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INTRODUCTION 
 

In recent years, tumor immunotherapy has brought 

about revolutionary changes in cancer treatment. Lung 

cancer poses one of the greatest problems in antitumor 

treatment, and according to cancer statistics, lung cancer 

ranks first in terms of incidence and mortality [1]. The 

emergence of immunotherapy has significantly changed 

the landscape of lung cancer treatments. Although 
immunotherapy has made breakthroughs, the objective 

remission rate (ORR) in NSCLC, without varying treat-

ment populations, is approximately 20% [2, 3]. The ORR 

remains below 50% even in populations with more than 

50% programmed death-ligand 1 (PD-L1) expression [4, 

5]. Thus, effective biomarkers are essential for selecting 

immunotherapy populations and improving the efficacy 

of immunotherapy. 

 
Based on previous studies, immunotherapy-related 

markers can be broadly classified into the following 

four categories: 1) tumor cell-related biomarkers, such 
as PD-1, PD-L1 expression, tumor mutational burden 

(TMB), DNA damage response (DDR) pathway, and 

neoantigens; 2) tumor microenvironment (TME)-related 
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ABSTRACT 
 

Homologous recombination deficiency (HRD) is a common molecular signature of genomic instability and has 
been shown to be a biomarker for targeted therapies. However, there is a lack of studies on the role of HRD 
changes in lung adenocarcinoma (LUAD) transcriptomics. HRD scores were determined using single nucleotide 
polymorphism (SNP) array data from LUAD patients from The Cancer Genome Atlas (TCGA) database. 
Transcriptional data from patients with different scores were analyzed to identify biomarkers associated with 
HRD. Candidate biomarkers were validated using Gene Expression Omnibus (GEO)-sourced datasets and an 
immunotherapy cohort. According to the bulk transcriptome and clinical characteristics of 912 LUAD patients and 
Single-cell RNA-seq of 9 LUAD patients from TCGA and GEO databases, we observed increased MS4A6A 
expression in HRD tumors; high MS4A6A expression predicted improved survival outcomes. Furthermore, a 
comprehensive analysis of the tumor immune microenvironment (TIME) revealed a positive correlation between 
MS4A6A expression and neoantigen loading and immune cell infiltration. Additionally, the immunotherapy cohort 
confirmed the possibility of using MS4A6A as a biomarker. Collectively, we suggest that MS4A6A is associated 
with HRD and provide a new perspective toward identifying promising biomarkers for immunotherapy. 
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markers, such as tumor-infiltrating immune cells (CD4+ 

and CD8+ T cells); 3) liquid biopsy markers, such as 

peripheral blood cells and circulating tumor DNA; and 

4) host-related biomarkers, such as intestinal symbionts 

and host germline genetic characteristics. Homologous 

recombination deficiency (HRD) usually refers to a 

state of DNA repair dysfunction at the cellular level, 

which can be caused by many factors, such as germline 

or somatic mutations in homologous recombination 

repair (HRR)-related genes and epigenetic inactivation. 

HRD can affect the DDR pathway by introducing 

insertions/deletions in nucleic acid sequences, copy 

number abnormalities, and chromosomal cross-linking, 

resulting in genomic and chromosomal instability [6]. 

HRD is present in various malignancies, particularly 

ovarian and breast cancers [7, 8]. The status and extent 

of HRD have emerged as novel biomarkers for the 

clinical application of PARP inhibitors in patients with 

advanced ovarian cancer [9–11]. In a previous study, 

Kadouri et al. observed that HRD is a risk factor affecting 

the prognosis of lung adenocarcinoma (LUAD) [12]. 

However, few studies have reported on HRD and LUAD, 

and the specific mechanism by which HRD affects the 

prognosis of LUAD remains unclear. 

 
To explore the association between HRD-induced 

genomic instability and immunotherapy biomarkers in 

LUAD patients, we extracted transcriptomic data and 

mutation data from The Cancer Genome Atlas (TCGA) 

database. We calculated HRD scores for each LUAD 

patient. By analyzing the differences in transcriptome 

levels between the HRD and non-HRD groups, we 

observed elevated MS4A6A expression in HRD patients 

and that these patients had a better prognosis. Four 

datasets from the Gene Expression Omnibus (GEO) 

database were used to validate our results. Furthermore, 

we revealed that MS4A6A expression was positively 

correlated with multiple infiltrated immune cells in the 

TME, such as CD4+ T cells, CD8+ T cells, as well as 

immune checkpoints (ICPs), such as PD-1 and PD-L1. 

IMvigor210, an immunotherapy cohort, suggested that 

MS4A6A was a better predictor than PD-1, PD-L1, or 

CTLA-4. Therefore, the findings of this study provide 

possible directions for immunotherapy biomarkers and 

are valuable for understanding the relationship between 

genomic instability and TME in LUAD patients and 

improving clinical outcomes in patients undergoing 

immunotherapy (Figure 1). 

 
MATERIALS AND METHODS 

 
Data collection and pre-processing 

 
The data used in the current study are accessible from 

publicly available databases. Transcriptomic data and 

SNP, as well as the corresponding clinical characteristics 

and follow-up information (n = 485) of LUAD, were 

obtained from the TCGA database. To analyze the 

transcriptomic data, count values and transcripts per 

kilobase of exon model per million mapped read 

(TPM) values were extracted. The “Masked Somatic 

Mutation” was selected as the somatic mutation data. 

The maftools R package [13] was used to visualize  

the somatic mutation landscape and calculate the TMB 

for each LUAD patient. Partial genomic alteration scores 

(percentage of chromosomal copy number altered regions 

outside the measured regions) and MSI-Sensor scores 

were obtained from the cBioPortal database (http:// 

www.cbioportal.org). Detailed information is provided 

in Table 1. 

 
Datasets containing LUAD samples and clinical follow-

up information were retrieved from the GEO database, 

and four datasets were included: GSE11969 [14], 

GSE30219 [15], GSE31210 [16], and GSE37745 [17]. 

The scRNA‐seq data were obtained from GSE189357  

[18] which includes 9 LUAD samples from nine resected 

samples of treatment-naïve patients. The array information 

of these datasets is shown in Supplementary Table  

1. Additionally, the IMvigor210 [19] (Table 2) and 

GSE126044 [20] cohorts, which contained data on 

immunotherapy, were included in this study. Each dataset 

from the GEO database sources was normalized and 

annotated with an ID based on platform information. 

 
Calculation of HRD and neoantigen scores 

 
The HRD score was defined as the unweighted sum of 

the loss of heterogeneity (LOH) [21], telomere allelic 

imbalance (TAI) [22], and massive state transition (LOS) 

scores [23, 24]. The neoantigen load, that is, the number 

of peptides predicted to bind to major histocompatibility 

complex (MHC) proteins, was determined based on the 

HLA type derived from RNA sequencing data. The neo-

antigen load is expressed as single nucleotide variants 

(SNV) and insertion and deletion (indel) mutations. The 

values of HRD, neoantigen load, and mutation rate 

(number of single-nucleotide mutations) were compiled 

from a pan-cancer mapping study by Thorsson et al. [25]. 

The detailed information is provided in Supplementary 

Tables 2, 3. 

 
Identification of independent prognostic genes 

associated with HRD score 

 
We used the DESeq2 R package [26] for differential 

analysis of the HRD and non-HRD groups, filtering out 

low-expression genes and selecting |log2(fold change)| 
> 1.5, adj. P < 0.05 as the criteria. log2(fold change) 

> 1.5 were considered as highly expressed genes and < 

−1.5 for lowly expressed genes in HRD. Volcano plots 



www.aging-us.com 8092 AGING 

were used to visualize differentially expressed genes 

(DEGs). 

 

Univariate Cox regression analysis of the differentially 

expressed genes was performed using the survival R 

package (https://CRAN.R-project.org/package=survival), 

and a P-value < 0.05 was selected as the cut-off value. 

The screened genes were subsequently analyzed by  

least absolute shrinkage and selection operator (LASSO) 

regression to determine the maximum prediction 

accuracy and the balance between minimizing expla-

natory accuracy [27]. Finally, independent prognostic 

factors were determined using a multivariate Cox 

regression analysis. A P-value < 0.05 was considered an 

independent prognostic factor, HR >1 as a risk factor, 

and HR <1 as a protective factor. 

 

Selection of immunotherapy biomarkers by scRNA-

seq analysis 

 

An analysis of 10x scRNA-seq data was conducted  

by R packages, including “Seurat” [28] and “SingleR”  

[29] we utilized the “Seurat” R package to preprocess 

and analyze single-cell RNA sequencing (scRNA-seq) 

data. The scRNA-seq data were normalized using the 

“NormalizeData” function of the “Seurat” package, with 

the normalization method set as “LogNormalize”. The 

resulting normalized data were then converted into a

 

 
 

Figure 1. Workflow of this study. The analysis process of HRD-related RNA is shown on the left. HRD scores were obtained by 

calculating LOH, LST, and TAI for each sample of TCGA-LUAD. Patients were classified as HRD and non-HRD according to cut-off values. The 
screening and identification of markers are shown to the right. MS4A6A was identified as a potential immunotherapeutic marker by 
survival analysis, immune microenvironment, and immune checkpoint analysis. 

https://cran.r-project.org/package=survival
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Table 1. TCGA-LUAD clinical baseline information. 

Characteristic Non-HRD (n = 137) HRD (n = 348) 

Sex, n (%) 

Female 74 (15.4%) 183 (38.1%) 

Male 60 (12.5%) 163 (34%) 

Stage, n (%) 

Stage I 79 (16.5%) 184 (38.4%) 

Stage II 27 (5.6%) 88 (18.4%) 

Stage III 21 (4.4%) 55 (11.5%) 

Stage IV 6 (1.3%) 19 (4%) 

Age, median (IQR) 69 (61, 74) 65 (58, 72) 

MSIsensor Score, median (IQR) 0 (0, 0.06) 0.02 (0, 0.13) 

Mutation Count, median (IQR) 99.5 (40, 188.75) 254 (122, 451.5) 

Fraction Genome Altered, median (IQR) 0.12 (0.04, 0.22) 0.31 (0.17, 0.45) 

TMB (nonsynonymous), median (IQR) 3.3 (1.52, 7.13) 8.73 (4.08, 16.31) 

 

Table 2. IMvigor210 clinical baseline information. 

Characteristic MS4A6A-low (n = 174) MS4A6A-high (n = 174) 

Bir Response, n (%) 

CR/PR 35 (11.7%) 33 (11.1%) 

SD/PD 118 (39.6%) 112 (37.6%) 

Sex, n (%) 

Female 39 (11.2%) 37 (10.6%) 

Male 135 (38.8%) 137 (39.4%) 

Immune phenotype, n (%) 

Desert 56 (19.7%) 20 (7%) 

Excluded 67 (23.6%) 67 (23.6%) 

Inflamed 22 (7.7%) 52 (18.3%) 

TMB, median (IQR) 0.9 (0.53, 1.43) 0.94 (0.43, 1.87) 

 
Seurat Object. The percentage of mitochondrial  

or ribosomal genes was calculated and low-quality 

cells were excluded to ensure the quality control  

(QC) [30]. We excluded samples with gene counts  

below 200 or above 3000, as well as those with  

a ribosomal RNA proportion exceeding 20%. Then,  

the top 3,000 genes with high variability were iden-

tified using the “FindVariableFeatures” function. To 

reduce the dimensionality of the scRNA-seq data, we 

performed principal component analysis (PCA) using 

the “RunPCA” function of the “Seurat” R package, 

based on the top 3,000 variable genes. Significant 

principal components (PCs) were identified through 

JackStraw analysis, and we selected the first 15 PCs 

for cell clustering analysis according to the proportion 

of variance explained. For cell clustering analysis,  

we utilized the “FindNeighbors” and “FindClusters” 

functions in the “Seurat” package. A k-nearest neighbor 

graph was constructed based on Euclidean distance  

in PCA using “FindNeighbors” to determine the  

closest neighbors of each cell. Cells were visualized 

using uniform manifold approximation and projection 

(UMAP) dimensionality reduction techniques for cell 

classification. To identify differentially expressed genes 

(DEGs) for each cluster, we used the “FindAllMarkers” 

function in the “Seurat” package, following Wilcoxon-

Mann-Whitney tests. Marker genes for each cluster 

were identified using adjusted p-value < 0.01 and  

|log2 (fold change)| >1 as threshold values. We 

conducted a manual annotation, as described in the 

study by Maynard et al. [31], to identify and classify 

different cell types in our experimental samples. 

Finally, FeaturePlot and vlnPlot functions embedded in 

the “seurat” package were applied to visualize the 

cellular distribution of independent prognostic genes  

in the scRNA-seq dataset. 
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Gene set enrichment analysis 

 
LUAD patients were divided into high and low MS4A6A 

groups according to the median MS4A6A expression 

value, and differential analysis was performed using  

the DESeq2 package. Gene Set Enrichment Analysis 

(GSEA) was performed using the clusterProfiler R 

package [32] to calculate the normalized enrichment 

score (NES) for each gene set and identify the signaling 

pathways enriched in the high- and low-MS4A6A 

expression groups. The selected gene set was selected as 

“c2.cp.v7.2. symbols” and false discovery rate (FDR) 

<0.25 was selected as a cut-off value. 

 
Immune cell infiltration analysis 

 
The microenvironmental characteristics of the tumors 

were assessed using the ESTIMATE R package [33]. 

ESTIMATE analysis quantifies immune activity (level 

of immune infiltration) in the tumor microenvironment 

based on its gene expression profile to obtain an immune 

score for each sample. 

 
To investigate the abundance of immune cell infiltration 

in bulk tumor tissues, we used the Tumor Immune 

Estimation Resource (TIMER) database (https://cistrome. 

shinyapps.io/timer/) to predict the relative abundance  

of six types of infiltrating immune cells, including 

macrophages, dendritic cells, B cells, T cells, and 

neutrophils. Additionally, we extracted the expression 

of antigen-presentation-related genes, including those 

encoding MHC class I/II (I: HLA-A, HLA-B, and HLA-

C; II: HLA-DP, HLA-DM, HLA-DOA, HLA-DOB,  

HLA-DQ, and HLA-DR) and antigen-binding molecules  

such as B2M and TAP1/2, and performed a correlation 

analysis between the expression of these molecules and 

MS4A6A. 

 
Assessment of immunotherapy 

 
Tumor immune dysfunction and exclusion (http://tide. 

dfci.harvard.edu/) can characterize T cell dysfunction by 

calculating tumor immune dysfunction and exclusion 

(TIDE) scores and evaluating the interaction of gene 

expression with the level of cytotoxic T lymphocytes 

(CTL) infiltration, which evaluates patient survival and 

response to immunotherapy [34]. Therefore, we assessed 

the clinical response to immunotherapy in patients with 

high and low MS4A6A expression by calculating the 

TIDE scores in LUAD patients. The Cancer Immunome 

Atlas (TCIA) was developed and maintained by the 

Institute of Bioinformatics [35]. This database allows 

querying the gene expression of specific immune-related 

genomes, cellular composition of immune infiltrates 

(characterized by genomic enrichment analysis and 

deconvolution), neoantigens, cancer-germline antigens, 

and immunophenotype scores. Therefore, we assessed 

the potential immunotherapeutic effects of high and  

low MS4A6A expression levels by extracting immuno-

phenotype scores. 

 
In the investigation of the IMvigor210 and GSE126044 

cohorts, we assessed the accuracy of MS4A6A against 

common immunotherapy-related markers, including 

TMB, PD-1, PD-L1, and CTLA4. We constructed a 

clinical prediction model that evaluated the effect of 

response to immunotherapy using logistic regression. 

Bootstrapping was used with 1000 iterations for re-

sampling. A calibration curve was used to measure the 

consistency of the model. An integrated discrimination 

improvement (IDI) curve was used to assess its 

improvement, and decision curve analysis (DCA) was 

used to measure its clinical effect. 

 
Statistics analysis 

 

Data processing and analysis were performed using the 

R software (version 4.0.2). The statistical significance 

of normally distributed variables was estimated by 

independent Student’s t-tests, whereas the differences 

between two groups of variables with non-normal 

distribution were assessed using the Mann–Whitney  

U-test (i.e., Wilcoxon rank-sum test). The chi-square and 

Fisher’s exact tests were used to assess the statistical 

significance between the two groups of categorical 

variables. Kaplan–Meier (KM) survival curves were used 

to compare the survival rates of patients in the two groups. 

The log-rank test (log-rank test) was used to evaluate the 

significance of survival time differences between the two 

groups. LASSO analysis was performed using the glmnet 

R package. Nomograms and calibration curves were 

constructed using the rms package (https://CRAN.R-

project.org/package=rms), and DCA was plotted using the 

rmda package. All statistical P-values were two-sided, 

and statistical significance was set at P < 0.05. 

 

Data availability statement 

 

The datasets and source codes used or analyzed during 

the current study are available from the corresponding 

author upon reasonable request. 

 

RESULTS 

 
HRD score is significantly associated with prognosis 

and mutational characteristics in LUAD patients 

 
The HRD scores were calculated based on the LOU, 

LST, and TAI scores in the TCGA-LUAD dataset. The 

optimal cut-off value of the HRD score was determined 

by calculating the minimum P-value in the log-rank test. 

Patients with HRD scores >15 were considered to belong 

https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
https://cran.r-project.org/package=rms
https://cran.r-project.org/package=rms
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to the HRD group, whereas those with HRD scores  

≤15 were considered to belong to the non-HRD group. 

The KM curve showed that the overall survival (OS)  

of patients in the non-HRD group was much longer  

than that of patients in the HRD group (log-rank  

test, P = 0.017) (Figure 2A). The 1-, 3-, and 5-year 

ROC curves of survival were plotted. Their AUCs were 

estimated to be 0.734, 0.723, and 0.747, respectively 

(Figure 2B), indicating that the survival between  

HRD and non-HRD patients at 1, 3, and 5 years was 

significantly different and that the HRD score may 

serve as a potential prognostic biomarker. Subsequently, 

we investigated the relationship between HRD scores 

and other genomic instability features, such as MSI-

sensor, genomic alteration fractions, and somatic 

mutation counts. The results revealed that the median 

somatic cumulative mutation count was significantly 

higher in the HRD group than in the non-HRD group 

(Wilcoxon signed-rank test, P < 0.001; Figure 2C) and 

was higher in the HRD group than in the non-HRD 

group (Wilcoxon signed-rank test, P < 0.001; Figure 

2D). The fraction genome altered was also higher in the 

HRD group (Wilcoxon signed-rank test, P < 0.0001; 

Figure 2E). These findings indicate that patients with 

HRD have significantly higher genomic instability than 

those without HRD. 

 

 
 

Figure 2. HRD scores were significantly associated with prognosis and mutation characteristics in the TCGA-LUAD cohort. 
(A) KM curve of overall survival of patients with HRD or non-HRD tumors in the TCGA-OSC cohort. (B) ROC curves of HRD scores in the 
TCGA-LUAD cohort. (C) Violin plots of somatic mutations in the HRD and non-HRD groups. Somatic mutation counts were significantly 
higher in the HRD group than in the non-HRD group. (D) Violin plots of MSI-Sensor in HRD and non-HRD groups. MSI-Sensor in the HRD 
group were significantly higher than those in the non-HRD group. (E) Violin plots of genomic alterations in the HRD group and non-HRD 
group. *P < 0.05, **P < 0.01, ***P < 0.001. 
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Differential mutation landscapes in HRD and non-

HRD groups 

 

Genomic features, such as oncogene activation (e.g., 

ERBB2 amplification, EGFR tyrosine kinase mutations) 

and tumor suppressor gene inactivation (e.g., MMR, 

BRCA1/2), have been shown to strongly correlate with 

the clinical response to targeted therapies. Therefore, we 

compared the mutation landscape between the HRD and 

non-HRD groups. (Figure 3A, 3B) The results showed 

that the mutation landscape of the non-HRD group was 

significantly different from that of the HRD group. 

Only 11 of the top 20 genes with the highest mutation 

rates in the two groups overlapped (Figure 3C), and the 

mutation frequencies of the overlapping genes also 

differed significantly. For example, the TP53 mutation 

frequency was 60% and 14% in the HRD and non-HRD 

groups, respectively. Furthermore, by screening actionable 

genes in the OncoKB database (https://www.oncokb.org/ 

actionableGenes), two of the 20 genes with the highest 

mutation frequency in the non-HRD group were identified 

as biomarkers for targeted drugs (STK11 and EGFR). 

The mutation frequencies of these two genes in the  

non-HRD group were 14% and 12%, respectively. 

These results showed that HRD and non-HRD patients 

had different mutated genes. Non-HRD patients had 

actionable genes and drug targets suitable for targeted 

therapy. It further supported HRD as a potential 

biomarker for LUAD. 

 

MS4A6A gene expression is positively correlated 

with HRD score and is an independent prognostic 

factor in LUAD patients 

 

To identify mRNAs associated with HRD scores, we 

performed a differential analysis of RNA-seq data from 

HRD and non-HRD patients. A total of 326 DEGs were 

identified, of which 266 genes were highly expressed, 

 

 
 

Figure 3. Mutational landscape of HRD and non-HRD patients. (A) Top 20 mutation landscape of HRD patients in the TCGA-LUAD 

cohort. (B) Top 20 mutation landscape of non-HRD patients in the TCGA-LUAD cohort. The genes in red boxes are actionable genes. (C) 
Overlapping information of HRD and non-HRD mutated genes; actionable genes are only in non-HRD. 

https://www.oncokb.org/%20actionableGenes
https://www.oncokb.org/%20actionableGenes
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and 60 genes were lowly expressed in the HRD group 

(Figure 4A). To identify DEGs associated with patient 

HRD scores and prognosis, we then conducted a 

univariate Cox regression analysis of the TCGA-LUAD 

cohort, including 326 DEGs. Univariate analysis and 

log-rank tests were used to identify 89 genes with 

prognostic potential (P < 0.05). LASSO-Cox pro-

portional risk regression and 10-fold cross-validation 

were performed on these prognosis-related genes to 

screen for independent prognostic factors. LASSO 

coefficient profiles were generated for log lambda  

and the optimal λ value corresponding to the eight 

variables (Figure 4B, 4C). After performing stepwise 

multivariate Cox regression analysis, SALL1, TCN1, 

RHCG, ANLN, MS4A6A, and CIDEC were identified  

as independent prognostic factors. In contrast, only 

MS4A6A was a protective factor, and the rest were  

risk factors (Figure 4D). Then we performed scRNA-seq 

 

 
 

Figure 4. Identification of HRD-related prognostic RNA. (A) Differential analysis based on HRD vs. non-HRD patients, 326 DEGs were 

obtained, of which 266 genes were expressed up in HRD patients, and 60 genes were expressed down in HRD patients. (B, C) After 
univariate Cox regression screening, 89 prognostic genes were obtained and analyzed by LASSO regularized dimensionality reduction and 
eliminated the covariance between variables, after which nine genes were obtained. (D) Multivariate Cox regression screening of 
independent prognostic genes, containing five genes, of which all were risk factors except for MS4A6A. (E) Cellular distribution of 109649 
cells clustered into 3 unique subsets among all merged lung adenocarcinoma tissue samples. (F) FeaturePlot depicting the distribution of 
MS4A6A. (G) vlnPlot showing the expression levels of MS4A6A in different cell subsets. (H) Risk plots of multifactorial Cox regression with 
the distribution of risk score in the upper layer, the distribution range of survival information in the lower layer. (I) The expression 
characteristics of five genes in high and low-risk group. (J) KM curves of MS4A6A (log-rank test). 
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analysis with GEO dataset: GSE189357 (Supplementary 

Figure 1A–1D). A total of 109,649 cells were analyzed 

and distinguished into epithelial cells, immune cells,  

and stromal cells after QC. (Figure 4E). FeaturePlot 

(Figure 4F) and vlnPlot (Figure 4G) visualization 

indicated MS4A6A has higher expression than other five 

independent prognostic signatures (Supplementary 

Figure 1E) in all kinds of cells, especially in immune 

cells. The assessment of immune cell signatures within 

the microenvironment of tumors provides crucial 

insights into the nature and magnitude of immune 

response in individual cancer patients, as well as their 

likelihood of responsiveness to immunotherapy [36]. 

Thus, focusing on immune cell signatures is more 

suitable for assessing the potential of immunotherapy in 

cancer and predicting which patients are likely to benefit 

from this treatment. As shown in risk plots of multi-

factorial Cox regression with the distribution of risk 

score, we divided the patients into high risk subgroup  

and low risk subgroup and survival status indicated that 

high risk score subgroup owns worse survival outcome 

(Figure 4H). The expression characteristics of five genes 

in high and low-risk groups corresponds to the step-

wise multivariate Cox regression analysis (Figure 4I). 

The KM curve of MS4A6A demonstrated that patients 

with high MS4A6A expression had a better prognosis  

(P = 0.008) (Figure 4J). To investigate whether the 

MS4A6A expression profile has a similar prognostic 

value in different datasets, we independently confirmed 

our findings in four datasets from the GEO database: 

GSE11969, GSE30219, GSE31210, and GSE37745. KM 

analysis also showed that patients with high MS4A6A 

expression had a better prognosis than those with low 

MS4A6A expression (Supplementary Figure 2A). 

 
MS4A6A expression is positively correlated with 

TIME 

 
High MS4A6A expression is associated with a better 

prognosis than low MS4A6A expression. Therefore,  

we examined the relationship between high MS4A6A 

expression and the tumor microenvironment. To inves-

tigate the relationship between MS4A6A expression and 

immune cell infiltration in the tumor microenvironment, 

we first calculated the immune score of the TIME in 

patients with LUAD using the ESTIMATE algorithm. 

We analyzed the correlation between the immune score 

and MS4A6A. As shown in Figure 5A, MS4A6A showed 

a significant positive correlation with immune score 

(Spearman’s rank correlation coefficient, Rho = 0.83,  

P < 0.001). Accordingly, we calculated the immune score 

for each tumor patient in the four GEO datasets and 

categorized the patients according to the median value of 

immune infiltration. We found that MS4A6A expression 

was significantly higher in the high immune infiltration 

group (Supplementary Figure 2B). Furthermore, the 

predicted neoantigen load was positively correlated  

with MS4A6A expression (Spearman’s rank correlation 

coefficient, Rho = 0.266, P < 0.05) (Figure 5B). We 

used the TIMER algorithm to estimate the correlation 

between MS4A6A expression and the five types of 

immune cells to better understand how MS4A6A is 

related to immune cell infiltration. As shown in the 

scatter plot, MS4A6A was significantly positively cor-

related with macrophages (Rho = 0.722, P < 0.001) and 

dendritic cells (Rho = 0.756, P < 0.001), suggesting that 

MS4A6A plays a vital role in antigen presentation and 

processing. In addition, we found that MS4A6A 

expression also correlated significantly with CD8+  

and CD4+ T cells, suggesting the relevance of MS4A6A 

in tumor killing (Figure 5C). To further investigate the 

relationship between MS4A6A and antigen-presentation-

related genes, we analyzed the association between 

MS4A6A expression and MHC class I/II (I: HLA-A, 

HLA-B, HLA-C; II: HLA-DP, HLA-DM, HLA-DOA, 

HLA-DOB, HLA-DQ, HLA-DR) and key antigen-binding 

molecules (such as B2M, TAP1/2), and observed a 

significant positive correlation between them (Figure 

5D). Notably, we observed that the MS4A6A gene was 

positively correlated with these immune-related genes 

in LUAD as well as in the other 32 cancers (Figure  

5E). MS4A6A might be expressed more frequently on 

the surface of antigen-presenting cells in the tumor 

microenvironment. 

 

In addition, GSEA analysis of gene expression profiles 

of the MS4A6A-positive and -negative groups revealed 

that the MS4A6A positive group was significantly enriched 

in DNA repair, DNA mismatch repair, and immune 

system-related pathways (Supplementary Figure 3). 

 
MS4A6A expression is positively correlated with 

ICPs 

 
Tumor cells activate immune checks so that antigens 

cannot be presented to T cells, thereby blocking the 

process of presenting antigens in the tumor immune link 

and suppressing the immune function of T cells. The use 

of anti-PD-1/PD-L1 in tumor treatment plays a significant 

role in immunotherapy [37]. We collected and analyzed 

46 common genes associated with immune checkpoints 

to determine the relationship between MS4A6A and these 

genes [38]. Correlation analysis revealed that MS4A6A 

positively correlated with many immune checkpoint-

associated genes (Figure 6A). We screened the most 

common immune checkpoint genes currently available, 

including PD-1 (PDCD1), PD-L1 (CD274), CD48, 

CD86, CTLA4, ICOS, LAG3, PDCD1LG2, and TIGIT, 

and compared the expression differences between the 

high and low MS4A6A expression groups. We found 

that all of them were highly expressed in the MS4A6A 

high expression group (Figure 6B). In addition, the four 
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GEO datasets showed that immune checkpoint genes 

 are generally elevated in the high-expression MS4A6A 

groups (Supplementary Figure 4). It is generally accepted 

that key regulators of immunity function in various 

tissues. Therefore, we investigated MS4A6A expression 

characteristics and immune checkpoint-associated  

gene expression in various cancer types. Notably, we 

observed that MS4A6A is positively correlated with 

genes associated with immune checkpoints in LUAD 

and 32 other cancer types (Figure 6C). These results 

 

 

 
Figure 5. Relationship between MS4A6A expression pattern and TIME. (A) MS4A6A expression is positively correlated with 

ImmuneScore (Spearman rank correlation coefficient, R = 0.83, P ≈ 0). (B) MS4A6A expression is positively correlated with neoantigen load 
(Spearman rank correlation coefficient; P < 0.05). (C) MS4A6A expression was positively correlated with immune cell subpopulation 
(Spearman rank correlation coefficient; P < 0.0001). (D) MS4A6A expression is positively correlated with antigen-related genes. (E) 
Correlation of MS4A6A expression signature with antigen-related genes in the TCGA pan-cancer cohort. 
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suggest that MS4A6A expression may be associated 

with tumor immunotherapy response. 

 

MS4A6A can be used as a potential biomarker for 

immunotherapy 

 

We then focused on immunotherapy-related datasets.  

To further confirm the predictive value of MS4A6A  

for immune checkpoint blockade (ICB) treatment, we 

collected transcriptomic profiles and clinical information 

from the uroepithelial carcinoma (UC) immunotherapy 

cohort (IMvigor210) [39]. Patients with high MS4A6A 

expression showed a more pronounced clinical benefit 

and significantly longer survival. (Figure 7A). In addition, 

patients with high MS4A6A expression had a significant 

treatment effect and immune response to PD-L1 blockade 

compared with patients with low MS4A6A gene expression 

(Figure 7B). When comparing neoantigen loads, no sig-

nificant differences were found between the two groups 

with high or low MS4A6A expression (Figure 7C). 

However, patients with high MS4A6A expression had 

significantly higher tumor immunophenotypes and a 

better response to immunotherapy compared to those with 

lower expression (Figure 7D, 7E). 

 

 
 

Figure 6. MS4A6A expression was positively correlated with ICP-related genes. (A) Correlation of MS4A6A expression with ICP-

related genes. (B) Comparison of MS4A6A expression with common immune checkpoint expression in TCGA-LUAD cohort. (C) Correlation of 
MS4A6A expression profile with ICP-related genes in the pan-cancer cohort. **P < 0.01, ***P < 0.001. 
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The TIDE and IPS scores have been widely used to 

predict the effects of immunotherapy. We compared the 

TIDE scores of patients with high and low MS4A6A 

expression in the TCGA-LUAD dataset. We observed 

that the TIDE scores of patients with high expression 

were significantly lower than those in the low expression 

group, suggesting that the effect of receiving ICB 

treatment might be better in patients in the high 

expression group (Figure 7F). TCIA results showed that 

the IPS was significantly higher in the low MS4A6A 

group (P < 0.001) (Figure 7G), and patients in the  

high MS4A6A expression group had a relatively higher 

 

 
 

Figure 7. MS4A6A can be used as a potential biomarker for ICB treatment. (A) OS curves for high and low MS4A6A expression in 

the IMvigor210 cohort. (B) The proportion of immune response in MS4A6A high and low expression groups against ICB treatment. 
Abbreviations: CR: complete remission; PR: local response; SD: stable disease; PD: progressive disease. (C) Comparison of neoantigen load 
between different MS4A6A expression subgroups. (D, E) Comparison of MS4A6A expression among different immune responsive cohorts. 
(F) TIDE differences in MS4A6A high- and low-expression cohorts. (G–J) TCIA analysis of differences in IPS scores in MS4A6A high and low 
expression cohorts. *P < 0.05, **P < 0.01, ***P < 0.001. 
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response to anti-PD1/PDL1 treatment while there was 

no significant difference with anti-CTLA4 treatment  

(P < 0.001; Figure 7H–7J). These results suggest that 

patients with high MS4A6A expression may benefit 

from ICBs. 

 
Construction of a predictive model of immunotherapy 

based on MS4A6A and clinical features 

 
These results suggest that MS4A6A may be used as an 

immunotherapeutic marker; however, it is still unclear 

which markers are more effective than the expression  

of existing markers, such as PD-1, PD-L1, and CTLA4. 

Therefore, we plotted ROC curves based on the IMvigor210 

cohort and found that the AUC values of MS4A6A (AUC 

= 0.663) were significantly higher than those of PD-1 

(AUC = 0.553), CTLA4 (AUC = 0.526), and PD-L1 

(AUC = 0.566), but lower than that of TMB (AUC = 

0.726) (Figure 8A); the accuracy of MS4A6A (AUC = 

0.982) was better than that of PD-1 (AUC = 0.745), PD-

L1 (AUC = 0.782), and CTLA4 (AUC = 0.818) in the 

GSE126044 cohort (Figure 8B). Therefore, MS4A6A 

may be a better biomarker for immunotherapy than  

PD-1, PD-L1, or CTLA4. Subsequently, we investigated 

the MS4A6A protein expression in LUAD using the 

Human Protein Atlas (HPA) database. We observed that 

it was predominantly expressed in the nucleus and was 

significantly elevated in LUAD tissues compared to  

lung tissues. (Supplementary Figure 5). 

 
Clinical prediction models are currently essential tools 

for aiding clinical decision-making. Here, a model that 

 

 
 

Figure 8. Construction and validation of MS4A6A-based immunotherapy predictive model. (A) ROC curves for MS4A6A, PD-1, 
PD-L1, and CTLA4 based on the GSE126044 cohort. (B) ROC curves for TMB, MS4A6A, PD-1, PD-L1, and CTLA4 based on the IMvigor210 
cohort. (C) Immunotherapy prediction model nomogram. (D) Calibration curves of the immunotherapy prediction model. (E) Comparison of 
prediction accuracy of immunotherapy model with and without MS4A6A. (F) Clinical decision curves of the immunotherapy prediction 
model. (G) The ROC curve of clinical model (AUC = 0.774). 
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predicts immune therapy responses in patients using 

MS4A6A gene expression, as well as PD-1, PD-L1,  

and TMB, was developed to help clinicians make 

immunotherapy decisions. Using multivariate logistic 

regression, we constructed a prediction model for 

immunotherapy responders and non-responders (Figure 

8C). Bootstrapping was used to assess the models, re-

sampling 1000 times, and calibration curves were 

plotted (Figure 8D). The IDI scatter plot results showed 

that the accuracy of the prediction model, including 

MS4A6A, increased by 8% compared to that of the 

model without MS4A6A (Figure 8E). A DCA plot  

was used to reflect the net benefit of the patients from 

the models (Figure 8F). Then, the ROC curve of this 

model was plotted and the AUC value reached 0.774 

(Figure 8G). Based on these results, MS4A6A combined 

with established immunotherapy markers can better 

predict immunotherapy outcomes. 

 

DISCUSSION 
 
In recent years, immunotherapy for cancer has emerged 

as a remarkable advance in anti-cancer research, which 

has revolutionized cancer treatment and changed treatment 

strategies. In traditional cancer treatment procedures 

such as chemotherapy, cancer cells and stem cells are 

destroyed, causing irreversible damage and even death. 

For patients with advanced tumors, the advent of targeted 

therapies has brought new hope for longer survival.  

For instance, EGFR-tyrosine kinase inhibitors have 

significantly extended the survival time of many 

patients with advanced NSCLC [40]. Immunotherapy 

differs from conventional chemotherapy and targeted 

therapies in one essential way by targeting immune  

cells rather than cancer cells. Currently, for patients 

with advanced melanoma with cancer metastasis and for 

whom all treatment options have failed, Opdivo and 

Keytruda could reduce or even eliminate tumors in more 

than 60% of patients for more than two years [41–43]. 

The use of immunotherapy in treating lung cancer has 

shown remarkable results, greatly extending the survival 

time of patients with advanced lung cancer [2, 44– 

46]. Despite the correlation between immunotherapy 

responsiveness and certain immunomarkers, such as 

PD-1, PD-L1, and TMB, not all patients with high  

PD-1 or TMB expression benefit from immunotherapy. 

Single biomarkers have limitations that affect the 

accuracy of screening of populations that benefit from 

immunotherapy. 

 

In the present study, we analyzed the characteristics of 

HRD and non-HRD populations of LUAD patients. 

Based on their differences in transcriptome levels, we 

screened a set of genes strongly associated with HRD. 

We screened independent prognostic factors by univariate 

Cox regression, LASSO, and multivariate Cox regression. 

Single-cell analysis was also carried out to explore the 

details of the independent prognostic factors at cell level. 

Notably, we found that MS4A6A gene expression was 

elevated in the HRD group and that patients with high 

MS4A6A expression had a better prognosis. MS4A6A has 

a higher expression in immune cells compared with other 

two cell types. This may suggest its association with 

tumor immune activity. MS4A family members play 

critical roles in various pathological conditions, including 

cancer, infectious diseases, and neurodegeneration. Also, 

they play a vital role in regulating immune signaling 

[47]. MS4A6A, also known as CDA01, MS4A6, 4SPAN3, 

or CD20L3, encodes a member of the transmembrane 

4A gene family. MS4A6A appears to be strongly 

associated with Alzheimer’s disease [48–50]; however, 

the MS4A6A gene has not been investigated. In the 

TCGA-LUAD dataset, we observed that MS4A6A 

expression was positively correlated with immune cell 

infiltration in the tumor microenvironment, especially 

macrophages, dendritic cells, and multiple immune check-

points, suggesting that MS4A6A could be a potential 

biomarker for ICB therapy. By analyzing immuno-

therapy-related cohorts, we revealed that MS4A6A has a 

higher accuracy as a biomarker than molecules such  

as PD-1 and CTLA4. We constructed a predictive 

immunotherapy model based on the IMvigor210 dataset. 

The C-index and calibration curve results indicated that 

the model had good accuracy and consistency. 

 

However, the present study has some limitations. 

Although there are some LUAD immunotherapy datasets 

in public databases, many are panel data instead of 

complete transcriptional data; thus, the expression data 

|of MS4A6A were unavailable, and only GSE126044  

was eligible for inclusion in this study. In addition, 

IMvigor210 cohorts were obtained from patients with 

bladder epithelial carcinoma, containing transcriptome 

data and comprehensive clinical information; therefore,  

it has been used in several immunotherapy-related  

and LUAD-related studies [51]. However, its application 

in LUAD studies remains controversial, considering  

the heterogeneity of tumors. Finally, the lack of wet-lab 

experiments using cell line models or human lung 

adenocarcinoma tumor tissues limits the confidence  

and applicability of our results, as it does not provide 

experimental evidence supporting the biological relevance 

and functional implications of the findings. In our future 

work, we will consider conducting wet-lab experiments 

to address the limitations of this study and complement 

our results. 

 

CONCLUSION 
 
We identified MS4A6A, whose expression level was 

closely correlated with the level of HRD in LUAD and 

was highly accurate as an immunotherapeutic biomarker. 
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Furthermore, detecting MS4A6A expression in tissues or 

blood is more straightforward than calculating the HRD 

scores. Nonetheless, its practicality must be confirmed in 

a larger cohort and prospective studies. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. scRNA-seq analysis. (A) The Variable Features plot identified the top 3000 variable genes, and the top 10 

were highlighted. (B) PCA dimension reduction, 15 PCs were applied for cell clustering. (C) Bubble plot depicting the biomarkers of immune 
cells across 0–16 subsets. (D) Bubble plot depicting the biomarkers of epithelial and stromal cells across 0–16 subsets. (E) Distribution of 6 
genes in different types of cells. 
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Supplementary Figure 2. Comparison of MS4A6A survival analysis and immune scores in GEO dataset. (A) KM survival curves 

of MS4A6A in the GSE11969, GSE30219, GSE31210, and GSE37745 datasets. (B) Differences in MS4A6A expression levels were compared in 
GSE11969, GSE30219, GSE31210, and GSE37745 in the high-low immune infiltration groups. MS4A6A expression was elevated in the high 
immune infiltration group. 

 

 

 

 
 

Supplementary Figure 3. GSEA of high and low expression patterns of MS4A6A. GSEA results revealed that the DNA repair, DNA 

mismatch repair, and immune system-related pathways were significantly enriched in the MS4A6A-positive group. 
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Supplementary Figure 4. Validation of relationship between MS4A6A gene and immune checkpoint expression in GEO 
dataset. Box plots demonstrate that MS4A6A high expression group in GSE11969, GSE30219, GSE31210, and GSE37745 datasets, as well 
as immune checkpoints, exhibited consistent elevated expression results with the TCGA-LUAD cohort. 
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Supplementary Figure 5. Immunohistochemical analysis of MS4A6A in normal lung vs. LUAD tissues. (A) Immunohistochemistry 

of MS4A6A in LUAD tissue. (B) Immunohistochemistry of MS4A6A in normal lung tissue. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 2 and 3. 

 

Supplementary Table 1. Information about the GEO datasets employed. 

 GSE11969 GSE30219 GSE31210 GSE37745 GSE189357 

Samples 163 307 246 196 9 

Normal 5 14 20 0 0 

Tumor 158 293 226 196 9 

Platform GPL7015 GPL570 GPL570 GPL570 GPL24676 

Data type Expression profiling by array Expression profiling by array Expression profiling by array  10X genomics 

 

 

Supplementary Table 2. Homologous recombination deficiency score in TCGA-LUAD patients. 

 

Supplementary Table 3. Neoantigens score of TCGA-LUAD patients. 

 

 


