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INTRODUCTION 
 
Lung cancer is a prevalent and dangerous cancer that 
starts in the lungs and is one of the leading causes of 
cancer-related deaths worldwide, accounting for nearly 
one in five deaths caused by this cancer. Lung cancer can 
be divided into two main types: small-cell lung cancer 
(SCLC) and non-small cell lung cancer (NSCLC) [1–3]. 
NSCLC, which includes adenocarcinoma, squamous cell 
carcinoma, and large cell carcinoma, is the more common 
type of lung cancer, accounting for about 80-85% of all 
cases [4]. SCLC accounts for the remaining 15-20% of 
cases. Therefore, it is crucial to investigate the molecular 
mechanisms underlying lung cancer development to 
uncover potential therapeutic targets and improve lung 
cancer treatment in its early stages. 

Angiogenesis is the process of forming new blood 
vessels from existing vessels. In normal physiology, 
angiogenesis is a natural and regulated process during 
growth, wound healing, and embryonic development  
[5, 6]. However, in human cancers, angiogenesis is 
often abnormal and uncontrolled. Cancer cells require a 
blood supply to grow and spread, and they stimulate the 
growth of new blood vessels to meet their metabolic 
needs [7]. This uncontrolled angiogenesis creates a 
network of blood vessels that nourish the cancer cells 
and supply oxygen and nutrients, enabling them to grow 
and spread to other parts of the human body. A growing 
body of evidence suggests that targeting angiogenesis is 
a promising strategy for cancer treatment [8]. Anti-
angiogenic drugs work by inhibiting the growth of new 
blood vessels, thus limiting the blood supply to cancer 
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ABSTRACT 
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expression is triggered by hypoxia. Moreover, inhibiting or silencing PRMT5 disrupts the phosphorylation of the 
VEGFR/Akt/eNOS angiogenic signaling pathway, NOS activity, and NO production. Additionally, inhibiting PRMT5 
activity reduces HIF-1α expression and stability, resulting in the down-regulation of the VEGF/VEGFR signaling 
pathway. Our findings indicate that PRMT5 promotes lung cancer epithelial-mesenchymal transition (EMT), which 
might be possibly through controlling the HIF-1α/VEGFR/Akt/eNOS signaling axis. Our study provides compelling 
evidence of the close association between PRMT5 and angiogenesis/EMT and highlights the potential of targeting 
PRMT5 activity as a promising therapeutic approach for treating lung cancer with abnormal angiogenesis. 
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cells [9]. In both types of lung cancer, angiogenesis 
plays a critical role in the development and progression. 
Thus, understanding the underlying mechanisms and 
regulating factors is crucial for developing effective 
cancer therapies. 
 
The developing evidence suggests that methylation 
plays a crucial role in cancer development [10], and 
type II protein arginine methyltransferase 5 (PRMT5) 
can methylate histone or non-histone protein to govern 
RNA processing, chromatin stability, cell proliferation, 
survival, cell metabolism, and cancers, which is 
emerging as an attractive therapeutic target recently  
[11, 12]. PRMT5 has been shown to be overexpressed 
in several types of cancer and associated with a more 
aggressive phenotype and poorer prognosis. Recent 
studies have shown that PRMT5 is involved in 
developing and progressing various types of cancer, 
including breast, lung, prostate, colorectal, and gastric 
cancer, among others [12–17]. Moreover, studies have 
suggested that PRMT5 could be a potential target for 
developing anti-cancer therapies [18, 19], as inhibiting 
its activity has been shown to inhibit the growth of 
cancer cells and reduce tumor size. Nevertheless, it is 
still unclear whether PRMT5 regulates angiogenesis to 
promote lung cancer cell metastasis, and the potential 
molecular mechanism remains obscure. 
 
Our study highlights the vital role of PRMT5 in the 
development and progression of lung cancer. By 
showing that PRMT5 was induced by hypoxia and 
participated in regulating angiogenesis, EMT, and 
metastasis, this study provided valuable insights into the 
molecular mechanisms underlying these processes in 
lung cancer. 
 
RESULTS 
 
PRMT5 is highly expressed in human lung cancer  
 
To define the biological functions of PRMT5 in lung 
cancer, we first evaluated the relative expression levels 
of PRMT5 in lung tumor tissues and normal tissues. As 
seen in Figure 1A, PRMT5 mRNA expression was 
much higher in lung tumor tissues than in normal 
tissues, indicating that PRMT5 is up-regulated in lung 
cancer. Next, we assessed the association of PRMT5 
expression with the lung tumor stages. As seen in 
Figure 2B, PRMT5 expression was much higher in 
stage II, stage III, and stage IV than in stage I, and the 
ectopic expression levels of PRMT5 were positively 
correlated with the stages. Furthermore, the patients 
with high expression levels of PRMT5 had a low 
survival rate compared with the patients with low 
expression levels of PRMT5 (Figure 1C). To validate 
the above findings, we collected the eight paired-lung 

tumor tissues and normal tissues from the patients with 
lung cancer and the PRMT5 protein expression were 
determined by Western blotting. As seen in Figure 1D 
and 1E, PRMT5 protein expression levels were 
significantly elevated (4.4 fold) in tumor samples 
compared with normal samples. Additionally, we 
detected the PRMT5 protein expression in lung cancer 
cell lines and normal human fetal lung fibroblast cells 
(IMR90). Consistent with the above lung cancer tissue 
results, PRMT5 was overexpressed in lung cancer cells 
than IMR90 cells (Figure 1F, 1G). Previous studies 
showed that HIF-1α and PI3K/Akt signaling pathway 
was closely related to angiogenesis, metastasis, and 
EMT [20, 21]. We next assessed the correlation 
between PRMT5 and HIF-1α or PI3K/Akt signaling 
pathway. As seen in Figure 1H, 1I, we found that 
PRMT5 positively correlated with HIF-1α and 
PI3K/Akt signaling pathway in lung cancer, suggesting 
a potential association between these genes and 
pathways. Taken together, our findings indicate that 
abnormal expression of PRMT5 is closely related to the 
lung tumor stages and survival rates in patients with 
lung cancer, and PRMT5 may regulate angiogenesis, 
metastasis, and EMT through HIF-1α and PI3K/Akt 
signaling pathway. 
 
PRMT5 is induced by hypoxia, and NO production 
is suppressed by PRMT5 inhibition  
 
PRMT5 is considered as an oncogene and 
overexpressed in many human cancers, but the role of 
PRMT5 in angiogenesis is still unclear. To dissect the 
function of PRMT5 in angiogenesis during lung cancer 
development, human umbilical vein ECs (HUVECs) 
were used in our study because HUVECs are a widely 
used cell model for studying vasculature and 
angiogenesis, and HUVECs also express many essential 
signaling molecules and endothelial markers associated 
with angiogenesis [22, 23]. We first determined the 
mRNA expression level of PRMT5 in HUVECs 
induced by CoCl2 that mimics hypoxia in different 
in vitro studies. As seen in Figure 2A, PRMT5 mRNA 
expression was dramatically increased, induced by 
CoCl2 in a time-dependent manner. Moreover, the HIF-
1α, a marker for angiogenesis under hypoxia, was also 
markedly increased (Figure 2B). Hypoxia is one of the 
hallmarks of human lung cancer [24–26]. We wonder if 
the expression of PRMT5 and HIF-1α was changed in 
lung cancer cells induced by CoCl2. To address this 
question, the ASTC-a-1 cells, a lung adenocarcinoma 
cell line, were used. As seen in Figure 2C, 2D, both 
PRMT5 and HIF-1α mRNA levels were significantly 
elevated in ASTC-a-1 cells in a time-dependent manner 
upon CoCl2 treatment. In addition, we found that HIF-
1α was highly expressed in the nucleus in both 
HUVECs (Figure 2E) and ASTC-a-1 cells (Figure 2F) 



www.aging-us.com 6165 AGING 

 
 

Figure 1. Overexpression of PRMT5 results in human lung cancer progression. (A) PRMT5 mRNA expression level was analyzed in 
adjacent normal tissues (n=486) and lung tumor tissues (n=338) using TCGA database. ****P <0.0001 vs. normal tissues with Mann-Whitney 
test. (B) PRMT5 was closely associated with stages in human lung cancer with analysis of the TCGA database. N=113 for stage I; n=68 for 
stage II; n=43 for stage III and n=19 for stage IV. P <0.001 vs. indicated stages. (C) PRMT5 expression level was negatively correlated with the 
patient’s overall survival with TCGA database analysis. n=239 for PRMT5-low group and PRMT5-high group. P values were determined by log-
rank test and p=0.048. (D) PRMT5 protein expression levels were assessed by Western blotting in adjacent normal tissues (N) and lung tumor 
tissues (T). (E) PRMT5 protein expression levels were quantified in adjacent normal tissues and lung tumor tissues (n=8, each group). *P < 
0.05 vs. normal tissue. (F) PRMT5 protein expression was detected by Western blotting in the indicated cell lines. (G) PRMT5 protein 
expression levels were quantified in the indicated cell lines. (n=3). *P < 0.05 vs. IMR90 cells. (H, I) The correlations between PRMT5 and HIF-
1α or PI3K/Akt pathway were analyzed. The correlations between individual gene and pathway score were analyzed with Spearman method 
as well. The abscissa represents the distribution of the gene expression, and the ordinate represents the distribution of the pathway score. 
The density curve on the right represents the trend in distribution of pathway immune score; the upper density curve represents the trend in 
distribution of the gene expression. The value on the top represents the correlation p value, correlation coefficient and correlation 
calculation method. 
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Figure 2. PRMT5 is induced by hypoxia. The HUVECs (A, B) and ASTC-a-1 cells (C, D) were treated with CoCl2 (200μM) for indicated time 
points, and the mRNA expression levels of PRMT5 and HIF-1α were measured by qRT-PCR. *P < 0.05 vs. 0-time point, n=4. The HUVECs  
(E) and ASTC-a-1 cells (F) were treated with or without CoCl2 (200μM) for 12h, and the HIF-1α expression induced by CoCl2 was detected by 
immunofluorescence staining. Representative pictures were shown. Green= HIF-1α; Red=β-actin; Blue=DAPI. Scale Bar=50μm. The ASTC-a-1 
cells (G) and HUVECs (H) were treated with CoCl2 (200μM) for indicated time points, and the protein expression levels of PRMT5 and HIF-α 
were evaluated by Western blotting. (I) PRMT5 and HIF-α protein expression levels were quantified in ASTC-a-1 and HUVECs cells (n=3). *P < 
0.05 vs. 0-time point. (J) The HUVECs were treated with VEGF (50ng/ml) in the presence or absence of GSK591, and the endothelial NO was 
monitored by the DAF-FM DA probe. Scale bar=50μm. (K) Quantitation of corresponding MFI values (n=6, each group). *P < 0.05 vs. control; 
#P < 0.05 vs. VEGF. (L) NOS enzymatic activity in HUVECs upon treatment of VEGF with or without GSK591 as evaluated by the Griess method. 
*P < 0.05 vs. control; #P < 0.05 vs. VEGF (50ng/ml) treatment. (n=3, each group). (M) Total NO was measured by ELISA kit using the Griess 
reaction in the supernatant of HUVECs upon treatment of VEGF (50ng/ml) with or without GSK591. *P < 0.05 vs. control; #P < 0.05 vs. VEGF 
treatment. (n=3, each group). 
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in response to CoCl2 treatment. Next, PRMT5 and HIF-
1α protein expression was determined in HUVECs and 
ASTC-a-1 cells induced by CoCl2. As seen in  
Figure 2G–2I, we found that PRMT5 and HIF-1α 
protein expression was increased in both HUVECs and 
ASTC-a-1 cells in a time-dependent manner.     
 
NO plays an essential role in angiogenesis [27]. Thus, 
to determine whether PRMT5 is involved in NO 
production, the HUVECs were treated with VEGF in 
the presence or absence of GSK591, a potent PRMT5 
inhibitor, and the NO production was monitored by the 
DAF-FM DA probe in living cells. As seen in  
Figure 2J, 2K, we found that NO production was 
strongly induced by VEGF compared with the control 
group, whereas NO production was markedly 
diminished by PRMT5 inhibitor GSK591. To further 
confirm whether PRMT5 is involved in NO production, 
the eNOS activity and total NO production in the 
medium of HUVECs were measured. As seen in  
Figure 2L, 2M, we found that both eNOS activity and 
total NO production were strongly induced by VEGF 
compared with the control group, whereas both eNOS 
activity and total NO production were lessened by 
PRMT5 inhibitor GSK591. Collectively, these results 
suggest that PRMT5 is engaged in NO production and 
angiogenesis, which may lead to EMT and metastasis 
during lung cancer progression. 
 
Blocking PRMT5 impairs VEGFR2/Akt/eNOS 
signaling axis 
 
VEGF/VEGFR2 signaling cascades, one of the most 
prominent angiogenetic factors, serve as an essential 
mediator to facilitate endothelial cell proliferation, 
survival, and migration, which promote abnormal 
angiogenesis. In order to dissect whether PRMT5 
regulates angiogenesis and the possible molecular 
mechanism, we used the potent PRMT5 inhibitor to 
repress the PRMT5 enzyme activity. For this purpose, 
the HUVECs were treated with GSK591 for five days 
and then were stimulated with VEGF (50ng/ml) at 
indicated time points. As seen in Figure 3A, GSK591 
treatment dramatically reduced the phosphorylation of 
VEGFR2 at both Tyr-1175 and Tyr966 induced by 
VEGF, and the symmetric dimethylation of arginine 
(SDMA) that was catalyzed by PRMT5 on a wide 
variety of targets was also reduced. In contrast, the total 
VEGFR2 was unchanged, indicating that blocking 
PRMT5 enzyme activity only affects the phospho-
VEGFR2, but not the total protein. Furthermore, 
blocking PRMT5 also impaired the phosphorylation of 
Akt at both Thr-308 and Ser-473 and the 
phosphorylation of eNOS at Ser-1177 induced by 
VEGF, which were mainly engaged in endothelial cell 
duplication and angiogenesis. To further confirm 

whether PRMT5 regulates VEGFR2/Akt/eNOS signaling 
axis, we used lentivirus containing PRMT5-shRNA to 
knock down endogenous PRMT5, and the 
phosphorylation levels of VEGFR2, Akt, and eNOS were 
detected by Western blotting. As seen in Figure 3B, we 
found that down-regulation of PRMT5 attenuated the 
phosphorylation levels of VEGFR2, Akt, and eNOS 
induced by VEGF, similar to the GSK591 treatment. 
Altogether, these data indicate that PRMT5 indeed 
regulates angiogenesis via VEGFR2/Akt/eNOS 
signaling axis, which is related to PRMT5 enzyme 
activity. 
 
Inhibiting PRMT5 attenuates HIF-1α expression 
and stability induced by hypoxia 
 
HIF-1α is a heterodimeric transcription factor that plays 
a critical role in angiogenesis in response to ischemia or 
hypoxia [28]. To explore the potential function of HIF-
1α and PRMT5 in lung cancer, we first evaluated the 
mRNA expression of HIF-1α in PRMT5 depletion cells. 
As seen in Figure 4A, down-regulation of PRMT5 did 
not affect the mRNA expression of HIF-1α, suggesting 
that a posttranslational mechanism may be involved in 
regulating HIF-1α protein levels by PRMT5. We next 
investigated whether down-regulation or inhibition of 
PRMT5 affects the protein expression of HIF-1α upon 
hypoxia stimulation. As seen in Figure 4B, 4C, both 
down-regulation and inhibition of PRMT5 strongly 
reduced the HIF-1α expression induced by CoCl2. 
Moreover, the reduction of HIF-1α expression was 
negatively associated with the concentration of GSK591 
(Figure 4D). These findings imply that PRMT5 may 
control HIF-1α expression via a posttranslational 
mechanism. To further explore how PRMT5 regulates 
HIF-1α expression and the related molecular 
mechanism, we detected the HIF-1α expression stability 
in PRMT5 depletion HUVECs or treatment of GSK591 
in the presence of cycloheximide (CHX). As seen in 
Figure 4E, 4F, down-regulation or inhibition of PRMT5 
markedly decreased the stability of HIF-1α protein in 
response to CoCl2 and promoted its degradation. In 
order to understand which pathway mediated the 
degradation of HIF-1α, we used the bafilomycin A1 
(BAF-A1), the lysosome inhibitor, and MG132, the 
proteasome inhibitor, to evaluate the HIF-1α 
degradation upon GSK591 treatment or in PRMT5 
depletion HUVECs. As seen in Figure 4G, we found 
that HIF-1α degradation was entirely blocked by 
MG132 but not BAF-A1, indicating that PRMT5 
regulated HIF-1α stability via the proteasome pathway, 
but not lysosome pathway. Finally, we wonder whether 
the reintroduction of PRMT5 could rescue the HIF-1α 
degradation in PRMT5 depletion HUVECs. To this end, 
we reintroduced WT-PRMT5 into the PRMT5 depletion 
HUVECs, and the cells were treated with CoCl2. As 
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seen in Figure 4H, the reintroduction of WT-PRMT5 
rescued the HIF-1α expression in PRMT5 depletion 
HUVECs compared with vector control induced by 
CoCl2. Collectively, our findings uncover a new 
mechanism by which PRMT5 promotes angiogenesis by 
regulating HIF-1α stability.  

Inhibiting PRMT5 attenuates EMT and metastasis 
in lung cancer  
 
Angiogenesis is a critical component of metastatic 
signaling and EMT by recruiting new blood vessels, 
which provides the principal route to facilitate the tumor 

 

 
 

Figure 3. Inhibiting PRMT5 impairs VEGFR2/Akt/eNOS signaling axis. (A) The HUVECs were incubated with vehicle or GSK591 
(10μM) for five days, and the cells were serum starved and treated with VEGF (50ng/mL) at different time points. The cells were harvested, 
and the indicated protein expression levels were assessed by Western blotting (n=3). GAPDH served as an internal control. (B) The HUVECs 
were infected with lentivirus containing scramble-shRNA or PRMT5-shRNA2, and the cells were serum starved. The cells were stimulated 
with VEGF (50 ng/mL), and the indicated protein expression levels were assessed by Western blotting (n=3). The PRMT5 activity was 
determined by the expression of SDMA. 
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Figure 4. Suppressing PRMT5 reduces the expression and stability of HIF-1α induced by hypoxia. (A) The mRNA expression of 
HIF-1α and PRMT5 was measured by qRT-PCR in PRMT5 depletion cells (HUVECs, n=4). *P < 0.05 vs. Scr. N.S. means not significant. (B) The 
HUVECs were infected with lentivirus containing scramble-shRNA or PRMT5-shRNA2, followed by CoCl2 (200μM) treatment for 24h. The 
PRMT5 and HIF-α expression levels were determined by Western blotting (n=3). (C) The HUVECs were treated with vehicle or GSK591 (1μM) 
for five days and then were treated with CoCl2 (200μM) for 24h. The HIF-1α expression level was determined by Western blotting (n=3).  
(D) The effect of different doses of GSK591 on the HIF-1α expression level induced by CoCl2 as evaluated by Western blotting (n=3). (E) The 
HIF-1α stability was detected by Western blotting in PRMT5 depletion HUVECs upon cycloheximide (CHX, 20μg/mL) treatment at the 
indicated time points (n=3). (F) The HIF-1α stability was detected by Western blotting in GSK591-treated HUVECs upon cycloheximide 
treatment at the indicated time points (n=3). (G) The HUVECs were incubated with or without GSK591 (10μM) or infected with lentivirus 
containing PRMT5-shRNA2 and then pretreated with MG132 (10μM) and BAF-A1 (100nM) for 30 min before treating CoCl2. The HIF-1α 
expression levels were evaluated by Western blotting (n=3). (H) The HUVECs were infected with lentivirus containing scramble-shRNA or 
PRMT5-shRNA2 and then were transfected with vector or Flag-PRMT5 before treating CoCl2. The HIF-1α expression levels were evaluated by 
Western blotting (n=3).  
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cells to secede from the primary tumor site and enter 
circulation [29]. To probe the molecular basis of EMT 
and metastasis in lung cancer cells mediated by 
PRMT5, the ASTC-a-1 cells were treated with PRMT5 
inhibitor GSK591 or infected with lentivirus expressing 
PRMT5-shRNA, and the EMT markers were monitored 
by immunofluorescence. As seen in Figure 5A–5D, 
inhibition of PRMT5 significantly repressed the 
expression of β-catenin, Vimentin, and Slug, whereas 
the expression of E-cadherin was increased upon 
GSK591 treatment. Similar results were obtained in 
PRMT5 depletion cells (Figure 5E–5H). To confirm the 
above findings, these markers were also detected by 
Western blotting. As seen in Figure 5I and 5J, the 
expression levels of β-catenin, Vimentin, and Slug were 
diminished in response to PRMT5-specific inhibitors 
GSK591 and EPZ or down-regulation of PRMT5. The 
PRMT5 enzyme activity was also reduced, indicated by 
the expression of SDMA (Figure 5K). Altogether, our 
findings suggest that PRMT5 regulates lung cancer cell 
EMT and metastasis, at least in part, via promoting 
angiogenesis by controlling HIF-1α/VEGFR/Akt/eNOS 
signaling pathway. 
 
DISCUSSION 
 
PRMT5, an oncoprotein, has been implicated in various 
stages of human cancer progression and development 
by altering signaling pathways [19, 30]. The exact role 
of PRMT5 in controlling cancer cell metastasis, 
particularly in human lung cancer, remains unclear. Our 
study showed that PRMT5 was highly expressed in 
human lung cancer tissues and correlated with the 
progression of lung tumors and patient survival rates 
(Figure 1). These results suggest that PRMT5 plays a 
key role in lung cancer progression. Additionally, our 
results showed that hypoxia-induced PRMT5 
expression and inhibiting or silencing PRMT5 impeded 
the phosphorylation of VEGFR/Akt/eNOS angiogenic 
signaling axis and decreased eNOS activity and NO 
production (Figures 2, 3). PRMT5 inhibition or down-
regulation also decreased HIF-1α expression and 
stability (Figure 4), resulting in inhibition of the 
VEGF/VEGFR signaling axis. Additionally, inhibiting 
or silencing PRMT5 also suppressed EMT markers in 
lung cancer cells (Figure 5). These findings suggest that 
PRMT5 promotes EMT and metastasis, at least partly, 
by governing HIF-1α/VEGFR/Akt/eNOS signaling and 
promoting angiogenesis (Figure 6). 
 
PRMTs, a family of enzymes that catalyze the 
methylation of histone and non-histone proteins, have 
been recognized for their crucial role in regulating 
various cellular processes, including chromatin 
regulation, signal transduction, RNA processing, and 
gene expression [9, 26]. PRMT5, a major type II 

methyltransferase, is widely expressed in human 
cancers and has a crucial role in cancer development 
[16, 31]. However, the function of PRMT5 in 
angiogenesis and lung cancer EMT is still largely 
unknown. The evolving evidence suggests that the role 
of PRMT5 in cancer development has recently gained 
significant attention. An increase in PRMT5 expression 
has been found to be closely linked to the occurrence 
and progression of various types of tumors. It has been 
reported that PRMT5 overexpression promoted tumor 
growth, while depletion of PRMT5 inhibited tumor 
growth [12]. The inhibition of PRMT5 can increase the 
number of infiltrating immune cells and improve 
antitumor immunity by reducing the expression of 
NLRC5 and methylating IFI116/IFI204 [32]. High 
levels of PRMT5 expression in lung cancer have been 
associated with poor prognosis, and inhibition of 
PRMT5 can affect the growth cycle of lung cancer cells 
by inhibiting the phosphorylation of AKT1 [12, 15]. 
PRMT5 has also been shown to promote metastasis of 
lung cancer cells by activating the AKT1 and ERK 
signaling pathways [33, 34]. Our study has revealed that 
PRMT5 was not only highly expressed in lung tumors 
but also closely linked with poor prognosis and survival 
rate. Despite the increasing recognition of PRMT5’s 
significance in tumors, its role in angiogenesis and 
EMT is entirely unknown.  
 
Hypoxia is a common phenomenon in solid tumors, 
including lung cancer, where there is a lack of oxygen 
supply to the tumor cells [35, 36]. This lack of oxygen 
leads to metabolic changes in the tumor cells and affects 
various cellular processes, such as angiogenesis, cell 
migration, and invasion [37, 38]. These changes 
contribute to the aggressive behavior of the tumor and 
the development of resistance to cancer treatments. 
Hypoxia has also been shown to play a crucial role in 
regulating genes involved in tumor progression, such as 
VEGF, HIF-1α, and c-Myc, leading to the promotion of 
angiogenesis, cell growth, and invasion [38–41]. In 
addition, hypoxia can promote the development of 
cancer stem cells, which are cells within a tumor that 
have the ability to give rise to all the different cell types 
found in the tumor and are often resistant to cancer 
treatments [41]. The management of hypoxia in lung 
cancer is a major challenge in treating the disease. 
Moreover, the HIF-1α/VEGFR/Akt/eNOS signaling 
axis is upregulated under hypoxic conditions in tumors 
and contributes to cancer development and progression 
by promoting angiogenesis and EMT of tumor cells [20, 
42]. HIF-1α activates VEGF to stimulate endothelial 
cell proliferation, migration, and survival, while 
activation of the Akt pathway downstream of VEGFR 
promotes EMT. HIF-1α also activates eNOS 
expression, leading to the production of NO, which 
promotes angiogenesis [43]. Additionally, NO, 
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Figure 5. Blocking PRMT5 attenuates lung cancer invasion and metastasis. (A–D) The ASTC-a-1 cells were treated with GSK591 or 
Vehicle, and the EMT markers (β-catenin, Vimentin, Slug, and E-cadherin) were determined by immunofluorescence. Representative pictures 
were shown (n=3, each group). Scale Bar=50μm. (E–H) The ASTC-a-1 cells were infected with lentivirus containing scramble-shRNA or PRMT5-
shRNA1, and the EMT markers (β-catenin, Vimentin, Slug, and E-cadherin) were determined by immunofluorescence. Representative pictures 
were shown (n=3, each group). Scale Bar=50μm. (I) The ASTC-a-1 cells were infected with lentivirus containing scramble-shRNA, PRMT5-
shRNA1, or PRMT5-shRNA2. The expression levels of EMT markers (β-catenin, Vimentin, and Slug) and PRMT5 knockdown efficiency were 
detected by Western blotting (n=3). (J) The ASTC-a-1 cells were treated with GSK591, and the expression levels of EMT markers (β-catenin, 
Vimentin, and Slug) were detected by Western blotting (n=3). (K) The ASTC-a-1 cells were treated with GSK591 or Vehicle or infected with 
lentivirus containing scramble-shRNA, PRMT5-shRNA1, or PRMT5-shRNA2. The PRMT5 enzyme activity was detected by Western blotting 
(n=3) using the SDMA antibody. 
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produced by endothelial nitric oxide synthase (eNOS), 
can be activated by various stimuli, including HIF-1α, 
and also promotes tumor angiogenesis by inducing 
endothelial cell growth, migration, and tube formation 
[44, 45]. Therefore, up-regulation of the HIF-
1α/VEGFR/Akt/eNOS signaling axis, which activates 
eNOS expression, can increase NO production and 
promotion of tumor angiogenesis. Targeting this 
signaling axis may be a potential therapeutic strategy 
for cancer treatment. Our findings revealed that PRMT5 
was induced by hypoxia, whereas inhibiting or silencing 
PRMT5 impaired the phosphorylation of the 
VEGFR/Akt/eNOS angiogenic signaling axis and 
decreased eNOS activity and NO production. Also, 
suppressing PRMT5 attenuated HIF-1α expression and 
stability induced by hypoxia, which led to down-
regulation of the phosphorylation of the 

VEGF/VEGFR2 signaling axis. These results indicate 
that PRMT5 is a central upstream mediator for 
angiogenesis under hypoxia and imply that PRMT5 is a 
therapeutic candidate for treating lung cancer with 
abnormal angiogenesis. The current treatments aim to 
improve oxygen delivery to the tumor, such as oxygen 
inhalation therapy or angiogenic agents to enhance 
blood flow to the tumor. Others aim to target the 
hypoxia-related pathways and genes, such as using HIF-
1α inhibitors. However, further research is needed to 
fully understand the role of PRMT5 in lung cancer 
under hypoxia and to develop effective treatments under 
this condition. 
 
PRMT5 has been implicated in regulating EMT, a 
biological process through which epithelial cells lose 
their cell-cell adhesion and acquire mesenchymal cell 

 

 
 

Figure 6. Graphic summary of the mechanism by which PRMT5 regulates HIF-1α expression and VEGFR2/Akt/eNOS to 
promote angiogenesis and metastasis in human lung cancer. 



www.aging-us.com 6173 AGING 

properties, resulting in increased migration, invasion, 
and stemness [18, 19]. During EMT, epithelial cells 
undergo changes in gene expression, cell-cell adhesion, 
and cytoskeleton organization, which promote the loss 
of cell polarity, increased cell motility and invasiveness, 
and a more mesenchymal-like phenotype. Studies have 
shown that PRMT5 regulates EMT by modifying 
various target proteins, including transcription factors 
and cell adhesion molecules [15]. For example, PRMT5 
has been shown to regulate Snail expression and 
activity, a transcription factor that is a key regulator of 
EMT [12]. PRMT5 has also been shown to directly 
methylate Akt1 arginine 15, a master regulator for 
cancer metastasis, leading to cancer cell invasion and 
migration [12]. Our findings present solid proof of a 
strong association between PRMT5 and 
angiogenesis/EMT and imply that inhibiting PRMT5 
activity could be a viable therapeutic strategy for 
combating lung cancer that exhibits abnormal 
angiogenesis. Further studies are needed to fully 
understand the mechanism by which PRMT5 regulates 
angiogenesis and EMT and its potential as a therapeutic 
target in lung cancer treatment.  
 
MATERIALS AND METHODS 
 
Clinical materials collection  
 
The matched adjacent normal tissues and related lung 
tumor tissues were collected between January 2020 and 
January 2022 from patients who were accepted with 
surgical treatment at Minhang Hospital of Fudan 
University. A total of eight matched tissue samples 
were collected and were immediately flash-frozen in 
liquid nitrogen. Then, those samples were used for 
further experiments and assays.  
 
Bioinformatics analysis 
 
Bioinformatics analysis was performed with public 
datasets in TCGA and described previously [46]. We 
acquired TCGA datasets from Xena Browser. Gene 
expression dataset across normal and cancer tissue was 
extracted and analyzed. RNA expression values were 
transformed using the ‛voom’ method limma package, 
version 3.30.13. All multiple comparisons for TCGA 
analysis were corrected using Benjamini-Hochberg 
unless otherwise stated. For a direct comparison of the 
expression of PRMT5 between normal tissue and cancer 
tissues, an unpaired t-test or Mann-Whitney test was 
used, and p-values were calculated. TMM normalized 
counts were Log2 + 1 transformed and were used to 
classify patients into high and low expression groups for 
each gene of interest using the surv_cutpoint function in 
survminer R; then, four stages were generated from 
these data. The prognosis of each group was examined 

using Kaplan-Meier survival estimators with the 
survminer R package, version 0.4.1, with survival 
outcomes compared by log-rank tests. Moreover, RNA-
sequencing expression (level 3) profiles and 
corresponding clinical information for PRMT5, HIF-1α 
and PI3K/Akt were downloaded from the TCGA  
dataset (https://www.cancer.gov/ccg/research/genome-
sequencing/tcga). R software GSVA package was used 
to analyze, choosing parameter as method=‛ssgsea’. The 
correlation between genes and pathway scores was 
analyzed by Spearman correlation. All the analysis 
methods and R packages were implemented by R 
version 4.0.3. p-value <0.05 was considered statistically 
significant. 
 
Cell culture and inhibitors 
 
The ASTC-a-1 cells were obtained from the Department 
of Medicine, Jinan University (Guangzhou, China), and 
the cells were cultured in Dulbecco’s Modified Eagle’s 
Medium (1:1) (DMEM, Gibco, Thermo Fisher 
Scientific) supplemented with 10% (v/v) fetal bovine 
serum (FBS, Sigma cat# F2442), 50 units/ml penicillin, 
and 50 mg/ml streptomycin. The Human umbilical vein 
endothelial cells (HUVECs) were purchased from 
Thermo Fisher Scientific (cat# C0035C), and the cells 
were cultured in Endothelial Cell Growth Medium 
(EGM-2 BulletKit, Lonza, cat# CC-3162) supplemented 
with 10% FBS, L-glutamine, and 1% antibiotic solution. 
All other cell lines were purchased from The Cell Bank 
of Type Culture Collection of Chinese Academy of 
Sciences (CAS) in Shanghai and were cultured in 
Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco, 
Thermo Fisher Scientific) supplemented with 10% fetal 
bovine serum. The mycoplasma was measured by 
PlasmoTest™-Mycoplasma Detection Kit (InvivoGen, 
China) in ASTC-a-1cells and HUVECs before the 
experiments were performed. All the cells were 
maintained at 37° C with 5% CO2 in an incubator. The 
ASTC-a-1 cells and HUVECs were treated with 200μM 
Cobalt Chloride (CoCl2) for indicated time points to 
generate the hypoxic cell model. PRMT5 specific 
inhibitor EPZ015666 (GSK3235025, cat# HY-12727) 
and MG-132 (HY-13259) was purchased from 
MedChemExpress (MCE). The cycloheximide (cat# 
C4859) and GSK591 were purchased from Sigma (cat# 
SML-1751). The lysosome inhibitor bafilomycin A1 
(BAF-A1, cat# 1334) was purchased from TOCRIS. 
 
Construction of plasmids 
 
The Scramble-shRNA and PRMT5-shRNAs were 
described previously [30]. Briefly, to knock down 
endogenous PRMT5, the Scramble-shRNA and 
PRMT5-shRNAs were cloned into a lentiviral vector. 
The human PRMT5 targeting sequences were: shRNA1, 

https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
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5’-GGATAAAGCTGTATGCTGT-3’; shRNA2: 5’-
GCCATCTATAAATGTCTGCTA-3’. To generate the 
lentivirus containing Scramble-shRNA or PRMT5-
shRNAs, the helper plasmids MD2G and PAX2 were 
used (Addgene). The human PRMT5 cDNA was 
subcloned into the Flag vector and verified by 
sequencing. 
 
Generation of PRMT5 stable knockdown cell line 
 
The lentiviral constructs containing scramble-shRNA or 
PRMT5-shRNAs were co-transfected along with the 
helper plasmids MD2G and PAX2 into 293T cells using 
Lipofectamine™ 3000 (cat# L3000015, Invitrogen) 
transfection reagent according to the manufacturer’s 
protocol. After 24 h post-transfection, the culture media 
were replaced with fresh media, and then the culture 
media were harvested after 48 h post-transfection. The 
media were filtered, and the viral titer was pre-
determined. Subsequently, ASTC-a-1 cells and HUVECs 
were infected with the lentivirus containing scramble-
shRNA or PRMT5-shRNAs with an equal amount of 
virus particles. After 24 h, post-infection, the cells were 
selected with puromycin (Sigma, cat# p9620) for 48 h. 
 
Gene expression analysis 
 
Gene expression was performed by quantitative real-
time PCR (qRT-PCR). The total RNA was extracted 
from ASTC-a-1 cells and HUVECs upon treatments 
using TRIzol reagent (Invitrogen, cat# 15596-018) 
according to the manufacturer’s protocol. After 
extraction of the total RNA, the concentration of  
the RNA was measured by NanoDrop 2000 
spectrophotometers, and the equal amount of RNA 
(1ug) was applied to carry out the reverse transcription 
by C1000 Touch PCR Thermal Cycler (Bio-Red). 
Finally, the qRT-PCR was performed to detect the gene 
expression with SYBR green fluorescent Dye (Bio-Rad, 
cat# 1725272) by an ABI7500 PCR machine (Applied 
Biosystems™). The following primers were used in this 
study: human PRMT5 forward: 5’-CCTGTGGA 
GGTGAACACAGT-3’ and revise: 5’-AGAGGA 
TGGGAAACCATGAG-3’; human HIF-1α, forward: 
5′-CACCTCTTTTGGCAAGCATCCTG-3′ and revise: 
5′-TATGAGCCAGAAGAACTTTTAGGC-3′; human 
GAPDH, forward:  5′-TGTGGGCATCAATGGATT 
TGG-3′ and revise: 5′-ACACCATGTATTCCGG 
GTCAAT-3. GAPGH served as an internal control. The 
relative mRNA expression level was calculated by the 
method of ΔΔ-Ct. 
 
Western blot analysis  
 
Western blot analysis was performed as described 
previously [47]. Briefly, the total proteins were 

extracted from tissues and cells with the lysis buffer (20 
mmol/L Tris, PH 7.4, two mmol/L EDTA, two mmol/L 
EGTA, one mmol/L sodium orthovanadate, 1% Triton 
X-100, 150 mmol/L NaCl, 50 mmol/L sodium fluoride, 
0.1% SDS, and 100 mmol/L phenylmethylsulfonyl 
fluoride) and then were centrifuged for 10 min at  
4° C with the top speed of the centrifuge. Next, the 
Bradford method determined the protein concentration 
before separating the proteins in sodium dodecyl 
sulfate/polyacrylamide gel electrophoresis (SDS/ 
PAGE). The proteins were transferred to the PVDF 
membranes (cat#1620177; Bio-Rad), and the 
membranes were washed three times with TBST and 
blocked using 5% non-fat milk for one h at room 
temperature. Next, the membranes were incubated with 
the indicated antibodies for overnight at 4° C: PRMT5 
(Santa Cruz Biotechnology, cat# sc-376937), HIF-1α 
(Cell Signaling Technology, cat# 36169), Phospho-
Tyr1175-VEGF Receptor 2 (Cell Signaling Technology, 
cat# 3770), phospho-Tyr996-VEGF Receptor 2 (Cell 
Signaling Technology, cat# 2474), total VEGFR 2 (Cell 
Signaling Technology, cat# 9698), phospho-Thr308-Akt 
(Cell Signaling Technology, cat# 4056), phospho-
Ser473-Akt (cat# 4060; Cell Signaling Technology), 
total Akt (Cell Signaling Technology, cat# 4691), 
phospho-Ser1177-eNOS (Cell Signaling Technology, 
cat# 9570), total eNOS (Cell Signaling Technology, 
cat# 32027), Symmetric Di-Methyl Arginine Motif 
[sdme-RG] MultiMab™ (cat# 13222; Cell Signaling 
Technology), β-catenin (Cell Signaling Technology, 
cat# 8814), vimentin (Cell Signaling Technology, cat# 
5741), Slug (Cell Signaling Technology, cat# 9585), 
Flag (Sigma, cat# F7425), β-actin (Santa Cruz 
Biotechnology, cat# sc-47778), and GAPDH (Cell 
Signaling Technology, cat# 5174). Then, the 
membranes were incubated with goat anti-rabbit 
conjugated to HRP secondary antibody (Santa Cruz 
Biotechnology, cat# sc-2004) or goat anti-mouse 
conjugated to HRP secondary antibody (Santa Cruz 
Biotechnology, cat# sc-2005) at room temperature for 
2h. Finally, the proteins were detected by SuperSignal 
West Pico Chemiluminescent Substrate Western 
blotting reagents (Thermo Fisher Scientific, cat# 
34580).  
 
Immunofluorescence 
 
ASTC-a-1 cells were seeded into 6-well plates for 24h 
before treatments. The cells were fixed for 20 min at 
room temperature, and then permeabilization was 
applied with ice-cold methanol at -20° C for 10 minutes. 
The cells were washed with PBS twice after 
permeabilization and incubated in blocking buffer (5% 
normal goat serum) for 60 min at room temperature, 
followed by incubation with the primary antibodies: 
HIF-1α (Cell Signaling Technology, cat# 36169),  
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β-catenin (Cell Signaling Technology, cat# 8814), 
vimentin (Cell Signaling Technology, cat# 5741), Slug 
(Cell Signaling Technology, cat# 9585), E-Cadherin 
(Cell Signaling Technology, cat# 3195) and β-actin 
(Santa Cruz Biotechnology, cat# sc-47778) (diluted 
1:50 in blocking buffer) at 4° C overnight. After 
incubation, the cells were washed with PBS three times, 
followed by incubation with Alexa Fluor 594-
conjugated goat anti-mouse secondary antibody 
(Thermo Fisher, cat# A-11005) and Alexa Fluor 488-
conjugated goat anti-rabbit secondary antibody (Thermo 
Fisher, cat# A-11034). Finally, the nuclei were labeled 
with DAPI (Sigma, cat# D9542) before observation. 
The images were analyzed with a confocal microscopy 
system (LSM700, Zeiss). 
 
Nitric oxide synthase (NOS) activity measurement  
 
To measure the NOS activity, HUVECs were treated 
with VEGF, GSK591, or vehicle, and the NOS activity 
was detected with the NOS activity assay kit (Abcam, 
ab211083) according to the manufacturer’s protocol. 
The NO synthesis activity was measured immediately 
once the samples were ready to use, and the substrate 
with cofactors was added immediately. The reactions 
were observed with Griess Reagents 1 and 2. The 
relative enzymatic activity of NOS was calculated with 
the absorbance at 540 nm. 
 
Nitric oxides (NO) measurement 
 
To measure the total nitric oxides (NO), the HUAECs 
were incubated with VEGF, GSK591, or vehicle, and 
the supernatants were collected, followed by 
deproteinizing with a ten kDa column spin cut-off 
system (SARTORIUS, cat# VS0101). Then, the assay 
was performed immediately by the NO assay kit 
(Abcam, ab65328) with the Griess method according to 
the manufacturer’s protocol. To detect the NO 
production in living cells, the dye, 4-amino-5-
methylamino-2′,7′-difluorofluorescein diacetate (DAF-
FM DA; Invitrogen, cat# D23844) was used. The 
HUVECs were pretreated with DAF-FM DA for 15 min 
under indicated conditions, and the cells were washed 
for 10 min. The images were analyzed with a confocal 
microscopy system (LSM700, Zeiss), and the mean 
fluorescence intensity (MFI) was analyzed. 
 
Statistical analysis 
 
All experiments were performed in triplicate under 
identical conditions, and the data were shown as 
means ± SEM. Unpaired two-tailed Student’s t-test 
analyzed differences between the two groups. The 
difference with P < 0.05 was considered statistically 
significant. 
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