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INTRODUCTION 
 

Worldwide, hepatocellular carcinoma (HCC) is one of the 

major diseases threatening the health of humans [1–3]. 

Although the diagnosis and treatment of it are becoming 

more perfect, the prognosis of HCC patients has not been 

significantly improved [4]. Reliable biomarkers are not 

only helpful for early diagnosis and prognosis of cancer 

patients, but also can reduce medical costs [5–7]. Thus, 

elucidating the specific biomarkers in the process of HCC 

development has a critical research significance for early 

diagnosis and personalized medicine in patients. 

 

Coiled-coil domain-containing protein 50 (CCDC50) was 

first identified as mapping to chromosome 3q28 [8]. As a 

negative regulator of IFN signalling, it is ubiquitously 

expressed in human tissues [9]. It has been reported that 

CCDC50 was enhanced by viral infection, and could 

inhibit the NF-κB-mediated apoptotic pathway, enhance 

the viral resistance, and regulate the p53 signalling 

pathways [8, 10, 11]. Further, CCDC50 could regulate 

Ras signalling pathway and promote mice HCC [12]. 

However, the potential role of CCDC50 in human  

HCC progression remains unclear. Our study aimed to 

examine the relationships between CCDC50 expression 

and diverse features in HCC. Furthermore, the CCK8 and 

transwell assays were employed to determine the 

biological role of CCDC50 in HCC progression. 

 

MATERIALS AND METHODS 
 

Analysis of CCDC50 expression in pan-cancer 

 

GEPIA (http://gepia.cancer-pku.cn/) is a web-based tool 

that quickly outputs customizable data results, and can 

be interactively used for analysing gene expression data 
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of the TCGA clinical data and RNA-seq [13]. We 

analysed the CCDC50 expression across TCGA tumors, 

and the GTEx data and matched TCGA normal were 

contained as controls. UALCAN database is a powerful 

web-portal [14], herein, we detached CCDC50 protein 

expression via UALCAN web-portal. 

 

The prognostic and clinical information of CCDC50 

in HCC 

 

We used the GEPIA [13] and PrognoScan [15] to 

examine the prognostic OS, and DSS of CCDC50 in 

HCC. The gene mutation features of CCDC50 in HCC 

were analysed via the cBioPortal [16]. We chose the  

three datasets: “MSK, Clin Cancer Res 2018 [17], 

MERiC/Basel, Nat Commun. 2022 [18], and TCGA. We 

explored the TIMER2.0 to estimate the immunological 

roles of CCDC50 in HCC [19]. 

 

Cell culture, siRNA and qRT-PCR 

 

LIHC cell lines and LO2 cells lines were obtained  

from ATCC and cultured in RPMI-1640 medium 

supplemented with 10% FBS. CCDC50 siRNA kits (si-

CCDC50#1: 5’- CCGUGCUUAUGCAGAUAGUTT-

3’; si-CCDC50#2: 5’- GCAGCAAAUUCCAAGUCAA 

TT-3’) and negative control siRNAs (si-NC: 5’-UU 

CUCCGAACGUGUC ACG UTT-3’) were purchased 

from GenePharma. Transfections were performed as 

previously described [20]. The qRT-PCR assay was 

conducted as previously documented [20]. The following 

primer sequences were used in this study: CCDC50: 5’-

GACGACGCATTCAGGAGAAGA-3’, 5’-ACTATCTG 

CATAAGCACGGGTT-3’; β-actin: 5’-GTCTTCCCCTC 

CATCGTG-3’’, 5’-AGGGTGAGGATGCCTCTCTT-3’. 

 

Western blot 

 

Western blot assays were fulfilled as described 

previously [20]. The following primary antibodies were 

used in this finding: CCDC50 (A17836; Abclonal) and 

β-actin (sc-47778; Santa Cruz). All the assays were 

independently repeated thrice. 

 

Cell proliferation assay 

 

CCK8 assays were fulfilled as described previously 

[20]. For CCK8 assay, Hep3B and Huh7 cells were 

cultured in a 96-well plate supplemented with 200 μL of 

RPMI-1640 medium. 

 

Correlation between CCDC50 and cancer drug 

sensitivity 

 

GSCA [21] is an integrated platform combining clinical 

and small molecular drugs information, it can help us 

easily analyse CCDC50 expression with drug sensitivity 

GDSC and CTRP [22, 23]. 

 

Data availability statement 

 

The data from this article can be obtained from  

the public database The Cancer Genome Atlas 

(https://portal.gdc.cancer.gov/). 

 

RESULTS 
 

CCDC50 was differentially expressed in multiple 

cancer including HCC 

 

Firstly, we combined the TCGA and GTEx databases, 

and confirmed that the expression of CCDC50 was 

significantly lower in 14 cancer tissues than normal 

tissues. In addition, CCDC50 was up-regulated in 12 

types of cancer including HCC (Figure 1A). As the 

main undertaker of life activities, the change of protein 

expression level is directly related to cancer 

progression [24]. To determine the protein levels of 

CCDC50 in different types of cancer, we analysed the 

UALCAN database and found that the protein 

expression of CCDC50 was low in 4 types of cancer, 

whereas it was high in 5 types of cancer including 

HCC (Figure 1B). 

 

To explore CCDC50 expression levels in HCC, we 

used HPA and GEO datasets to validate its expression 

in HCC. We showed that CCDC50 was upregulated  

in HCC (Figure 2A, 2B). Furthermore, we showed  

that CCDC50 was correlated with adverse clinical 

features, such as grade, pathological stage and  

OS event, not related to NM stage (Figure 2C–2G). 

GEO datasets also confirmed that high CCDC50 

expression had worse OS in HCC cancer patients 

(Figure 2H, 2I). 

 

Prognosis value of CCDC50 in HCC 

 

As CCDC50 expression was up-regulated in HCC 

tissues, we explored the prognostic value of CCDC50 in 

HCC. The KM survival curve results showed that 

increased expression of CCDC50 related to poor OS 

and DSS in HCC (Figure 3A, 3B). We comprehensively 

analysed the relationship between CCDC50 expression 

and OS in HCC. High CCDC50 expression had worse 

OS in diverse subgroups of HCC, including residual 

tumour (Figure 3C), gender (Figure 3D), age (Figure 

3E), race (Figure 3F), histologic grade (Figure 3G), 

weight (Figure 2H), TNM stage (Figure 3H–3K), and 

tumour status (Figure 3L). 
 

To examine whether CCDC50 can be used in HCC 

prognosis, we constructed a nomogram to predict the 

https://portal.gdc.cancer.gov/
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OS, and DSS in HCC patients and found that 

pathological stage and CCDC50 expression act as 

prognostic factors (Figure 4A, 4B and Tables 1–3). The 

calibration curves indicated that the nomogram can 

reliably predict the 1-, 3-, and 5-year OS, and DSS in 

HCC (Figure 4C, 4D). In summary, the model 

constructed above can optimize the prediction of 

different survival rates for liver cancer patients, and has 

high performance in prediction. 

 

Gene mutation landscape of CCDC50 in HCC 

 

The mutational data of CCDC50 from the cBioPortal 

that showed genetic alterations in the CCDC50 gene 

were observed in only 1.4% of the HCC patients (Figure 

5A), and 1 missense site was found between amino 

acids ‘0’ and ‘306’ (Figure 5B). These results indicate 

that genetic alterations of CCDC50 may not be the main 

factor affecting its prognostic ability. 

 

DNA methylation modulates CCDC50 expression in 

HCC 

 

DNA methylation and m6A methylation play  

crucial roles in cancer progression. Therefore, it is 

crucial to reveal whether CCDC50 is regulated by  

DNA methylation and then abnormally expressed in 

hepatocellular carcinoma. First, we confirmed that 

CCDC50 was positively correlated with m6A regulatory 

factors expression in HCC (Figure 6A). Furthermore, we 

found that the level of DNA methylation of CCDC50 

was downregulated in liver cancer tissue and was 

negatively correlated with liver cancer metastasis 

(Figure 6B, 6C). Finally, we found that the level of DNA 

methylation of CCDC50 was negatively related to the 

expression of CCDC50 in HCC (Figure 6D). However, 

the level of DNA methylation of CCDC50 did not affect 

the prognosis of HCC patients in TCGA LIHC datasets 

(Figure 6E, 6F). Interestingly, the level of DNA 

 

 

Figure 1. CCDC50 mRNA and protein expressions between tumour and normal tissues. (A) The CCDC50 expression in pan-cancer 

analysis via the TCGA/GTEx databases. (B) The protein of CCDC50 in pan-cancer analysis from CPTAC samples via the UALCAN web-portal.  
Z-values represent standard deviations from the median across samples for the given cancer type. ns, p > 0.05; *p < 0.05; **p < 0.01;  
***p < 0.001. 
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methylation of CCDC50 was positively correlated with 

the Tr1 and iTreg cell infiltration level (Figure 6G). 

These results partially suggest that DNA methylation 

may affect the infiltration levels of diverse immune 

cells by regulating the expression of CCDC50 in HCC. 

 

Biological functions of CCDC50 in LIHC 

 

Using the “clusterProfiler” R package, we performed 

functional annotations of CCDC50-associated 

differentially expressed genes (DEGs) in HCC patients, 

and 423 DEGs (mRNA and lncRNA) were captured, 

including 331 upregulated and 92 downregulated genes 

(Figure 7A–7D). The GO enrichment results showed 

that the DEGs were mainly involved in the extracellular 

space, acute-phase response, cell differentiation, 

chemoattractant activity, and epidermal growth factor 

receptor interactions (Figure 7E). KEGG results showed 

that the DEGs were mainly involved in the gastric 

cancer, pancreatic secretion, gastric acid secretion, 

pertussis, glycosaminoglycan biosynthesis-keratan 

sulphate, axon guidance, phenylalanine metabolism, 

nitrogen metabolism and protein digestion and 

absorption (Figure 7F). 

 

 

Figure 2. CCDC50 was highly expressed in HCC. (A) CCDC50 protein was highly expressed in HCC tissues than normal liver tissues 

examined by HPA database. (B) Validation of the expression of CCDC50 in HCC by GEO dataset. (C–G) Relationships between the expression 
of CCDC50 and diverse clinical features in HCC. (H, I) Validation of the prognosis of CCDC50 in HCC by GEO dataset. 
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GSEA results suggested that CCDC50 mainly 

participated in TOLL like receptor, T cell receptor, 

MAPK and wnt signaling pathway, chemokine signaling 

pathway (Figure 8A–8D). These results confirmed that 

CCDC50 regulated immune-related pathways and 

participate in the malignant progression of liver cancer. 

 

Immune cell infiltration of CCDC50 in HCC 

 

Immune cells have a critical role in cancer progression 

[25]. We used the TIMER database to reveal the 

relationship between CCDC50 expression and the 

infiltration levels of 24 immune cell types in HCC. The 

expression of CCDC50 significantly correlated with 

these 8 major immune cells in HCC (Figure 9A). 

CCDC50 expression levels showed a negative 

correlation with pDC (Figure 9B), Cytotoxic cells 

(Figure 9C), DC (Figure 9D), and Tgd (Figure 9E), and 

positive association with Eosinophils (Figure 9F), Tcm 

(Figure 9G), Th2 cells (Figure 7H), and T helper cells 

(Figure 9I). Due to the heterogeneity of tumor cells and 

immune cells, the expression of CCDC50 in 

hepatocellular carcinoma may be significantly different 

from the correlation between different immune cells. It 

is this difference that leads to tumor immune escape or 

the formation of tumor immune tolerance. 

 

Knockdown of CCDC50 suppresses the malignant 

phenotype of LIHC 

 

In vitro cell biology functional experiment validation of 

the functional role of CCDC50 in HCC was performed. 

 

 
 

Figure 3. Prognostic analysis of CCDC50 in HCC. (A, B) The correlation between CCDC50 and OS, and DSS. (C–L) The correlation between 

CCDC50 and OS in different clinical subgroups of HCC, including residual tumour, gender, age, race, histologic grade, weight, TNM stage, AND 
tumour status. 
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Compared to LO2, a human normal hepatocyte, 

CCDC50 was highly expressed in LIHC cell lines 

(Figure 10A) and inhibited by siRNA in Hep3B and 

Huh7 cells. QRT-PCR and western blot were employed 

to examined the knockdown efficacy (Figure 10B, 

10C). As expected, CCDC50 knockdown inhibited the 

proliferation and migration abilities of Hep3B and Huh7 

cells (Figure 10D, 10E). 

 

Cancer drug sensitivity analysis of CCDC50 

 

In the GDSC database, the expression of CCDC50 

positively related to the following drugs: EKB-569, 

WZ3105, KIN001-102, AT-7519, GSK690693, 

BMS345541, AT-7519, GSK1070916, NPK76-II-72-1 

and TAK-715. However, it was negatively correlated 

with the following drugs: PLX4720, dabrafenib, (5Z)-7-

Oxozeaenol, bleomycin, SB590885, CHIR-99021, 

selumetinib, TGX221, PD-0325901, AG-014699 and 

piperlongumine (r < −0.13, p < 0.0001) (Figure 11A). In 

the CTRP database, the expression of CCDC50 

positively correlated with the following drugs: SR8278, 

GSK-J4, austocystin D, afatinib, linifanib and BRD-

K41597374 (r > 0.16, p < 0.0001). However, it was 

negatively associated with vemurafenib, MLN2480, 

fluvastatin and lovastatin (r < −0.13, p < 0.0001) 

 

 
 

Figure 4. Nomogram and calibration curve for predicting the probability of 1-, 3-, and 5-year OS, and DSS in HCC patients. 
(A, B) A nomogram integrates CCDC50 and other prognostic factors in HCC from the TCGA data. (C, D) The calibration curve of the 
nomogram. 
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Table 1. Univariate and multivariate Cox regression analyses of different parameters of overall survival in liver 
hepatocellular carcinoma. 

Characteristics Total (N) 
Univariate analysis 

  
Multivariate analysis 

Hazard ratio (95% CI) P-value Hazard ratio (95% CI) P-value 

T stage 370      

T1 183      

T2 94 1.428 (0.901–2.264) 0.129  1.594 (0.874–2.907) 0.128 

T3 and T4 93 2.949 (1.982–4.386) <0.001  1.694 (0.226–12.699) 0.608 

N stage 258      

N0 254      

N1 4 2.029 (0.497–8.281) 0.324    

M stage 272      

M0 268      

M1 4 4.077 (1.281–12.973) 0.017  1.304 (0.310–5.480) 0.717 

Pathologic stage 349      

Stage I and Stage II 259      

Stage III and Stage IV 90 2.504 (1.727–3.631) <0.001  1.727 (0.237–12.611) 0.590 

Tumour status 354      

Tumour free 202      

With tumour 152 2.317 (1.590–3.376) <0.001  1.953 (1.226–3.110) 0.005 

CCDC50 373 4.512 (0.270–75.472) 0.295    

 

Table 2. Univariate and multivariate Cox regression analyses of different parameters of disease-specific survival 
in liver hepatocellular carcinoma. 

Characteristics Total (N) 
Univariate analysis 

  
Multivariate analysis 

Hazard ratio (95% CI) P-value Hazard ratio (95% CI) P-value 

T stage 362      

T1 180      

T2 92 1.619 (0.869–3.016) 0.129  1.459 (0.608–3.498) 0.397 

T3 and T4 90 4.328 (2.583–7.251) <0.001  14.188 (0.791–254.370) 0.072 

N stage 253      

N0 249      

N1 4 3.612 (0.870–14.991) 0.077  9.081 (1.141–72.298) 0.037 

M stage 268      

M0 265      

M1 3 5.166 (1.246–21.430) 0.024  1.997 (0.466–8.557) 0.352 

Pathologic stage 341      

Stage I and Stage II 254      

Stage III and Stage IV 87 3.803 (2.342–6.176) <0.001  0.332 (0.018–6.028) 0.456 

Tumour status 354      

Tumour free 202      

With tumour 152 775790759.389 (0.000–Inf) 0.994    

CCDC50 365 0.073 (0.000–31.328) 0.397    

 

(Figure 11B). Due to the heterogeneity of tumor cells, 

there are certain differences in the correlation between 

CCDC50 and different drugs in different tumors,  

which may have a certain impact on different tumor 

treatments. These results show that CCDC50 is 

significantly related to drug sensitivity in diverse cancer 

cell lines, and it has the potential to be a promising 

cancer therapeutic target. 
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Table 3. Univariate and multivariate Cox regression analyses of different parameters of progression-free 
interval in liver hepatocellular carcinoma. 

Characteristics Total (N) 
Univariate analysis 

 
Multivariate analysis 

Hazard ratio (95% CI) P-value Hazard ratio (95% CI) P-value 

T stage 370      

T1 183      

T2 94 2.017 (1.409–2.888) <0.001  1.100 (0.694–1.742) 0.686 

T3 and T4 93 2.798 (1.969–3.975) <0.001  0.895 (0.212–3.785) 0.880 

N stage 258      

N0 254      

N1 4 1.370 (0.338–5.552) 0.659    

M stage 272      

M0 268      

M1 4 3.476 (1.091–11.076) 0.035  1.462 (0.447–4.782) 0.530 

Pathologic stage 349      

Stage I and Stage II 259      

Stage III and Stage IV 90 2.201 (1.591–3.046) <0.001  2.043 (0.488–8.555) 0.328 

Tumour status 354      

Tumour free 202      

With tumour 152 11.342 (7.567–17.000) <0.001  15.140 (9.082–25.237) <0.001 

CCDC50 373 2.303 (0.186–28.565) 0.516    

 

DISCUSSION 
 

Prevention and treatment are important scientific 

problems for HCC patients. The bioinformatic analysis 

is critical to compare the heterogeneity among different 

tumours and identify novel cancer biomarkers and 

therapeutic targets [26, 27]. In the early stage, we also 

reported the relationship between CDH11 and 

malignant progression of gastric cancer through the 

public cancer database [28]. CCDC50, as a negative 

regulator of IFN signalling, is ubiquitously expressed in 

human tissues [9]. It has been reported CCDC50 is 

involved in the progression of renal clear cell carcinoma 

and mantle cell lymphoma [10, 29]. Further, CCDC50 

could regulate Ras signalling pathway and promote 

mice hepatocellular carcinoma [12]. However, until 

now, no studies have assessed whether CCDC50 is 

associated with human HCC prognosis. 

 

 
 

Figure 5. Mutational analysis of CCDC50 in HCC. (A) OncoPrint visual summary of the alterations in the CCDC50 gene. (B) The hot spots 
of mutations in CCDC50. 
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Figure 6. DNA and RNA methylation analysis of CCDC50 in HCC. (A) Correlation between m6A-related modulator genes and CCDC50 
in LIHC. (B, C) The level of DNA methylation of CCDC50 in liver cancer tissue was significantly lower than that in normal liver tissue, and was 
negatively correlated with liver cancer metastasis. (D) The level of DNA methylation of CCDC50 was significantly negatively correlated with 
the expression of CCDC50 in HCC. (E, F) Correlation between DNA methylation of CCDC50 and prognosis in LIHC. (G) Correlation between 
DNA methylation of CCDC50 and the level of immune cell infiltration in LIHC. RSEM is a software for quantifying gene expression based on 
STAR sequence comparison. ns, p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001. 
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Figure 7. Identifying differentially expressed genes (DEGs) between high and low expression of CCDC50 groups. (A) The 
volcano plot of differential lncRNA profiles between CCDC50 high expression and CCDC50 low expression. (B) The heat map of the top 15 
DEGs (lncRNA) between CCDC50 high expression and CCDC50 low expression. (C) The volcano plot of differential mRNA profiles between 
CCDC50 high expression and CCDC50 low expression. (D) The heat map of the top 15 DEGs (mRNA) between CCDC50 high expression and 
CCDC50 low expression. (E) The gene ontology term of CCDC50 analysis by using DEGs. (F) The KEGG term of CCDC50 analysis by using DEGs. 
***p < 0.001. 
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In this study, we firstly reported that CCDC50 

expression was up-regulated in HCC. In addition, our 

results indicated that high CCDC50 expression 

correlated with poor prognosis in HCC, the calibration 

curves indicated that a nomogram is reliable to predict 

the 1-, 3-, and 5-year OS, and DSS in HCC. To better 

understand the role of CCDC50 in HCC, the KEGG 

enrichment analysis was performed, and it indicated that 

the DEGs in HCC were primarily involved in the 

neuroactive ligand-receptor interaction, gastric cancer, 

pancreatic secretion, gastric acid secretion, pertussis, 

glycosaminoglycan biosynthesis-keratan sulphate,  

axon guidance, phenylalanine metabolism, nitrogen 

metabolism and protein digestion and absorption. 

 

A previous study found that 25% of HCC samples 

expressed inflammatory biomarkers [30]. Tumor 

immune cell infiltration might be associated with 

CDC50 expression, as shown in our study. We showed 

that CCDC50 correlated with these 8 major immune 

cells in HCC. CCDC50 expression levels showed a 

negative correlation with pDC, Cytotoxic cells, DC, and 

Tgd, and positive association with Eosinophils, Tcm, 

Th2, and T helper cells. 

 

 
 

Figure 8. GSEA of CCDC50 in HCC. (A–D) The top GSEA results of CCDC50 in HCC. 
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Figure 9. The correlation between CCDC50 expression and the level of immune cell infiltration. (A) The correlation between 

CCDC50 expression and the level of immune cell infiltration in HCC by using the TIMER database. (B–I) The correlations between CCDC50 
expression and the level of pDC, Cytotoxic cells, DC, Tgd, Eosinophils, Tcm, Th2, and T helper cells. *p < 0.05, **p < 0.01, ***p < 0.001. 

 

 
 

Figure 10. CCDC50 promotes the proliferation, migration, and invasion of LIHC cells. (A) The expression of CCDC50 in LIHC cell lines 
was examined via qRT-PCR assay. (B, C) The establishment of CCDC50 knockdown cell lines in Hep3B and Huh7 was verified via qRT-PCR assay 
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and western blot. (D) The knockdown of CCDC50 dramatically inhibits the proliferation of Hep3B and Huh7 cells, examined via cell counting 
kit-8 assay. (E) The knockdown of CCDC50 dramatically inhibits the migration and invasion abilities of Hep3B and Huh7 cells. Data are 
presented as the mean ± SD of three independent experiments. **p < 0.01, ***p < 0.001. 

 

Based on the comprehensive bioinformatics analysis of 

liver cancer related datasets and the results of our cell 

biology functional experiments, we can preliminarily 

conclude that CCDC50 may play a role as an oncogene 

in the progression of liver cancer, promoting the 

malignant progression of liver cancer cells. In the 

future, it can be used as an important liver cancer 

biomarker and a potential therapeutic target. 

 

 
 

Figure 11. Analysis of the correlation between CCDC50 expression and drug sensitivity in various cancers. (A) The correlation 
between CCDC50 expression and drug sensitivity in various cancers was analysed via the GDSC database. (B) The correlation between 
CCDC50 expression and drug sensitivity in various cancers was analysed via the CTRP database. 
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