may provide novel insights to understand 

the mechanism of HDP.  

 

RESULTS 
 

A total of 7,121 SNPs associated with 119 bacterial 

genera were included for GM instruments. The characters 

of selected IVs were shown in Supplementary Table 1. 

 

Forward MR analyses 

 

HDP 

Results at a significant threshold of P < 0.05 by using the 

inverse-variance weighted (IVW) method were shown in 

Figure 1. We found a causal association of increase in 

RuminococcaceaeUCG009 (OR = 1.18, 95%CI: 1.03-

1.34, P = 0.015) and higher risk of HDP,  

while genetically increased in Bifidobacterium  

(OR = 0.81, 95%CI: 0.68-0.97, P = 0.022), Eubacterium 
(ruminantium group) (OR = 0.81, 95%CI: 0.69-0.96, P 

= 0.012), Intestinibacter (OR = 0.83, 95%CI: 0.72-0.96, 

P = 0.011), Parabacteroides (OR = 0.75, 95%CI:  

 

 
 

Figure 1. The causal effect of gut microbial genera on RDP (GR, PE, and Eclampsia) identified at the nominal significance by 
using the IVW method (P < 0.05 / 0.01). Red represents the risk factors for RDP, blue represents the protective factors for RDP, and 
white represents no causal association. RDP, hypertensive disorders in pregnancy; GR, gestational hypertension; PE, pre-eclampsia; NS, No 
significant association. 
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(OR = 0.75, 95%CI: 0.57-0.99, P = 0.047), 

RuminococcaceaeUCG002 (OR = 0.84, 95%CI: 0.74-

0.96, P = 0.011), Senegalimassilia (OR = 0.80, 95%CI: 

0.65-0.98, P = 0.033), and Tyzzerella3 (OR = 0.87, 

95%CI: 0.77-0.99, P = 0.039) were associated with 

protective effects on HDP. These causal associations, 

however, lost their significance when multiple 

comparisons were adjusted (q > 0.1). The F-statistics 

ranged from 142.45 to 242.46 among all the results above, 

excluding the weak IVs bias. Details of all the IVW 

results were shown in Supplementary Table 2. 

 

GH 

Using the IVW method, we found suggestive causal 

associations of increases in LachnospiraceaeUCG010 

(OR = 1.29, 95%CI: 1.00-1.66, P = 0.049), Olsenella 

(OR = 1.15, 95%CI: 1.02-1.31, P = 0.028), 

RuminococcaceaeUCG009 (OR = 1.27, 95%CI: 1.08-

1.49, P = 0.005), and Ruminococcus2 (OR = 1.25, 

95%CI: 1.03-1.51, P = 0.022) and higher risk of GH, 

while genetically increased in Anaerotruncus (OR = 0.74, 

95%CI: 0.55-0.99, P = 0.047), Bifidobacterium (OR = 

0.80, 95%CI: 0.65-0.98, P = 0.030), and Intestinibacter 

(OR = 0.80, 95%CI: 0.67-0.97, P = 0.023) were related to 

protective effects on GH (Figure 1). However, causal 

associations lost their significance when multiple 

comparisons were adjusted. Details of all the IVW results 

were shown in Supplementary Table 3. The F-statistics 

ranged from 144.51 to 205.87 among all the results 

above. Additionally, causal associations between GM 

and GH risk were found in more than three MR methods 

(Table 1 and Figure 2), including IVW, Maximum 

Likelihood (MaxLik), Weighted Median (WM), MR-

Egger regression, and MR robust adjusted profile score 

(MR.RAPS).  

 

PE 

We found five suggestive causal effects of GM on  

PE (P < 0.05, q > 0.1; Figure 1). Specifically, 

Eubacterium (ruminantium group) (OR = 0.86, 95%CI: 
0.75-0.99, P = 0.045), Eubacterium (ventriosum group) 

(OR = 0.74, 95%CI: 0.59-0.93, P = 0.011), 

Methanobrevibacter (OR = 0.79, 95%CI: 0.65-0.96, P = 

0.019), RuminococcaceaeUCG002 (OR = 0.80, 0.65-

0.98, P = 0.029), and Tyzzerella3 (OR = 0.80, 95%CI: 
0.68-0.93, P = 0.003) were negatively associated with 

the risk of PE. Details of all the IVW results were 

shown in Supplementary Table 4. The F-statistics 

ranged from 147.81 to 179.04 among all the results 

above. Furthermore, causal associations between GM 

and PE risk were found in more than three MR methods 

(Table 1 and Figure 3).  

 
Eclampsia 

We found suggestive causal effects of GM on 

Eclampsia in two microbial genera, including Dorea 

(OR = 0.27, 95%CI: 0.09-0.76, P = 0.014) and 

RuminococcaceaeUCG010 (OR = 0.20, 95%CI: 0.07-

0.58, P = 0.003), which were negatively associated with 

the risk of eclampsia (Figure 1). Details of all the IVW 

results were shown in Supplementary Table 5. The F-

statistics were 174.09 and 151.49, respectively, Further-

more, causal associations between GM and eclampsia 

risk were found in more than two of the MR methods 

(Table 1 and Figure 3).  

 

Sensitivity analyses 

 

Cochran’s Q statistics showed no significant 

heterogeneity in selected IVs (P > 0.05 in IVW and 

MR-Egger methods, Supplementary Table 6). Both the 

MR-Egger intercept and the MR-PRESSO global test 

confirmed there is no significant directional horizontal 

pleiotropy (P > 0.05, Supplementary Table 6). 

Additionally, the leave-one-out analysis revealed that 

there are no outlier IVs that would have a significant 

impact on the result if retained (Supplementary 

Figures 1–3).  

 

Reverse MR analyses 

 

We performed the reverse MR analysis to assess whether 

specific HDP subtypes causally affect gut microbiota to 

confirm the causal direction. However, all methods 

showed no causal relationship except for the genus 

Bifidobacterium (P > 0.05, Supplementary Table 7). The 

sensitivity analyses including Cochran’s Q test, MR-

Egger regression intercept, MR-PRESSO global test, and 

the leave-one-out sensitivity analysis confirmed the 

robustness of the reverse MR results (Supplementary 

Table 8 and Supplementary Figures 4–6). 

 

Multivariable MR analyses 

 

MVMR analysis was performed to assess the causal 

effect of GM on GH, PE, and eclampsia, respectively 

after confounding factors were adjusted (BMI, alcohol 

drinking, smoking, and T2D). For the genus 

Intestinibacter, after adjusting for BMI (OR = 0.77, 

95%CI: 0.67-0.88, P < 0.001), alcohol drinking (OR = 

0.76, 95%CI: 0.67-0.85, P < 0.001), smoking (OR = 

0.84, 95%CI: 0.70-0.99, P = 0.049), and T2D (OR = 

0.81, 95%CI: 0.72-0.92, P = 0.001), Intestinibacter 

remained causally associated with GH risk (Figure 4). 

Detailed MVMR results of other suggestive association 

GM on HDP subtypes were shown in Table 2. 

 

DISCUSSION 
 

In this multivariable MR study, we detected  

causal associations between eight particular  

bacterial genera and the risk of HDP, then replicated  
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Table 1. MR analyses of gut microbiota on HDP subtypes by different methods. 

Exposure Outcome F-Stat 

Inverse variance 

weighted 
 Maximum 

likelihood 
 Weighted 

median 
 MR.RAPS  MR Egger 

OR 

(95%CI) 
P  OR 

(95%CI) 
P  OR 

(95%CI) 
P  OR 

(95%CI) 
P  OR 

(95%CI) 
P 

Anaerotruncus GH 166.34  
0.74 

(0.55,0.99) 
0.047   0.74 

(0.58,0.95) 
0.019   0.86 

(0.61,1.23) 
0.410   0.68 

(0.54,0.86) 
0.001   0.54 

(0.23,1.31) 
0.203  

Bifidobacterium GH 139.63  
0.80 

(0.65,0.98) 
0.030   0.80 

(0.66,0.97) 
0.026   0.88 

(0.65,1.19) 
0.401   0.79 

(0.66,0.95) 
0.014   0.53 

(0.32,0.86) 
0.027  

Intestinibacter GH 159.39  
0.80  

(0.67,0.97) 
0.023   0.81 

(0.66,0.98) 
0.027   0.76 

(0.59,0.97) 
0.028   0.80 

(0.66,0.98) 
0.031   0.62 

(0.34,1.14) 
0.150  

Lachnospiraceae 

UCG010 
GH 144.51  

1.29 

(1.00,1.66) 
0.049   1.31 

(1.01,1.69) 
0.046   1.28 

(0.90,1.83) 
0.168   1.18 

(0.92,1.50) 
0.188   1.15 

(0.53,2.51) 
0.731  

Olsenella GH 205.87  
1.15 

(1.02,1.31) 
0.028   1.16 

(1.02,1.32) 
0.028   1.20 

(1.01,1.42) 
0.035   1.16 

(1.01,1.32) 
0.038   1.05 

(0.70,1.58) 
0.810  

Ruminococcaceae 

UCG009 
GH 177.26  

1.27 

(1.08,1.49) 
0.005   1.28 

(1.08,1.52) 
0.005   1.22 

(0.97,1.54) 
0.085   1.20 

(1.03,1.41) 
0.023   1.70 

(0.88,3.29) 
0.143  

Ruminococcus2 GH 156.71  
1.25 

(1.03,1.51) 
0.022   1.25 

(1.03,1.52) 
0.022   1.21 

(0.91,1.62) 
0.190   1.26 

(1.03,1.54) 
0.026   1.50 

(0.95,2.37) 
0.106  

Eubacterium 

(ruminantium group) 
PE 157.34  

0.86 

(0.75,0.99) 
0.045   0.86 

(0.74,1.00) 
0.049   0.90 

(0.74,1.10) 
0.314   0.89 

(0.77,1.03) 
0.118   1.24 

(0.77,2.01) 
0.391  

Eubacterium 

(ventriosum group) 
PE 160.92  

0.74 

(0.59,0.93) 
0.011   0.75 

(0.59,0.94) 
0.014   0.72 

(0.53,0.98) 
0.034   0.75 

(0.59,0.94) 
0.015   0.68 

(0.24,1.90) 
0.473  

Methanobrevibacter PE 179.04  
0.79 

(0.65,0.96) 
0.019   0.79 

(0.65,0.96) 
0.020   0.80 

(0.63,1.02) 
0.070   0.79 

(0.66,0.95) 
0.014   0.55 

(0.26,1.13) 
0.180  

Ruminococcaceae 

UCG002 
PE 166.26  

0.80 

(0.65,0.98) 
0.029   0.80 

(0.66,0.97) 
0.021   0.80 

(0.61,1.05) 
0.105   0.85 

(0.71,1.02) 
0.075   0.90 

(0.52,1.55) 
0.702  

Tyzzerella3 PE 147.81  
0.80 

(0.68,0.93) 
0.003   0.79 

(0.68,0.93) 
0.004   0.77 

(0.63,0.95) 
0.015   0.79 

(0.68,0.92) 
0.003   0.73 

(0.29,1.80) 
0.506  

Dorea Eclampsia 174.09  
0.27 

(0.09,0.76) 
0.014   0.26 

(0.09,0.75) 
0.014   0.46 

(0.10,2.14) 
0.323   0.16 

(0.06,0.46) 
0.001   1.07 

(0.06,20.03) 
0.963  

Ruminococcaceae 

UCG010 
Eclampsia 151.49  

0.20 

(0.07,0.58) 
0.003   0.20 

(0.07,0.60) 
0.004   0.24 

(0.06,1.00) 
0.050   0.30 

(0.11,0.83) 
0.020   0.20 

(0.01,3.67) 
0.340  

GH, gestational hypertension; PE, pre-eclampsia; F-stat, F statistics to detect weak instrumental variable bias; MR.RAPS, 
Mendelian randomization robust adjusted profile score; OR, odds ratio; CI, confidence interval; P, P value. 

 

the analyses in specific subtypes (GH, PE, and 

eclampsia). Specifically, we identified suggestive  

causal associations of LachnospiraceaeUCG010, 

Olsenella, RuminococcaceaeUCG009, Ruminococcus2, 

Anaerotruncus, Bifidobacterium, and Intestinibacter 

with GH, of Eubacterium (ruminantium group), 

Eubacterium (ventriosum group), Methanobrevibacter, 
RuminococcaceaeUCG002, and Tyzzerella3 with PE, as 

well as of Dorea and RuminococcaceaeUCG010 with 

eclampsia. For example, our MR analyses revealed a 

protective effect of Bifidobacterium on GH. A case-

control study including 170 women in early pregnancy 
found that the relative abundance of Bifidobacterium 

significantly decreases in HDP patients compared with 

the control group [17], which was consistent with the 

previous studies on hypertension patients in Tangshan 

and Henan [18, 19]. It has been reported that 

Bifidobacterium can restore intestinal barrier function 

by stimulating the expression of Mucins 3 [20]. The 

Mice infection model also supported the role of 

Bifidobacterium in maintaining barrier permeability by 

reducing the concentration of Shiga toxin in 

enterohemorrhagic E. coli strains [21]. Furthermore, 

treatment with Bifidobacterium bifidum significantly 

lowered the rates of bacterial translocation [22], and 

stopped the entry of GM-derived lipopolysaccharide 

(LPS) into blood [23], thereby reducing placental 
inflammation and maintaining normal blood pressure. 

All the evidence above supported the protective role of 

Bifidobacterium on GH.  
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In addition, we also found the genus Intestinibacter to 

be associated with a lower risk of GH. There have been 

relatively few previous studies on Intestinibacter, but 

observational study and animal model have both 

reported the role of Intestinibacter in producing 

butyrate [24, 25], which is a short chain fatty acid 

(SCFA) metabolized by GM. Placental inflammation 

and angiogenic factors played the central role in 

affecting blood pressure in pregnancy, and macrophages 

are the key regulator [26]. In vivo and in vitro 

experiments found that butyrate significantly reduces 

the effects of LPS to promote macrophage 1 

polarization and inhibit macrophage 2 polarization, 

thereby reducing blood pressure [27, 28]. Furthermore, 

Jin et al. reported that butyrate promotes the effect on 

macrophage autophagy by decreasing autophagy 

 

 
 

Figure 2. Scatter plots for the causal relationship between gut microbiota and gestational hypertension. 
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receptors like P62 level and elevating LC3-II/LC3-I ratio, 

thus alleviating PE symptoms in rats [29]. The higher 

abundance of butyrate has been reported to decrease the 

risk of insulin resistance and type 2 diabetes(T2D) [30] 

and T2D is positively associated with blood pressure, 

suggesting that the effect of Intestinibacter on GH may 

be biased by T2D. But our multivariable MR analysis 

demonstrated that after adjusting T2D, the protective 

effect remained, which excluding the influence of 

confounding factors. Meanwhile, Bifidobacterium [9], 

Eubacterium (ruminantium group) [31], Tyzzerella3 [32], 

and Dorea [33] have also been reported to produce  

 

 
 

Figure 3. Scatter plots for the causal association between gut microbiota and (A) pre-eclampsia or (B) eclampsia. 
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SCFA with the function to effectively reduce blood 

pressure [34, 35], which consistent with our MR results 

that the increased abundance of those gut microbiota 

were related to the lower risk of HDP. 

 

Interestingly, the HDP-associated gut microbial genera 

identified by our MR analyses varied in different 

subtypes. For example, we didn’t find the relationships 

between Bifidobacterium and other HDP subtypes 

except for GH, which was consistent with another MR 

analysis on the gut microbiota and adverse pregnancy 

outcomes [16], while Li et al. reported the opposite 

result [36]. It may, because of the different 

pathogenesis, biochemical index, and degree of organ 

damage in GH, PE, and eclampsia. Additionally, our 

study demonstrated that RuminococcaceaeUCG009 

increases the risk of GH, while Rumino-

coccaceaeUCG002 and RuminococcaceaeUCG010 

were found to be protective factors to PE and eclampsia, 

respectively. Some genera of Ruminococcaceae are 

beneficial SCFA-producing bacteria that could not only 

power the intestinal epithelial cells [37] but also reduce 

proinflammatory cytokine by monocytes [38]. For 

example, in population-based studies, the abundance of 

genus RuminococcaceaeUCG002 was found to have 

benefi-cial implications for host glucose homeostasis 

and lipid metabolism [39, 40] as well as 

Ruminococcaceae UCG010 was found to be fewer in 

hypertension patients compared with health group [41]. 

However, RuminococcaceaeUCG009 was found to be 

positively correlated with the production of 

inflammatory factors and LPS in serum thus may 

cooperatively contribute to HDP, which supported our 

result [42]. Thus, our findings opened up new 

possibilities for understanding the differences in gut 

microbial genera mediating mechanisms in various 

subtypes of HDP. Considering the different effects of 

the same gut microbial genera (e.g., Ruminococcaceae) 

on human blood pressure, further RCTs at a more 

specific species level are needed to support this 

finding.  

 

The present study has some strengths. It was the first 

multivariable MR analysis to explore the causal 

relationship between GM and HDP subtypes and find 

the difference of causal-related GM in GH, PE, and 

eclampsia. The findings would facilitate the targeted 

prevention and treatment of different subtypes. 

Secondly, our study was based on the largest GWAS 

summary datasets to date, along with bidirectional MR, 

multivariable MR analyses, and several sensitivity 

analyses, which indicates the robustness of our findings. 

Thirdly, confounding variables and reverse causation 

were less likely to have an impact on the causal 

inference by using the MR design. 

 

Our analysis still has several limitations. Firstly, the 

significance threshold of exposure IVs was set at 1e-05 

because of insufficient IVs under genome-wide 

significance. However, IVs with F-statistics < 10 were 

excluded to avoid the weak instrumental bias. Secondly, 

MR analyses could only conduct at the bacterial genus 

level rather than at a more specific species level because 

of limited 16S rRNA sequencing resolution. Thirdly, 

our research was unable to provide further mechanisms 

for the distinct gut microbiota taxa associated with GH, 

PE, and eclampsia which need subsequent functional 

studies to elucidate. 

 

 
 

Figure 4. Forest plot of the causal effect of the genus Intestinibacter on gestational hypertension after adjusting for 
confounders. 
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Table 2. Multivariable MR analyses of gut microbiota on HDP subtypes after adjusting confounding factors. 

Exposure Outcome 
BMI  

 
Alcohol drinking 

 
Smoking 

 
T2D 

OR (95%CI) P  OR (95%CI) P  OR (95%CI) P  OR (95%CI) P 

Anaerotruncus GH 0.71(0.43,1.18) 0.187   0.76(0.52,1.11) 0.159   0.70(0.50,0.98) 0.035   0.91(0.71,1.15) 0.419  

Bifidobacterium GH 0.79(0.68,0.93) 0.004   0.76(0.63,0.91) 0.004   0.74(0.62,0.89) 0.001   0.77(0.54,1.08) 0.128  

Intestinibacter GH 0.77(0.67,0.88) <0.001   0.76(0.67,0.85) <0.001   0.84(0.70,0.99) 0.049   0.81(0.72,0.92) 0.001  

Lachnospiraceae UCG010 GH 1.59(1.21,2.08) 0.001   1.15(0.84,1.56) 0.388   1.33(1.10,1.59) 0.003   1.13(1.06,1.19) 0.025  

Olsenella GH 1.14(0.93,1.42) 0.215   1.13(1.00,1.28) 0.049   1.12(1.01,1.25) 0.041   1.17(1.06,1.289) 0.003  

Ruminococcaceae UCG009 GH 1.40(1.11,1.77) 0.005   1.28(1.04,1.57) 0.020   1.49(1.28,1.74) <0.001   1.12(1.06,1.19) <0.001  

Ruminococcus2 GH 1.25(1.04,1.51) 0.021   1.18(0.94,1.47) 0.154   1.29(1.09,1.54) 0.004   1.24(0.84,1.84) 0.285  

Eubacterium (ruminantium 

group) 
PE 0.85(0.71,1.02) 0.082   0.89(0.77,1.03) 0.119   0.87(0.74,1.02) 0.085   0.81(0.65,1.02) 0.070  

Eubacterium (ventriosum 

group) 
PE 0.79(0.64,0.98) 0.026   0.73(0.63,0.85) <0.001   0.76(0.63,0.93) 0.006   0.82(0.71,0.95) 0.007  

Methanobrevibacter PE 0.77(0.59,1.02) 0.067   0.77(0.66,0.91) 0.002   0.65(0.50,0.86) 0.002   0.76(0.64,0.90) 0.001  

RuminococcaceaeUCG002 PE 1.13(0.87,1.48) 0.360   0.79(0.63,0.98) 0.034   0.80(0.65,0.98) 0.003   0.67(0.50,0.90) 0.008  

Tyzzerella3 PE 0.76(0.69,0.83) <0.001   0.88(0.76,1.02) 0.089   0.76(0.65,0.90) 0.001   0.87(0.21,1.20) 0.394 

Dorea Eclampsia 0.53(0.25,1.14) 0.106   0.30(0.12,0.72) 0.007   0.29(0.11,0.74) 0.010   0.22(0.06,0.82) 0.024  

RuminococcaceaeUCG010 Eclampsia 0.01(0.00,0.01) <0.001   0.31(0.09,1.03) 0.057   0.40(0.17,0.90) 0.027   20.61(1.71,247.96) 0.017  

GH, gestational hypertension; PE, pre-eclampsia; F-stat, F statistics to detect weak instrumental variable bias; OR, odds ratio; 
CI, confidence interval; P, P value; BMI, body mass index; T2D, type 2 diabetes. 

 

In conclusion, by performing bidirectional multivariable 

MR analyses on GWAS summary data, this study 

explored the causal relationship between GM and 

different subtypes of HDP. Our findings may offer a new 

strategy for prevention and treatment in different HDP 

subtypes by targeting the gut microbiota and provide 

novel insights to understand the mechanism of HDP. 

 

MATERIALS AND METHODS 
 

Data sources 

 

GWAS summary statistics for GM were obtained from 

the Microbiome Genome (MiBioGen) Consortium 

which consisted of 24 multiple ancestry cohorts 

including 18,340 participants [43]. After extracting 

DNA from fecal samples, data were generated by 16S 

rRNA gene sequencing in the Illumina platform. Setting 

SILVA as the reference, all the data were annotated to 

genus and higher levels to profile the microbial 

composition [44].  

 

According to the pathogenesis, biochemical index, and 

degree of organ damage, HDP could be divided into 

five subtypes including gestational hypertension (GH), 

pre-eclampsia (PE), eclampsia and so on [45]. In this 

study, firstly we tested the whole HDP group and then 

primarily focused on GH, PE, and eclampsia patients 

because they are major or most serious HDP subtypes. 

GWAS summary statistics for HDP were extracted from 

the FinnGen Consortium and updated in 2023 [46]. 

Briefly, the study for HDP included 123,579 female 

subjects (7,686 cases and 115,893 controls) covering a 

total of 16,379,784 SNPs. The genetic association 

datasets consisted of 118,990 pregnant women (4,255 

cases and 114,735 controls) with GH, 118,291 pregnant 

women (3,556 cases and 114,735 controls) with PE, and 

115,025 pregnant women (290 cases and 114,735 

controls) with eclampsia, respectively. Association 

analysis was conducted with sex, age, genotyping batch, 

and 10 principal components corrected as covariates. 

Detailed information on exposure and outcome GWAS 

datasets were summarized in Supplementary Table 9. 

 

Instrumental variables 

 

To satisfy the three key assumptions of MR analysis 

(Figure 5), five steps were applied to select the optimal 
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IVs: 1) SNPs under a locus-wide significance threshold 

of P < 1e-05 were obtained as potential IVs related to 

exposure [14]. 2) PLINK clumping method (r2 < 0.001, 

clump window < 10,000 kb) was performed to ensure the 

IVs were independent [47]. 3) SNPs with minor allele 

frequency < 0.01 and palindromic SNPs were excluded. 

4) The proxy SNPs (r2 > 0.8) were selected based on 

European population data in the 1000 Genome project 

after removing the SNPs closely related to the outcome 

phenotype (P < 5e-08) [48]. 5) SNPs with F-statistics < 

10 were eliminated to avoid weak IV bias [49]. 

 

Statistical analyses 

 

We used the inverse-variance weighted (IVW) method 

as the primary MR analysis to detect the causal 

associations between exposure (GM) and outcomes 

(HDP, GH, PE, and eclampsia). The IVW method 

calculates the total causal effect by using the weighted 

linear regression model combined with the weight 

coefficient, under the condition that the intercept is zero 

[50]. IVW results were corrected for multiple 

comparisons applying the q-value procedure (q < 0.1), 

while P < 0.05 but q > 0.1 was considered to have a 

suggestive association [51].  

 

Several MR methods including Maximum Likelihood 

(MaxLik), Weighted Median (WM), MR-Egger 

regression, and MR robust adjusted profile score 

(MR.RAPS) were also conducted to test the robustness 

of our study. MaxLik estimates the parameter values 

that have the greatest likelihood of leading to a 

particular outcome by using the known sample. Its 

standard error would be lower than IVW when 

heterogeneity and horizontal pleiotropy do not exist 

[52]. WM improves the power of causal effect 

detection based on the assumption that up to 50% of 

IVs are valid [53]. MR-Egger regression method could 

identify and correct pleiotropy, but the estimation 

accuracy will be very low unless using a larger sample 

size [54]. MR.RAPS applies robust estimates to 

correct for systematic and idiosyncratic pleiotropy, the 

results of which are unbiased even though weak IVs 

exist [55]. 

 

Cochran’s IVW Q statistics and leave-one-out analysis 

were used to identify potential heterogeneous IVs. MR-

Egger intercept and MR Pleiotropy RESidual Sum and 

Outlier (MR-PRESSO) global test were conducted to 

test whether directional horizontal pleiotropy is driving 

the results of MR analyses [56, 57]. 

 

Reverse MR analysis was used to confirm the causal 

direction. The methods were similar to those of forward 

MR except for setting exposures as HDP subtypes and 

outcome as GM. Finally, we conducted multivariable 

MR (MVMR) analyses considering the possible 

confounders which may affect the outcome. The con-

founders including BMI (IEU number: ukb-b-19953), 

alcohol drinking (IEU number: ukb-b-5779), smoking 

(IEU number: ieu-b-4877), and T2D (IEU number: ebi-

a-GCST006867). 

 

The flowchart of this study was shown in Figure 6. All 

MR analyses were performed by the packages 

“TwoSampleMR”, “MRPRESSO”, and “qvalue” in R 

software. 

 

Consent for publication 

 

All the authors endorsed the publication of the 

manuscript.  

 

 
 

Figure 5. Schematic representation of the MR analysis. The three assumptions of MR are as follows: (1) Instrumental variables must 
be associated with gut microbiota, (2) Instrumental variables must not be associated with confounders; and (3) Instrumental variables must 
influence hypertensive disorders in pregnancy only through gut microbiota, not through other pathways. 
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Figure 6. Flowchart of this study. GWAS, genome-wide association studies; HDP, hypertensive disorders in pregnancy; GH, gestational 
hypertension; PE, pre-eclampsia; MR, Mendelian randomization; IVW, inverse-variance weighted; MaxLik, maximum likelihood; WM, 
weighted median; MR.RAPS, MR robust adjusted profile score; MR-PRESSO, MR Pleiotropy RESidual Sum and Outlier; BMI, body mass index; 
T2D, type 2 diabetes. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Leave-one-out plots for the causal association between gut microbiota and GH in forward MR 
analyses. 
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Supplementary Figure 2. Leave-one-out plots for the causal association between gut microbiota and PE in forward MR 
analyses. 

 



www.aging-us.com 9121 AGING 

 
 

Supplementary Figure 3. Leave-one-out plots for the causal association between gut microbiota and eclampsia in forward 
MR analyses. 
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Supplementary Figure 4. Leave-one-out plots for the causal association between gut microbiota and GH in reverse MR 
analyses. 
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Supplementary Figure 5. Leave-one-out plots for the causal association between gut microbiota and PE in reverse MR 
analyses. 
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Supplementary Figure 6. Leave-one-out plots for the causal association between gut microbiota and eclampsia in reverse 
MR analyses. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–5. 

 

Supplementary Table 1. Genome-wide significant and independent SNPs that were used as instruments for gut 
microbiota. 

 

Supplementary Table 2. Odds ratio for association of genetically predicted gut microbiota with HDP using the 
method of Inverse variance weighted (IVW). 

 

Supplementary Table 3. Odds ratio for association of genetically predicted gut microbiota with GH using the 
method of Inverse variance weighted (IVW). 

 

Supplementary Table 4. Odds ratio for association of genetically predicted gut microbiota with PE using the 
method of Inverse variance weighted (IVW). 

 

Supplementary Table 5. Odds ratio for association of genetically predicted gut microbiota with eclampsia using 
the method of Inverse variance weighted (IVW). 

 

Supplementary Table 6. Tests for detecting horizontal and directional pleiotropy in forward MR analysis. 

Exposure 

MR-PRESSO global test  MR-Egger intercept pEgger  Cochran's Q test 

MR-PRESSO 

RSSobs P value   

Egger-

intercept 

Standard 

Error P value  IVW (P) MR-Egger (P) 

GH RuminococcaceaeUCG009 12.846  0.490   -0.298  0.033  0.384   0.457  0.440  

GH Ruminococcus2 13.843  0.624   -0.016  0.018  0.405   0.589  0.571  

GH Intestinibacter 9.643  0.880   0.022  0.025  0.396   0.865  0.864  

GH Olsenella 7.423  0.773   0.013  0.028  0.660   0.696  0.622  

GH Bifidobacterium 20.512  0.201   0.037  0.021  0.102   0.307  0.467  

GH Anaerotruncus 22.391  0.108   0.022  0.031  0.481   0.011  0.093  

GH LachnospiraceaeUCG010 9.269  0.572   0.009  0.030  0.769   0.613  0.521  

PE Tyzzerella3 14.042  0.493   0.013  0.065  0.847   0.422  0.344  

PE Eubacteriumventriosumgroup 6.553  0.978   0.007  0.039  0.865   0.972  0.956  

PE Methanobrevibacter 6.128  0.555   0.055  0.053  0.357   0.493  0.505  

PE RuminococcaceaeUCG002 28.348  0.221   -0.009  0.021  0.650   0.206  0.174  

PE Eubacteriumruminantiumgroup 18.405  0.507   -0.036  0.023  0.140   0.484  0.578  

Eclampsia RuminococcaceaeUCG010 3.664  0.801   0.001  0.105  0.991   0.746  0.609  

Eclampsia Dorea 8.411  0.679    -0.098  0.098  0.348    0.649  0.660  
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Supplementary Table 7. Reverse MR analyses of gut microbiota on HDP subtypes by different methods. 

Exposure Outcome 

Inverse variance  

weighted 
  

Maximum  

likelihood 
  

Weighted  

median 
  MR.RAPS   MR Egger 

β (95%CI) P   β (95%CI) P   β (95%CI) P   β (95%CI) P   β (95%CI) P 

GH Anaerotruncus 
0.006 

(-0.041,0.053) 
0.795  0.006 

(-0.037,0.050) 
0.773  -0.038 

(-0.097,0.021) 
0.207  0.011 

(-0.031,0.054) 
0.61  -0.099 

(-0.283,0.085) 
0.31 

GH Bifidobacterium 
-0.083 

(-0.160,-0.007) 
0.033  -0.926 

(-0.141,-0.044) 
<0.001   -0.027 

(-0.089,0.036) 
0.405  -0.085 

(-0.130,-0.041) 
<0.001   0.140 

(-0.151,0.432) 
0.359 

GH Intestinibacter 
0.003 

(-0.046,0.053) 
0.893  0.004 

(-0.047,0.054) 
0.891  -0.012 

(-0.077,0.052) 
0.731  -0.002 

(-0.051,0.048) 
0.939  -0.031 

(-0.226,0.163) 
0.755 

GH Lachnospiraceae 
0.002 

(-0.047,0.051) 
0.943  0.002 

(-0.047,0.051) 
0.941  -0.015 

(-0.084,0.055) 
0.674  -0.003 

(-0.051,0.045) 
0.896  -0.039 

(-0.236,0.158) 
0.706 

GH Olsenella 
-0.013 

(-0.012,0.090) 
0.798  -0.014 

(-0.106,0.078) 
0.762  0.043 

(-0.086,0.171) 
0.514  -0.006 

(-0.094,0.083) 
0.901  0.221 

(-0.182,0.624) 
0.296 

GH Ruminococcaceae 
0.004 

(-0.060,0.068) 
0.901  0.004 

(-0.060,0.069) 
0.899  -0.002 

(-0.090,0.087) 
0.973  0.005 

(-0.059,0.069) 
0.871  -0.063 

(-0.322,0.195) 
0.637 

GH Ruminococcus2 
0.017 

(-0.038,0.072) 
0.546  0.018 

(-0.028,0.064) 
0.435  -0.026 

(-0.091,0.039) 
0.43  0.012 

(-0.032,0.055) 
0.603  -0.046 

(-0.267,0.176) 
0.692 

PE 
Eubacterium 

(ruminantium group) 

0.005 

(-0.074,0.084) 
0.909  0.005 

(-0.073,0.082) 
0.903  -0.018 

(-0.124,0.088) 
0.783  0.003 

(-0.074,0.081) 
0.81  -0.047 

(-0.305,0.211) 
0.73 

PE 
Eubacterium 

(ventriosum group) 

0.010 

(-0.043,0.064) 
0.703  0.011 

(-0.044,0.065) 
0.703  0.013 

(-0.054,0.081) 
0.703  0.001 

(-0.054,0.057) 
0.969  -0.040 

(-0.208,0.129) 
0.657 

PE Methanobrevibacter 
0.007 

(-0.131,0.146) 
0.918  0.008 

(-0.118,0.133) 
0.902  -0.010 

(-0.185,0.165) 
0.909  0.003 

(-0.120,0.125) 
0.967  0.218 

(-0.324,0.761) 
0.453 

PE 
Ruminococcaceae 

UCG002 

0.028 

(-0.031,0.087) 
0.354  0.029 

(-0.024,0.081) 
0.283  0.022 

(-0.048,0.093) 
0.54  0.003 

(-0.048,0.055) 
0.195  -0.082 

(-0.262,0.097) 
0.392 

PE Tyzzerella3 
-0.008 

(-0.100,0.083) 
0.856  -0.009 

(-0.102,0.085) 
0.851  -0.019 

(-0.143,0.105) 
0.764  -0.019 

(-0.112,0.074) 
0.692  0.121 

(-0.171,0.412) 
0.439 

Eclampsia Dorea 
-0.002 

(-0.021,-0.017) 
0.821  -0.002 

(-0.022,0.017) 
0.817  0.002 

(-0.024,0.029) 
0.859  -0.002 

(-0.023,0.018) 
0.825  0.006 

(-0.053,0.065) 
0.847 

Eclampsia 
Ruminococcaceae 

UCG010 

-0.003 

(-0.025,0.019) 
0.78   

-0.003 

(-0.027,0.019) 
0.78   

0.003 

(-0.023,0.030) 
0.808   

-0.003 

(-0.027,0.021) 
0.795   

0.010 

(-0.055,0.076) 
0.767 
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Supplementary Table 8. Tests for detecting horizontal and directional pleiotropy in reverse MR analysis. 

Exposure Outcome 

MR-PRESSO global test  MR-Egger intercept pEgger  Cochran's Q test 

MR-PRESSO 

RSSobs P value  Egger-intercept 

Standard 

Error P value  IVW (P) 

MR-

Egger (P) 

GH RuminococcaceaeUCG009 14.827  0.075   0.059  0.081  0.521   0.041  0.038  

GH Ruminococcus2 10.731  0.183   0.057  0.042  0.265   0.114  0.204  

GH Intestinibacter 1.994  0.881   -0.014  0.038  0.733   0.874  0.781  

GH Olsenella 2.715  0.786   0.082  0.068  0.314   0.771  0.945  

GH Bifidobacterium 4.230  0.618   0.027  0.034  0.483   0.601  0.550  

GH Anaerotruncus 7.333  0.364   0.019  0.037  0.636   0.329  0.238  

GH LachnospiraceaeUCG010 3.951  0.673   0.023  0.036  0.575   0.623  0.526  

PE Tyzzerella3 12.231  0.449   -0.022  0.024  0.384   0.432  0.415  

PE Eubacteriumventriosumgroup 3.393  0.987   0.008  0.014  0.555   0.985  0.981  

PE Methanobrevibacter 14.515  0.255   -0.033  0.042  0.453   0.237  0.215  

PE RuminococcaceaeUCG002 16.654  0.203   0.019  0.015  0.236   0.192  0.240  

PE Eubacteriumruminantiumgroup 13.034  0.397   0.009  0.021  0.690   0.370  0.301  

Eclampsia RuminococcaceaeUCG010 22.031  0.064   0.019  0.020  0.368   0.053  0.057  

Eclampsia Dorea 8.979  0.688    -0.018  0.013  0.185    0.709  0.824  

 

Supplementary Table 9. Detailed information for genome-wide association studies involved in the present 
Mendelian randomization study. 

Variable  Consortium or study  Sample size  Journal  Year  Cohort  Nation of cohort  Number of samples  

Gut microbiota  MiBioGen 18,340 Nat Genet.  2021 BSPSPC Germany  721 
     CARDIAw USA 257 

     COPSAC  Denmark  380 

     DanFunD16  Denmark  2,396 

     FGFP  Belgian  2,259 

     FOCUS  Germany  960 

     GEM_HCE_v12  Canada  378 

     GEM_HCE_v24  Canada  203 

     GEM_ICHIP_HCE  Canada  662 

     GenR  The Netherlands  1,328 

     HCHS/SOL  USA  1,097 

     KSCS  South Korea  811 

     LLD  The Netherlands  875 

     METSIM  Finland  522 

     MIBS  The Netherlands  80 

     NGRC  USA  77 

     NTR  The Netherlands  279 

     PNP  Israel  481 

     POPCOL  Sweden  134 

     RS3  The Netherlands  1,220 

     SHIP  Germany  996 

     SHIP-TREND  Germany  905 

         TwinsUK  UK  1,205 

HDP FinnGen 1,22,421  2021 FinnGen European 7,686 cases/114,735 controls 

GH FinnGen 1,18,990  2021 FinnGen European 4,255 cases/114,735 controls 

PE FinnGen 1,18,291  2021 FinnGen European 3,556 cases/114,735 controls 

Eclampsia FinnGen 1,15,025   2021 FinnGen European 290 cases/114,735 controls 

 


