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INTRODUCTION 
 

More than 300 million operations are performed 

worldwide each year, and a continued increase is 

observed in all economic environments [1]. 

Postoperative cognitive dysfunction (POCD) is a 

common cognitive impairment in patients during the 

perioperative period and is mostly found in elderly 

patients, with a reported incidence ranging from 15%  

to 60% [2, 3]. POCD is mainly characterized  

by progressive postoperative memory impairment, 

cognitive decline, and executive dysfunction. In 

addition, the effects of POCD may not be temporary 
and can lead to neurological dysfunction years after 

surgery [4, 5], which is associated with an increased 

risk of life-threatening illness and death. Neuronal 

apoptosis, a high-risk factor inducing POCD, leads to 

decreased neurogenesis, impaired synaptic plasticity, 

neuroinflammation, and oxidative stress in POCD 

patients [6–8]. Sevoflurane can induce POCD-related 

behaviors in animal, such as mice [9] or rats [10, 11]. 

However, the neurobiological basis of sevoflurane 

neurotoxicity remains largely unknown. 

 

General anesthetic neurotoxicity has been extensively 

examined in recent years [12–14]. An increasing 

number of studies have shown that inhaled 

anesthetics may cause neurotoxicity, leading to 

hippocampal neuronal damage and apoptosis, which 

result in cognitive dysfunction [15–17]. Sevoflurane, 

the most commonly used inhalation anesthetic, 

induces neuronal apoptosis [18–22]. Sevoflurane 

enhanced the production of lactate in aged marmoset 

brains [23]. Lactate accumulation can induce 
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ABSTRACT 
 

Postoperative cognitive dysfunction (POCD) is a serious and common complication induced by anesthesia and 
surgery. Neuronal apoptosis induced by general anesthetic neurotoxicity is a high-risk factor. However, a 
comprehensive analysis of general anesthesia-regulated gene expression patterns and further research on 
molecular mechanisms are lacking. Here, we performed bioinformatics analysis of gene expression in the 
hippocampus of aged rats that received sevoflurane anesthesia in GSE139220 from the GEO database, found a 
total of 226 differentially expressed genes (DEGs) and investigated hub genes according to the number of 
biological processes in which the genes were enriched and performed screening by 12 algorithms with 
cytoHubba in Cytoscape. Among the screened hub genes, Agt, Cdkn1a, Ddit4, and Rhob are related to the 
neuronal death process. We further confirmed that these genes, especially Ddit4, were upregulated in the 
hippocampus of aged mice that received sevoflurane anesthesia. NMDAR, the core target receptor of 
sevoflurane, rather than GABAAR, mediates the sevoflurane regulation of DDIT4 expression. Our study screened 
sevoflurane-regulated DEGs and focused on the neuronal death process to reveal DDIT4 as a potential target 
mediated by NMDAR, which may provide a new target for the treatment of sevoflurane neurotoxicity. 
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neuronal apoptosis or even acidosis in critically ill 

patients [24–26]. Sevoflurane was shown to activate 

gamma-aminobutyric acid subtype A receptor 

(GABAAR) to induce apoptosis of immature dentate 

granule cells in mice [27]. Apoptosis is regulated by 

multiple pathways, among which the mechanism of 

neuronal apoptosis induced by sevoflurane through 

related signaling pathways has attracted increased 

attention [28–30]. Sevoflurane inhibits the ERK1/2 

signaling pathway by antagonizing the N-methyl-D-

aspartate receptor (NMDAR) and upregulates the 

expression of the apoptotic proteins caspase-3 and 

Bax in mitochondria, resulting in apoptosis of 

hippocampal neurons [31]. Additionally, sevoflurane 

promotes the expression of the apoptotic factor 

connexin 43 (Cx43) and leads to neuronal apoptosis 

by activating the JNK/cJun/AP-1 signaling pathway 

[32]. However, a comprehensive analysis of the 

differentially expressed genes (DEGs) regulated by 

sevoflurane and further investigation of the molecular 

mechanism is lacking. 

 

Transcriptomic analysis has identified comprehensive 

gene expression patterns to help reveal potential 

mechanisms for various neurological diseases [33, 34] 

and has shown that inhaled anesthetic are associated 

with neurological damage [35]. Here, we applied 

multistage comprehensive bioinformatics methods to 

explore the possible pathogenesis of sevoflurane 

neurotoxicity. We focused on the potential key genes 

with different expression levels in the hippocampus of 

aged rats after sevoflurane anesthesia, established the 

functional annotation of their potential target genes and 

used gene enrichment analysis to reveal the role of 

DEGs associated with the cell death process in 

sevoflurane anesthesia. We further performed an in vivo 

experiment in aged mice that received sevoflurane 

exposure to confirm the pattern of upregulation of these 

genes in the hippocampus and further found that the 

NMDAR mediates the sevoflurane regulation of DDIT4 

expression. This work showed the molecular 

mechanism of sevoflurane-induced neuronal apoptosis 

and provided a new potential target for sevoflurane 

toxicity. 
 

RESULTS 
 

DEG identification 
 

A total of 10032 unique genes were annotated with the 

SwissProt database. The expression boxplot of all genes 

for each sample is shown in Figure 1A after 

normalization with the rma function by using the oligo 

package. The differential expression analysis identified 

194 upregulated and 32 downregulated genes after 

treatment with 2.5% sevoflurane in 100% oxygen for 4 

hours in an anesthetizing chamber with the criterion of a 

P value less than 0.05. Among all DEGs, 160 DEGs 

(153 upregulated DEGs and 17 downregulated DEGs) 

could be annotated in metascape, they were listed in 

Table 1, and the heatmap of the DEGs between the two 

groups is displayed in Figure 1B. 

 

Functional enrichment analysis of DEGs 

 

Biological processes and KEGG annotation were 

applied to explore the function of DEGs. All DEGs 

significantly played a role in localization, signaling, 

metabolic process, development process, and positive 

regulation of biological process (Figure 2A). Twenty-

four biological process terms were filtered with P value 

less than 0.001, and DEGs were significantly enriched 

in the regulation of neuronal apoptosis (Figure 2B). 

Next, we screened the biological processes associated 

with neuron death with the key words neuron and death, 

and 5 biological processes (positive regulation of cell

 

 
 

Figure 1. Differentially regulated genes between the control and sevoflurane-treated groups. (A) Boxplot of all genes in each 
sample. (B) Heatmap of differentially regulated genes in the control and sevoflurane-treated groups, 194 upregulated and 32 downregulated 
genes after treatment with 2.5% sevoflurane in 100% oxygen for 4 hours. (Green: Control group; Red: sevoflurane-treated group). 
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Table 1. Differentially regulated genes between the control and sevoflurane-treated groups. 

 Differentially regulated genes 

153 Upregulated genes in the 
sevoflurane-treated group. 

Slc19a3; Tmem163; Snx9; Ptp4a3; Rabif; Rnf125; Creg1; Dbt; Ccdc115; Bcas2; 
Abhd15; Lsm5; Olfr1283; Pex10; Olfr1499; Olfr273; Timm29; Lonrf3; Map3k6; 
Pla2g3; Tfcp2l1; Olfr325; Olfr432; Serpinb3a; Krtap13; Hddc2; BC005624; Olfr362; 
Hipk2; Slc2a12; Olfr1406; Acer2; Arrdc2; Zfp521; Peli2; Sun2; Mocs1; Parvg; Ctxn2; 
Slc2a9; Cldn2; Srp9; Ecrg4; Sf3b5; Ikzf2; Ikzf1; Top3b; Mlc1; Fam83d; Trim21; 
Pdcd5; Mrgprb3; Gm266; Olfr1321; Tnfrsf11a; Dlc1; Lrig3; Sult1d1; Elmo1; Olfr1451; 
Olfr1299; H1f3; Tceal5; Ddah1; Fxyd1; Gpd1; Smarcd2; Nfe2l2; Pex11a; Ackr3; Agt; 
C3; Pla2g1b; Gsta3; A2m; Mag; Aldoc; Gpr139; Sparc; Plat; Pdgfra; Ptgds; Tgfbr3; 
Oprm1; Rpl36; Aqp4; Tmbim6; Mertk; Phactr2; Rhob; Hrk; Pcp4; Timp4; Hand1; Klf9; 
Cntfr; Afg1l; Adipor2; Fam43a; Rgs16; Ehd2; Spint1; Rassf4; Prr5; Gramd3; Wdr89; 
Klra8; Lims2; Cnksr3; Rac2; Fkbp14; Ech1; Plcd4; Acsl3; Gbp2; Prlhr; Cdkn1a; 
Prkg2; Prkch; Psat1; Etfb; Tmem252; Gsto2; Prxl2a; Paqr8; Rab31; Usp54; Clic1; 
Bspry; Cnppd1; Slc10a6; Slc3a2; Zfp24; Slc29a3; Rcan2; Ddit4; Dhrs4; Cygb; Igsf1; 
Plce1; Tsc22d3; Zfp422; Slc38a2; Plcb4; Slc12a2; Pip4k2a; Apln; Olig1; Timm8a1; 
Ppm1f; Rapgef3 

17 Downregulated genes in the 
sevoflurane-treated group. 

Olfr1461; Flrt2; Kif21b; Olfr1474; Kcnh7; Egr1; Hbb-bs; Nr4a3; Kcnv1; Gpam; 
H2aw; Itm2a; Slc16a4; Hbb-bs; Hba-a1; Prom1; Tspan2. 

 

death, regulation of neuron death, negative regulation of 

neuron death, regulation of neuron apoptotic process 

and negative regulation of neuron apoptotic process) 

were dysregulated by sevoflurane (Figure 3A). Most of 

the genes enriched in disordered biological processes 

associated with cell death were upregulated after 

sevoflurane inhalation (Figure 3B–3F). A total of 10 

KEGG pathways, such as peroxisome, AGE-RAGE 

 

 
 

Figure 2. GO and KEGG enrichment analyses of differentially regulated genes. (A) Functions of biological processes that are 

significantly enriched by differentially expressed genes. (B) Top 20 significantly enriched biological processes. (C) Ten KEGG pathways were 
significantly enriched by differentially expressed genes. 
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signaling pathway in diabetic complications, inositol 

phosphate metabolism, vascular smooth muscle 

contraction, rap1 signaling pathway, and glycero-

phospholipid metabolism, were enriched by DEGs 

(Figure 2C). 

 

Protein-protein interaction network construction 

and hub gene selection 

 

A total of 57 nodes and 97 interactions of the DEGs 

were identified in STRING and were visualized in 

Cytoscape (Figure 4). We calculated the number of 

genes enriched in biological process terms, and the 

genes that were enriched in at least 10 terms are listed 

in Table 2. The cytoHubba application identified 58 hub 

genes with 12 algorithms, including 29 genes that were 

identified by at least five different methods as candidate 

hub genes (Table 3). Six hub genes (Agt, Cdkn1a, 

Ddit4, Pdgfra, Rapgef3, and Rhob) were both selected 

with two methods (Figure 5A). The six hub genes were 

upregulated after sevoflurane inhalation (Figure 5B). 

We further validated the expression of the six hub genes 

in vivo. We found that 4 h of 3% sevoflurane treatment 

increased the mRNA levels of Agt, Cdkn1a, Ddit4, 

Pdgfra, Rapgef3, and Rhob in the mouse hippocampus 

(Figure 5C). Among the 6 hub genes, 4 genes (Agt, 
Cdkn1a, Ddit4, and Rhob) were also enriched in 

biological processes associated with neuronal death 

(Figure 5D). 

 

Sevoflurane upregulated the expression of Ddit4 

 

DDIT4, an encoded protein that regulates development 

and DNA damage and participates in various 

 

 
 

Figure 3. Cell death-related biological processes were significantly enriched by differentially expressed genes. (A) Five cell 

death-related biological processes were significantly enriched by differentially expressed genes. (B) Thirteen differentially expressed genes 
(10 genes upregulated in the sevoflurane-treated group and 3 genes downregulated in the sevoflurane-treated group) were significantly 
enriched in positive regulation of cell death. (C) Ten differentially expressed genes (8 genes upregulated in the sevoflurane-treated group 
and 2 genes downregulated in the sevoflurane-treated group) were significantly enriched in the regulation of neuronal death. (D) Seven 
differentially expressed genes (6 genes upregulated in the sevoflurane-treated group and 1 gene downregulated in the sevoflurane-treated 
group) were significantly enriched in the negative regulation of neuronal death. (E) Nine differentially expressed genes (7 genes 
upregulated in the sevoflurane-treated group and 2 genes downregulated in the sevoflurane-treated group) were significantly enriched in 
the regulation of neuronal apoptosis. (F) Seven differentially expressed genes (6 genes upregulated in the sevoflurane-treated group and 1 
gene downregulated in the sevoflurane-treated group) were significantly enriched in the negative regulation of neuronal apoptosis. (Red: 
up regulated DEGs; blue: down regulated DEGs). 



www.aging-us.com 5702 AGING 

pathological processes, was significantly enriched in the 

regulation of neuron death and positive regulation of 

cell death (Figure 6A). NMDAR and GABAAR are 

considered important targets of sevoflurane [36–38]. 

Therefore, we further explored whether DDIT4 is 

regulated by NMDAR or GABAAR. We found that 

activation of GABAAR by injection of the GABAAR 

agonist muscimol (1.25 μg) into the mouse hippo-

campus did not cause a significant change in Ddit4 

expression (Figure 6B). However, after injection of the 

NMDAR antagonist MK-801 (0.25 μg) into the mouse 

hippocampus (injection coordinates: AP −2.1 mm, ML 

1.5 mm, DV −2.1 mm) by brain stereotactic injection, 

the mRNA expression of Ddit4 was increased (Figure 

6C). 

 

While using sevoflurane for anesthesia treatment, we 

injected 0.5 μg NMDA into the hippocampus (AP −2.1 

mm, ML 1.5 mm, DV −2.1 mm) of mice and found that 

the increased expression of Ddit4 caused by sevoflurane 

could be rescued by NMDA, indicating that the effect of 

sevoflurane on the expression of DDIT4 might occur 

through the NMDA receptor (Figure 6D). The western 

blot results show that DDIT4 level was elevated after 

sevoflurane-treated, but decrease after NMDA 

supplementation (Figure 6E). 

 

DISCUSSION 
 

As a common perioperative neurological impairment in 

elderly patients, POCD strongly affects rapid recovery 

and long-term quality of life and places a heavy burden 

on patients’ families and society [39]. Neuronal 

apoptosis induced by sevoflurane is one of the possible 

factors leading to POCD [10, 40, 41]. Sevoflurane may 

lead to neuronal death or neuroinflammation to induce 

cognitive impairment [42]. In this study, we 

comprehensively analyzed a total of 170 DEGs, 153 

upregulated genes and 17 downregulated genes, in the 

hippocampus of aged rats after sevoflurane anesthesia, 

and 4 hub genes (Agt, Cdkn1a, Ddit4, and Rhob) were 

critically related to the biological process of cell death. 

We further confirmed the upregulation of these genes, 

especially Ddit4, in the hippocampus of the aged mice 

that received 4 hours of sevoflurane anesthesia. 

NMDAR, the core target receptor of sevoflurane, rather 

than GABAAR, mediates the sevoflurane regulation of 

DDIT4 expression. 

 

 
 

Figure 4. PPI network of differentially regulated genes in STRING. (Red: upregulated differentially expressed genes in the 

sevoflurane-treated group; green: downregulated differentially expressed genes in the sevoflurane-treated group). 
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Table 2. Number of biological process terms per gene involved. 

Genes Terms Genes Terms Genes Terms Genes Terms Genes Terms 

Agt 57 Pla2g1b 11 Prr5 6 Mag 4 Ech1 2 

Nr4a3 40 Gpam 10 Rac2 6 Rab31 4 Etfb 2 

Pla2g3 34 Sparc 10 Cnksr3 5 Serpinb3a 4 Kcnh7 2 

Pdgfra 27 Tgfbr3 10 Cntfr 5 Slc10a6 4 Kcnv1 2 

Egr1 25 Dlc1 9 Fgf5 5 Slc16a4 4 Klf9 2 

Nfe2l2 22 Plce1 9 Flrt2 5 Sun2 4 Slc2a9 2 

Rapgef3 21 Ackr3 8 Mertk 5 Aqp4 3 Trim21 2 

Hipk2 20 Fxyd1 8 Oprm1 5 Clic1 3 Aldoc 1 

C3 17 Pcp4 8 Plat 5 Cygb 3 Cnppd1 1 

Rhob 16 Tnfrsf11a 8 Prkg2 5 Ecrg4 3 Elmo1 1 

Ptgds 14 Acsl3 7 Snx9 5 Hand1 3 Gm266 1 

Ppm1f 13 Apln 7 Timp4 5 Pip4k2a 3 Lims2 1 

Slc12a2 13 Ddah1 7 Tmbim6 5 Plcb4 3 Paqr8 1 

Ddit4 12 Pdcd5 7 A2m 4 Plcd4 3 Peli2 1 

Adipor2 11 Spint1 7 Hba-a1 4 Prom1 3 Prlhr 1 

Cdkn1a 11 Acer2 6 Hrk 4 Slc38a2 3 Rabif 1 

Mrgprb3 11 Pla2g1b 11 Ikzf1 4 Slc3a2 3   

 

 

Table 3. Times of hub genes selected from 12 algorithms with cytoHubba in cytoscape. 

Genes Times Genes Times Genes Times Genes Times Genes Times 

Ddit4 12 Plcd4 10 Tsc22d3 8 A2m 3 Pla2g3 3 

Elmo1 12 Plce1 10 Prkch 7 Bcas2 3 Prom1 3 

Mag 12 Agt 9 Kcnv1 6 Cygb 3 Psat1 3 

Olig1 12 Cdkn1a 9 Kif21b 6 Dbt 3 Sf3b5 3 

Pdgfra 12 Fgf5 9 Ptp4a3 6 Gpam 3 Apln 2 

Ddit4 12 Ikzf1 9 Rapgef3 6 Gsto2 3 Map3k6 2 

Pip4k2a 12 Prkg2 9 Dhrs4 5 Hist3h2a 3 Ppm1f 2 

Plcb4 12 Tfcp2l1 9 Egr1 5 Lsm5 3 Slc3a2 2 

Prr5 12 Ech1 8 Acsl3 4 Mertk 3 Ikzf2 1 

Rac2 12 Gsta3 8 Aldoc 4 Parvg 3 Slc38a2 1 

Rhob 12 Pex10 8 Dlc1 4 Pex11a 3 Wdr89 1 

Aqp4 10 Plat 8 Nfe2l2 4 Pla2g1b 3   

 

We screened the DEGs from the hippocampus of rats, 

which is closely related to cognitive function [43] and 

may play an important role in the pathogenesis of 

POCD [44, 45]. Agt encodes angiotensinogen, an 

angiotensin precursor protein that functions in the renin-

angiotensin system (RAS). In addition to the liver, Agt 

is also expressed in the brain. Increasing evidence has 

shown that the brain RAS plays a key role in 

Alzheimer's disease, stroke, alcoholism, and depression 

[46]. Angiotensin regulates iron homeostasis in 

dopaminergic neurons and microglia through type 1 

receptors, thus affecting neurodegenerative diseases 

such as Parkinson’s disease [47]. The interruption of 

angiotensinogen synthesis in astrocytes in the rat brain 

affects the function of the locus coeruleus, which may 

be responsible for cognitive, behavioural, and sleep 

disorders [48]. In this study, we found that Agt 

participates in both the positive and negative regulation 

of neuronal apoptosis. This evidence suggests that the 

overexpression of Agt in the hippocampus of aged rats 

after sevoflurane anesthesia may lead to dysfunction of 

the brain RAS system by affecting neuronal apoptosis. 

 

Cdkn1a encodes cyclin-dependent kinase inhibitor 1A, 

which is mainly involved in cell cycle regulation. 

Several studies have shown that cell cycle-related 

molecules and pathways play a variety of important 

roles in influencing neuronal function. In some brain 
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diseases, it is thought that cell cycle arrest may increase 

the susceptibility to cell death [49]. The failure of cell 

cycle regulation leads to neuronal dysfunction and cell 

death, which may be the underlying cause of several 

neurodegenerative diseases and the ultimate common 

pathway of other neurodegenerative diseases [50, 51]. 

Our study confirmed that the Cdkn1a gene is enriched 

in the biological process of positive regulation of cell 

death, and the overexpression of Cdkn1a after 

sevoflurane treatment may disrupt the normal cell cycle 

and accelerate neuronal death in the hippocampus. 

Similarly, the small molecule GTPase Rhob encoded by 

Rhob is an important regulator of cytoskeletal tissue and 

vesicle and membrane receptor transport. Researchers 

have found that RHOB is highly expressed in the 

hippocampus and may be essential for synaptic 

plasticity in the hippocampus [52]. Moreover, Rhob 

plays a key role in the apoptotic response, and its 

deletion affects the apoptotic response of tumor cells to 

DNA damage [53]. Therefore, both Cdkn1a and Rhob 

may be the possible pathological basis of sevoflurane 

neurotoxicity. 

In this study, we found that Ddit4 is the only key gene 

enriched in both neuronal death and unidirectional 

regulation of apoptosis. Ddit4, also known as REDD1 

and RTP801, encodes proteins that regulate development 

and DNA damage and participate in a variety of 

pathological processes. Suppression of DDIT4 expression 

decreases cell apoptosis in many kinds of cells [54–56]. 

Overexpression of DDIT4 promoted SUNE1 cell 

proliferation but inhibited apoptosis [57]. Here, we 

showed that sevoflurane upregulates DDIT4 expression, 

which suggests that neuronal apoptosis is induced by 

sevoflurane neurotoxicity. 

 

The apoptosis-related neuronal death process regulated 

by sevoflurane leading to cognitive impairment has 

been recognized. Inhalation of 2% sevoflurane for 5 

hours can activate the NF-κB signaling pathway and 

promote neuronal apoptosis and the production of 

inflammatory factors, thus affecting learning and 

memory abilities [58]. Activation of the PI3K/Akt 

signaling pathway reduces hippocampal neuronal 

apoptosis and exerts a protective effect against

 

 
 

Figure 5. Six hub genes were enriched in biological process terms, and 4 hub genes were associated with cell death 
biological process terms. (A) Six hub genes enriched in biological process terms. (B) Expression of 6 hub genes between the control and 
sevoflurane-treated groups. (C) qPCR detection of Agt, Cdkn1a, Ddit4, Pdgfra, Rapgef3, and Rhob mRNA expression levels in the 
hippocampus of the mice that received 3% sevoflurane exposure for 4 h or the control mice. Sevoflurane indicates the mice received 
sevoflurane exposure. Control indicates that the mice were raised only under normal conditions. (D) Four hub genes associated with cell 
death biological process terms. The data shown are the means ± SDs, n = 3. *P < 0.05, **P < 0.01. (Green: Control group; Red: sevoflurane-
treated group). 
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sevoflurane-induced brain injury in aged rats [59]. We 

also confirmed that 3% sevoflurane treatment increased 

the mRNA levels of Agt, Cdkn1a, Ddit4, Pdgfra, 

Rapgef3, and Rhob in the mouse hippocampus. The 

expression of Ddit4 in the hippocampal CA1 region was 

significantly altered after chronic cerebral hypo-

perfusion, indicating that it may play an important role 

in neuronal injury [60]. Inhibition of DDIT4 could 

reverse metformin-induced cell cycle arrest and 

significantly protect against the deleterious effects of 

the drug on cellular transformation [61]. Inhibition of 

DDIT4 expression also exerted a neuroprotective effect 

after ischemia-reperfusion injury [62]. These results 

suggest that DDIT4 may be a key target for intervention 

in cell apoptosis induced by sevoflurane. 

 

General anesthetics play an anesthetic role mainly by 

inhibiting the target receptor NMDAR and activating 

GABAAR to regulate nerve signal transduction and can 

further induce a wide range of physiological effects 

through NMDAR and GABAAR to regulate downstream 

molecular signal pathways [31, 38, 63, 64]. Inhibition of 

NMDAR by MK801 leads to apoptosis of neurons [65, 

66]. MK-801 also inhibits proliferation and increases 

apoptosis in hippocampal neural stem cells [67]. We 

found that the upregulation of DDIT4 expression in the 

hippocampus by sevoflurane can be inhibited through 

the supplementation of NMDA in the hippocampus. The 

injection of MK-801 into the hippocampus of mice also 

significantly promoted the expression of DDIT4. 

However, GABAAR activation did not significantly 

affect the regulatory effect of sevoflurane on DDIT4 

expression. This finding indicates that sevoflurane 

regulates the expression of DDIT4 through NMDAR 

rather than GABAAR. 

 

However, a limitation in our analysis was that we 

screened 4 hub genes while we only explored the

 

 
 

Figure 6. Hub genes associated with cell death biological process terms. (A) Four hub genes enriched in cell death biological 
process terms. (B) qPCR detection of the Ddit4 mRNA level in the hippocampus of mice with hippocampal stereotactic injection of 
muscimol or saline. (C) qPCR detection of the Ddit4 mRNA level in the hippocampus of mice with the hippocampal stereotactic injection of 
MK-801 or saline. (D) qPCR detection indicated the Ddit4 mRNA level in the hippocampus of mice that received sevoflurane exposure with 
NMDA (sevoflurane + NMDA group) or saline (sevoflurane group) injection into the hippocampus. Control indicates mice injected with 
saline in the hippocampus. MK-801 indicates mice injected with MK-801 in the hippocampus. (E) Representative pictures showed that 
DDIT4 level was elevated as shown by western blotting. The data shown are the means ± SDs, n = 3. nsP > 0.05, *P < 0.05. 
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mechanism of DDIT4 elevation after sevoflurane 

inhaling. Mechanisms of the change in the other three 

genes need to be explored in future experiments. Here 

we used the antagonist of NMDAR MK-801 to determine 

the NMDAR mediating sevoflurane regulation, the gain 

and loss function of NMDAR subunits by RNAi will be 

performed in the future. In addition, we will further 

perform the overexpression or knockdown of DDIT4 in 

the hippocampus to investigate whether Ddit4 is 

involved in the sevoflurane-induced neuron death. 

 

Our study comprehensively analyzed sevoflurane-

regulated DEGs to indicate that Ddit4 may be a 

potential target of sevoflurane-induced neuronal 

apoptosis and determined that the NMDAR/DDIT4 

pathway may be a potential target of sevoflurane neuro-

toxicity, which provides new possibilities for the 

prevention and treatment of sevoflurane neurotoxicity. 

 

MATERIALS AND METHODS 
 

Microarray data analysis 

 

GSE139220 expression profiles were retrieved and 

obtained from the NCBI-GEO website (https://www.ncbi. 

nlm.nih.gov/geo/query/acc.cgi?acc=GSE139220) [68]. 

The whole transcriptomic data of hippocampal tissue from 

3 rats that received 100% oxygen at an identical flow rate 

for 4 h in an identical chamber and 3 rats that received 

2.5% sevoflurane in 100% oxygen for 4 hours in an 

anesthetizing chamber were included. The raw data were 

normalized with the rma function by using the oligo 

package on the R version 4.2.2 platform [69]. The 

expression data were annotated with the SwissProt 

database. If the target gene was annotated with two or 

more probes, the mean value was calculated. Then, the 

Limma package for the R environment was used to detect 

the differentially expressed genes (DEGs) in hippocampal 

tissue between the control group rats and the sevoflurane-

treated rats [70]. DEGs were identified based on a P value 

less than 0.05. 

 

DEG functional enrichment analysis 

 

Gene enrichment analysis of DEGs was performed on 

the web-based portal Metascape (http://metascape.org/) 

[71] using the Gene Ontology biological processes and 

the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathways [34]. The enrichment terms were 

visualized using the ggplot2 package in R. 

 

Protein-protein interaction network construction 

 

For all DEGs, a protein-protein interaction (PPI) 

network was constructed using the STRING database 

(https://cn.string-db.org/) [72]. Then, the network  

was visualized on Cytoscape software version 3.9.1, 

which can be freely downloaded on the website 

https://cytoscape.org/ and can be used to detect hub 

genes with the cytoHubba app [73, 74]. 

 

Hub gene selection 

 

To explore the hub genes, we used two screening 

methods. One is that this gene is involved in multiple 

biological processes, and the other is that hub genes 

were screened by 12 algorithms with cytoHubba in 

Cytoscape, and the genes that were identified by both 

methods were considered to play a critical role in 

sevoflurane neurotoxicity. The hub genes enriched in 

the neuron death process were considered to be 

involved in neurotoxicity. 

 

In vivo validation 

 

We performed in vivo tests to validate the results from 

the microarray data. The animal experimental protocol 

was approved by the Standing Committee on Animals at 

National Cancer Center/National Clinical Research 

Center for Cancer/Cancer Hospital, Chinese Academy 

of Medical Sciences and Peking Union Medical College 

(protocol number: NCC2021A586). Eighteen-month-

old C57BL/6J female mice were raised in clean cages 

under pathogen-free conditions (22–26°C, 12/12 h 

light/dark cycle) and offered food and water ad libitum. 

We established a mouse model that received a clinical 

concentration of 3% sevoflurane (with 40% oxygen and 

57% nitrogen) for 4 h of anesthesia (n = 3). The 

temperature was controlled to maintain at 30°C during 

anesthesia. The control group mice (n = 3) were raised 

under normal rearing conditions. 

 

The NMDAR antagonist MK-801 (1 μl, 0.25 μg) 

(Selleck, USA), the GABAAR agonist muscimol (1 μl, 

1.25 μg) (MedChemExpress, China), NMDA (1 μl, 0.5 

μg) (Selleck) or 1 μl of saline was injected into the 

mouse hippocampus (injection coordinates: AP −2.1 

mm, ML 1.5 mm, DV −2.1 mm) by brain stereotactic 

injection. 

 

Quantitative real-time PCR (qPCR) 

 

Total RNA from the hippocampus was isolated by using 

RNAiso Plus (TaKaRa, China). cDNA synthesis from 

mRNA was performed by using the PrimeScript RT 

Reagent Kit with gDNA Eraser (TaKaRa). Then, the 

cDNA was used for qPCR detection by using Fast 

qPCR Mix (TaKaRa). Primers for the qPCR analysis of 

mRNA are shown as follows: 
 

Ddit4-PF: 5′-CAAGGCAAGAGCTGCCATAG-3′, 

Ddit4-PR: 5′-CCGGTACTTAGCGTCAGGG-3′; 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE139220
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE139220
http://metascape.org/
https://cn.string-db.org/
https://cytoscape.org/
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Pdgfra-PF: 5′-AGAGTTACACGTTTGAGCTGTC-3′, 

Pdgfra-PR: 5′-GTCCCTCCACGGTACTCCT-3′; Rhob-

PF: 5′-GTGCCTGCTGATCGTGTTCA-3′, Rhob-PR: 

5′-CCGAGAAGCACATAAGGATGAC-3′; Agt-PF: 5′-

TCTCCTTTACCACAACAAGAGCA-3′, Agt-PR: 5′-

CTTCTCATTCACAGGGGAGGT-3′; Cdkn1a-PF: 5′-

CCTGGTGATGTCCGACCTG-3′, Cdkn1a -PR: 5′-

CCATGAGCGCATCGCAATC-3′; Rapgef3-PF: 5′- 

TCTTACCAGCTAGTGTTCGAGC-3′, Rapgef3-PR: 

5′-AATGCCGATATAGTCGCAGATG-3′. 

 

Statistical analysis 

 

Statistical analysis was performed on the R version 

4.2.2 platform. The quantitative data are presented as 

the mean ± SD. The microarray data and in vivo PCR 

validations are displayed with boxplots. Unpaired two-

tailed Student’s t-test was used to determine significant 

differences between the two groups. A P value less than 

0.05 was considered significant. 

 

Data availability statement 

 

GSE139220 is available from the NCBI-GEO database 

with the link- https://www.ncbi.nlm.nih.gov/geo/ 

query/acc.cgi?acc=GSE139220. The datasets analyzed 

during this study are available from the corresponding 

author upon reasonable request. 
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