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INTRODUCTION 
 
Aging is a complex, multifactorial process that results 
from a multitude of interacting biological mechanisms 
occurring at different levels within an organism [1]. 
The development of accurate, physiologically 
meaningful biomarkers of aging is crucial for 
assessing the efficacy of potential anti-aging therapies 
and advancing the field of aging research [2, 3]. Deep 
neural networks (DNNs) have demonstrated 
remarkable success in various applications, including 
biomedical research [4, 5]. Population-specific aging 

clocks have been developed using large datasets from 
diverse ethnic groups, enabling more accurate 
predictions of chronological age and biological age, as 
well as assessment of all-cause mortality [6]. 
Moreover, artificial intelligence (AI)-driven platforms, 
such as PandaOmics, have facilitated the identification 
and prioritization of novel aging-associated targets for 
drug discovery and repurposing [7]. Recent studies 
have also demonstrated the value of AI in advancing 
longevity research by harnessing the power of next-
generation sequencing data and omics technologies 
[8]. 
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ABSTRACT 
 
Aging is a complex and multifactorial process that increases the risk of various age-related diseases and there 
are many aging clocks that can accurately predict chronological age, mortality, and health status. These clocks 
are disconnected and are rarely fit for therapeutic target discovery. In this study, we propose a novel approach 
to multimodal aging clock we call Precious1GPT utilizing methylation and transcriptomic data for interpretable 
age prediction and target discovery developed using a transformer-based model and transfer learning for case-
control classification. While the accuracy of the multimodal transformer is lower within each individual data 
type compared to the state of art specialized aging clocks based on methylation or transcriptomic data 
separately it may have higher practical utility for target discovery. This method provides the ability to discover 
novel therapeutic targets that hypothetically may be able to reverse or accelerate biological age providing a 
pathway for therapeutic drug discovery and validation using the aging clock. In addition, we provide a list of 
promising targets annotated using the PandaOmics industrial target discovery platform. 
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Insilico Medicine has been at the forefront of using 
generative AI in biology since 2016 [9–11]. Their 
research has led to the development of generative 
biology approaches that utilize generative systems to 
generate synthetic biological data, including their first 
successful demonstration taking place at the National 
Institute of Aging [12]. In addition to target 
discovery, Insilico has also developed capabilities in 
generative chemistry [4, 13–15]. These approaches 
have been successfully applied to various diseases and 
aging and have shown potential in identifying novel 
compounds and accelerating drug development  
[16–18]. As the aging population continues to grow, 
there is an urgent need for new therapeutic targets to 
delay and treat age-related diseases. Therefore, the 
application of generative biology approaches in 
exploring the complex interplay between aging and 
diseases holds great promise for identifying potential 
novel targets and accelerating drug development 
efforts. 
 
Deep aging clocks have been developed for various 
applications in pharmaceutical research and 
development. For example, DeepMAge, a methylation 
aging clock developed using deep learning, shows 
remarkable accuracy and biological relevance in 
predicting human age and identifying health-related 
conditions [19]. Moreover, deep aging clocks could 
potentially be used for target identification, drug 
discovery, data quality control, and synthetic patient 
data generation [3]. Additionally, the use of AI to 
comprehend the intricate interplay between the 
microenvironment within the human body and the 
external environment has shown promise in revealing 
the role of external factors in aging [8]. The 
integration of deep learning techniques with genomics 
and other omics data has enabled comprehensive 
comparisons of DNA repair transcriptomes in species 
with extreme lifespan differences, shedding light on 
the potential role of DNA repair as a longevity 
assurance system [20]. 
 
Despite the progress made in developing deep aging 
clocks and AI-based biomarkers, there are still several 
challenges and opportunities for improvement in the 
field of biohorology [16]. The development of deep 
learning, DNNs, and generative approaches is expected 
to significantly advance the field, leading to more 
accurate and robust aging biomarkers [16]. 
Furthermore, in silico methods for screening and 
ranking potential geroprotective candidates, based on 
their ability to regulate age-related changes in signaling 
pathway clouds, hold promise for accelerating the 
discovery of effective interventions and reducing the 
time and cost of pre-clinical work and clinical trials 
[21]. For instance, GeroScope could predict novel 

geroprotectors from existing human gene expression 
data by mapping expression differences between young 
and old subjects to age-related signaling pathways and 
ranking known substances (potential geroprotector 
candidates) based on their likelihood to target 
differential pathways and mimic the young signalome 
[22]. Similarly, the human gut microbiome has been 
shown to have a strong association with host age, and 
deep learning-based models have been developed to 
predict host age based on gut microflora taxonomic 
profiles, further providing insights into potential aging 
biomarkers [17]. 
 
To identify aging biomarkers associated with age-
related diseases, in the present work, we combined the 
ability of aging clocks to predict biological age and thus 
grasp molecular changes accompanied by senescence 
and our target ID approach to establish genes that are 
related to the development of diseases. This provides us 
with a novel perspective on uncovering the molecular 
mechanisms of diseases in the context of aging, 
allowing us to identify promising strategies to delay and 
treat age-related diseases. 
 
RESULTS 
 
Performance of the transformer-based multimodal 
aging clock 
 
In the current study, we have developed a 
comprehensive pipeline, as illustrated in Figure 1. The 
pipeline consists of several key steps, including training 
a multimodal transformer-based regressor on normal 
sample data for age prediction and subsequently using 
the learned weights to fine-tune a transformer-based 
classifier for distinguishing between case and control 
samples. Next, we perform gene prioritization by 
employing the feature importance values obtained from 
the regressor to rank genes based on their relevance to 
aging and utilizing the importance values from the 
classifier to rank genes in terms of their relevance to 
both aging and disease. Finally, we analyze the resulting 
gene lists using the PandaOmics TargetID Platform to 
gain insights into potential targets for age-related 
diseases. In this study, we implemented a transformer-
based architecture to accommodate both numerical and 
categorical data as input for our predictive model. This 
strategy, which we call Precious1GPT, enables the 
construction of multimodal classifiers and regressors 
that can effectively process diverse data types, such as 
RNA-seq expression data and epigenomics methylation 
data taking into account data type and tissue type. 
Consequently, our model demonstrates proficiency in 
age prediction and case-control classification, 
showcasing its versatility in handling multifaceted 
inputs. 
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We employed Optuna [23], a hyperparameter optimizer, 
to optimize the parameters for each model. We 
optimized L1 and L2 regularization, the activation 
function, dropout value, batch size, the number of 
neurons in hidden layers, and the gradient update used. 
The final regression metrics for the optimized models 
are shown in Table 1, calculated for the epigenetic and 
expression sub-datasets and for the whole dataset, 
respectively. The metrics were calculated by splitting 
the data to train (80%) and test (20%) set with 
stratification by sample tissue. For five-fold cross-
validation stratified by tissue and data modality, results 
are shown in Supplementary Table 1. Metrics for 
individual tissues are shown in Supplementary Table 2. 
The methylation data subset, expression data subset, 
and all the test data combined were also calculated for 
each metric. Learning curves depicting MAE during 
training are shown in Supplementary Figure 1. 
 
Important genes for age prediction 
 
SHapley Additive exPlanations (SHAP) values [24] are 
a technique for explaining the output of machine 
learning models. From the regressor model, we obtained 
a list of features ranked by their SHAP values 
representing their importance for age prediction 
(Supplementary Table 3). Pathway enrichment analysis 
was subsequently performed for the top-100 genes 
ranked based on the SHAP values, which showed that 
these genes are implicated in multiple pathways 
associated with aging and age-related diseases (Table 2). 

Identification of potential targets for age-related 
diseases through feature importance analysis 
 
Utilizing the feature importance analysis based on 
SHAP values, we generated a list of genes associated 
with aging (Supplementary Table 3). We then compared 
these genes with known drug targets in our in-house 
database to identify potential therapeutic interventions 
for 4 selected age-related diseases, namely idiopathic 
pulmonary fibrosis (Supplementary Table 4), chronic 
obstructive pulmonary disease (COPD) (Supplementary 
Table 5), Parkinson’s disease (PD) (Supplementary 
Table 6) and heart failure (Supplementary Table 7). 
Evaluation metrics for case-control classifiers are 
shown in Supplementary Table 8. 
 
We adopted a transfer learning approach to identify 
genes involved in disease development in the context of 
aging. We first trained a DL-model as a regressor to 
predict age using an age dataset. Subsequently, we fine-
tuned the model by re-training it as a case-control 
classifier while keeping the previously learned weights 
frozen, with the exception of the last layer. The SHAP 
values generated from this analysis were then used to 
determine the relative importance of molecular features 
in driving disease development in the context of aging. 
This allowed us to identify specific genes that are 
involved in disease development in the context of aging 
and determine their relative importance. To establish a 
baseline, we trained the same classifiers on the 
complete feature set. For a number of diseases, we 

 

 
 
Figure 1. Pipeline of the current study. The pipeline involves training a multimodal transformer-based regressor on normal sample 
data to predict age, followed by transferring the learned weights to a transformer-based classifier for distinguishing between case and 
control samples. Gene prioritization is then performed using feature importance values obtained from the regressor to rank genes 
according to their relevance to aging and using importance values from the classifier to rank genes according to their relevance to both 
aging and disease. Finally, the gene lists are analyzed using the PandaOmics TargetID Platform. 
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Table 1. Multimodal transformer-based regressor metrics were evaluated on the hold-out test dataset (20% of 
all data). 

Metric Methylation data Expression data Combined 
MAE 4.227 6.287 5.622 
RMSE 6.129 8.155 7.560 
R2 0.934 0.584 0.807 
MdAE 2.880 5.098 4.336 
Number of samples in test set 4,019 2,730 6,749 
 
Table 2. Reactome pathway analysis results for the top-100 genes selected based on the SHAP values. 

Pathway P-value Odds ratio Combined score 

tRNA Processing in Mitochondrion R-HSA-6785470 0.036 33.99 112.78 

Amino Acid Transport Across Plasma Membrane R-HSA-352230 0.002 13.77 86.96 

Suppression Of Apoptosis R-HSA-9635465 0.043 27.19 85.36 

Vasopressin-like Receptors R-HSA-388479 0.043 27.19 85.36 
Highly Sodium Permeable Postsynaptic Acetylcholine Nicotinic Receptors 
R-HSA-629587 0.050 22.66 67.72 

Cytosolic Sulfonation of Small Molecules R-HSA-156584 0.011 13.68 61.37 
 
observed a slight but significant increase in 
classification metrics (Supplementary Table 8). These 
results indicated that the last layer of the neural 
network, which was trained to predict biological age, 
contains sufficient information to differentiate between 
case and control. 
 
To validate the performance of our model and to 
establish its ability to accurately estimate age based on 
methylation data, we acquired two methylation datasets 
from the Gene Expression Omnibus (GEO) repository - 
one on cells that were reprogrammed to induced 
pluripotent stem cells (iPSC) (dataset GSE54848) and 
the other on fibroblasts of the developing fetuses 
(dataset GSE76641). The selection of the independent 
dataset on the developing cells, along with reverse 
aging cells data, allows us to provide another level of 
validation evidence confirming the potency of the 
trained model. These datasets were processed using the 
same methods as our primary dataset on age-related 
methylation, and we used the model to predict age. In 
order to increase the robustness of our validation, we 
used the same processing methods for both the iPSC 
and fetus datasets as we had for our primary dataset. 
This ensured consistency and minimized the 
possibility of any discrepancies or variations in our 
results due to differences in processing methods. The 
results were consistent with expectations, as 
iPSCs become younger during induction (Figure 2, 
Left) and fetal tissue becomes older during 
development (Figure 2, Right). 

Manual analysis of the resulting targets 
 
Utilizing a transfer learning approach, we have built 
aging-aware case-control classifiers and extracted 
feature importance values from them. The lists of top-
200 genes ranked by expression classifiers were 
retrieved (Supplementary Tables 4–7) and considered as 
a starting point for further target identification and 
prioritization techniques offered by the AI-powered 
PandaOmics platform to propose a list of promising 
novel targets for age-related diseases. According to 
PandaOmics TargetID platform, APLNR was ranked 
top-20 for all 4 diseases, while IL23R was ranked top-
20 for COPD, PD, and heart failure (Figure 3, 
Supplementary Figures 2–4). APLNR and IL23R were 
therefore selected as the most promising targets for 
treating multiple age-related diseases. In general, 
APLNR, a receptor for Apelin and Elabela peptide 
ligands, is involved in regulating several important 
physiological processes, including cardiovascular 
function, fluid balance, and metabolism. IL23R is a 
receptor for the pro-inflammatory cytokine IL-23 and is 
associated with chronic inflammation, which is 
considered to be one of the hallmarks of aging [25]. 
Accumulating evidence demonstrated that the 
effectiveness of our approach in addressing various age-
related diseases, as documented in existing literature, 
provides further validation for our approach. Therefore, 
our unique approach with the amplification of 
PandaOmics allows us to identify various potential 
targets associated with essential aging-driven tissue 
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Figure 2. Validation of age-predictor model using induced pluripotent stem cells (iPSC) and fetal tissues methylation data. 
Left: Predictions of the multimodal transformer for iPSC induction dataset, days after transfection with reprogramming factors. Right: 
Predictions of the multimodal transformer for embryonic tissue dataset, weeks after last menstruation, averaged across tissues. 
 

 
 
Figure 3. Example of Target ID output for chronic obstructive pulmonary disease. Top-200 genes from expression classifiers were 
applied as a gene list in PandaOmics corresponding project for COPD, and a filter for small molecules was applied to identify druggable 
targets. Twenty genes highly ranked by PandaOmics are shown. 
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dysfunction, which may be useful for the delay and 
treatment of multiple age-related diseases. 
 
DISCUSSION 
 
The development of “aging clocks,” based on machine 
learning models that predict age based on biological 
data, has become a major milestone in aging research. 
Nevertheless, such an approach has severe limitations, 
such as a lack of ability to explain biological processes 
accompanied by aging and, thus, the ability to propose 
therapeutic interventions to compensate for age-related 
deterioration [26]. Additionally, aging clocks can be 
used to monitor the effectiveness of interventions and 
therapies designed to target age-related diseases [27]. 
For example, if an intervention is able to slow down the 
aging process, as measured by the aging clock, it may 
be more likely to be effective in delaying or treating 
age-related diseases. This can be done by comparing the 
aging clock values of an individual before and after the 
intervention and measuring the change in the aging 
clock value, which may indicate the effectiveness of the 
intervention. The development of Precious1GPT, a 
multimodal aging clock using a transformer-based 
model and transfer learning for case-control 
classification, as well as the identification of potential 
therapeutic targets for age-related diseases through 
feature importance analysis, has demonstrated the 
potential of our approach in deciphering the molecular 
mechanisms of aging. The transformer-based model 
allowed for the integration of multi-omics data and 
improved the accuracy of the aging clock, while the 
transfer learning approach facilitated the identification 
of disease-related genes in the context of aging. 
However, our study has several limitations, including 
the reliance on publicly available datasets, which may 
contain noisy and low-quality data. Future research 
should focus on validating the identified targets using 
experimental methods and exploring the potential of 
new drug targets. 
 
Several aging clocks have been proposed in the 
literature, each with its own strengths and limitations. 
Some of the most prominent aging clocks include the 
Epigenetic Clock, DNAm PhenoAge, and the 
transcriptomic-based Aging.AI clock [28–31]. These 
clocks utilize various molecular markers, such as DNA 
methylation or gene expression patterns, to predict an 
individual’s chronological age. Our proposed 
multimodal aging clock uses a transformer-based model 
and transfers learning to integrate diverse data sources, 
including epigenetic and transcriptomic data, and to 
predict age with high accuracy. When compared to 
existing aging clocks, our approach demonstrates 
several advantages. First, the multimodal nature of our 
approach enables the integration of different omics data 

types, leading to a more comprehensive and accurate 
assessment of an individual’s biological age. By 
incorporating multiple data types, our aging clock can 
capture a wider range of molecular changes associated 
with aging, leading to a more reliable and informative 
model. Second, the use of transformer-based deep 
learning models allows our approach to capturing 
complex relationships between features, which can lead 
to improved age prediction accuracy. In contrast, 
traditional aging clocks like the Epigenetic Clock and 
DNAm PhenoAge rely on linear regression models, 
which may not be able to fully capture the complexity 
of age-related molecular changes. Third, our approach 
employs transfer learning for case-control classification, 
enabling the identification of potential targets for age-
related diseases. This aspect of our method offers a 
significant advantage of Precious1GPT over existing 
aging clocks, as it not only allows for accurate age 
prediction but also contributes to the discovery of novel 
therapeutic targets for age-related diseases. 
 
Unexpectedly, our model could not identify the genes 
which play key roles in known age-related pathways 
(SIRT, mTOR, and AMPK) as important genes (i.e., 
top-200) for age prediction. However, such a 
phenomenon was also observed in published DL age 
prediction models [32]. To further test if the most 
important genes (i.e., top-100) share any biological 
features, we performed pathway enrichment analysis 
which revealed that the list of identified genes is 
significantly enriched in the following pathways that are 
associated with the aging process: 
 

1. tRNA Processing in Mitochondrion (R-HSA-
6785470): This pathway is involved in the processing of 
transfer RNAs (tRNAs) within the mitochondria, which 
is essential for proper mitochondrial protein synthesis 
and overall mitochondrial function. Mitochondrial 
dysfunction has been implicated in the aging process 
and age-related diseases, such as neurodegenerative 
disorders and metabolic syndromes [33]. 
 

2. Amino Acid Transport Across Plasma Membrane 
(R-HSA-352230): This pathway describes the transport 
of amino acids across the plasma membrane, a crucial 
process for maintaining cellular homeostasis and protein 
synthesis. Dysregulation of amino acid transport may 
lead to imbalances in protein synthesis and degradation, 
which could contribute to cellular senescence, a 
hallmark of aging [25]. 
 

3. Suppression of Apoptosis (R-HSA-9635465): This 
pathway is involved in the regulation of apoptosis, a 
crucial cellular process that controls cell death and 
tissue homeostasis. Dysregulation of apoptosis has been 
linked to aging and age-related diseases such as cancer, 
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neurodegenerative disorders, and cardiovascular 
diseases [34]. 
 

4. Vasopressin-like Receptors (R-HSA-388479): This 
pathway focuses on the signaling of vasopressin-like 
receptors, which play a role in water homeostasis, blood 
pressure regulation, and stress response. Alterations in 
these processes have been associated with age-related 
physiological changes, such as decreased stress 
resilience and increased risk of hypertension [35]. 
 

5. Highly Sodium Permeable Postsynaptic 
Acetylcholine Nicotinic Receptors (R-HSA-629587): 
This pathway deals with the function of acetylcholine 
nicotinic receptors, which are involved in 
neurotransmission and neuromuscular function. 
Impairment of neurotransmission and synaptic function 
has been implicated in aging and age-related 
neurodegenerative disorders, such as Alzheimer's and 
Parkinson’s diseases [36]. 
 

6. Cytosolic Sulfonation of Small Molecules (R-HSA-
156584): This pathway describes the process of 
cytosolic sulfonation, a phase II detoxification reaction 
that helps to maintain cellular redox homeostasis and 
protects cells from oxidative stress. Oxidative stress has 
been widely recognized as a major contributor to the 
aging process and the development of age-related 
diseases. 
 
The transfer learning approach utilized in this study 
enabled the construction of aging-centered case-control 
classifiers. These models were used to obtain lists of 
genes ranked by both their association with aging and 
diseases. Fibrotic disease, inflammatory disease, 
neurological disease, and cardiovascular disease are 
common disease classes in humans. To represent these 
categories, we have selected different age-related 
diseases, including idiopathic pulmonary fibrosis, 
COPD, PD, and heart failure, for each disease class. 
With the application of PandaOmics, APLNR, and 
IL23R are identified as the most potential aging targets 
for delaying and treating multiple age-related diseases. 
APLNR was in top-20 predictions for all four selected 
diseases. A declining Apelin/APLNR signaling 
promotes aging, whereas its restoration extended 
healthspan [37], and endogenous Apelin is protective 
against age-related loss of retinal ganglion cells in mice 
[38], further revealing its critical role in regulating 
aging. While the expression of both Apelin and APLNR 
decreases with increasing age [37], agonism of apelin 
receptors produces beneficial effects in fibrotic, 
cardiovascular, and cognitive disorders [39–41]. Taken 
together, targeting Apelin-APLNR signaling represents 
a very promising approach for the treatment of 
multiple age-related complications. Another potential 

multi-disease target that was in top-20 predictions for 
COPD, PD, and heart failure is IL23R, a receptor for 
IL-23 pro-inflammatory cytokine. Upregulation of the 
p19 subunit expression and IL-23 protein production in 
dendritic cells was observed in aged mice and may 
represent a potential mechanism for inadequate 
inflammatory responses in aging [42]. In the COPD 
murine model, IL-23−/− mice developed significantly 
lower static compliance values and decreased 
emphysematous changes in the lung tissue compared to 
WT mice [43]. Though the role of IL-23 is understudied 
in PD, neuroinflammation is a typical pathological 
feature of many neurodegenerative diseases, while 
emerging evidence indicates that sustained activation of 
microglia and astrocytes is central to dopaminergic 
degeneration in PD [44]. IL-23 can also enhance age-
associated inflammation in Alzheimer’s disease [45], 
likely to cause the accumulation of cellular damage and 
compromise the body’s ability to repair itself. Local 
production of IL-23 in the Central Nervous System has 
been demonstrated for astrocytes and infiltrating 
macrophages under inflammatory conditions [46]. 
Altogether, agonizing Apelin/APLNR signaling and 
antagonizing IL23/IL23R axis may serve as potential 
therapeutic strategies for delaying and treating multiple 
age-related complications. These findings provide 
insights into potential targets for the delay and treatment 
of age-related diseases and demonstrate the utility of the 
transfer learning approach in identifying important 
genes associated with age-related dysfunction. 
 
As there is a huge bet on AI and transformer 
applications in biomedicine, we expect future studies to 
focus on developing further the approach proposed in 
this paper, including possible integration of larger 
proprietary disease-specific datasets and validation of 
the identified targets in the wet lab setting. Moreover, 
exploring the potential of new drug targets and 
optimizing our model’s performance will be crucial for 
advancing our understanding of the molecular 
mechanisms of aging and developing reliable 
interventions for age-related diseases. Ultimately, there 
is a great hope that Precious1GPT and its continued 
development and refinement will contribute 
significantly to the improvement of human health and 
longevity. 
 
MATERIALS AND METHODS 
 
Data sources for multimodal aging clock 
development 
 
To train our models, we used several datasets, including 
publicly available and in-house-built ones. For training 
age prediction models based on the epigenetic status of 
tissue, we employed 450 k Illumina Methylation array 
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data from EWAS Data Hub [47] (number of samples = 
8,374). 
 
For building age prediction models based on the 
transcriptomics status of tissue, we employed RNA-
Sequencing data from the GTEx project [48] (number of 
samples = 12,453). We trained our models in a tissue-
agnostic fashion. For methylation, data distribution of 
samples across ages is shown in Supplementary Figure 
5A and across tissues in Supplementary Figure 5B. For 
expression data, distribution of samples across ages is 
shown in Supplementary Figure 6A, across tissues in 
Supplementary Figure 6B. 
 
For assessing prediction results and predicting disease 
targets using age-pretrained models, we used custom 
datasets from the PandaOmics software [49] for 4 
selected age-related diseases: idiopathic pulmonary 
fibrosis, COPD, PD, and heart failure from where we 
have obtained samples annotated as carrying disease 
(case samples) and healthy ones (control samples). 
 
To evaluate possible interventions to prevent 
senescence development, we have constructed datasets 
containing only features corresponding to genes for 
which approved drugs exist. For this, we have used an 
in-house constructed database of approved drugs and 
their targets based on the information from [50]. 
 
As input features for our age prediction models were 
either beta values averaged across CpG probes 
annotated as TS200 region from Illumina 450k 
Methylation Array for epigenomic data or TPM values 
for protein coding (genes) for expression datasets 
accordingly. 
 
For the DNA methylation data, we obtained the ß-
values from the CNCB data hub, where the raw data 
were obtained using the GMQN package developed by 
the CNCB [47]. 
 
In our study, we have opted for the TSS200 region as 
the most interpretable for age prediction. Following the 
aggregation of corresponding beta-values, we are left 
with approximately 14,000 features representing 
average methylation of proximal promoter regions. 
 
This choice of region is based on its potential to offer 
a more accurate and comprehensive assessment of age-
related changes in methylation patterns. The TSS200 
region, situated within 200 base pairs upstream of the 
transcription start site, is known to play a crucial role 
in gene regulation [51]. As such, it is expected to 
exhibit significant age-related changes in methylation 
patterns, providing a robust basis for predicting 
biological age. 

To further enhance the interpretability of our age 
prediction model, we utilized machine learning 
techniques to identify and select the most informative 
features from the 14,000-feature dataset. This allowed 
us to refine our model, ensuring that it captures the most 
relevant age-related methylation changes in the TSS200 
region. In addition, the selected features can potentially 
shed light on the molecular mechanisms underlying 
aging, as well as the development of age-related 
diseases. 
 
By focusing on the TSS200 region, we aim to not only 
improve the accuracy of our aging clock but also gain a 
deeper understanding of the complex relationship 
between DNA methylation, aging, and age-dependent 
diseases. This knowledge can then be used to develop 
targeted therapeutic interventions aimed at mitigating 
the impact of age-related diseases and improving 
overall health and quality of life in aging populations. 
 
For gene expression models, we have used TPM values 
which were back-corrected using ComBat [52] and 
quantile-normalized using qnorm [53]. For performance 
evaluations, we employed a shuffle split stratified by 
sample tissue, leaving 20% of all data for the test set. 
 
Transformer-based model for multimodal aging 
clock 
 
Given the abundance of omics data available for various 
experimental conditions and the distinct challenges of 
predicting one omic data type from another, we propose 
the development of a transformer-based model to 
estimate sample age across different sample types. This 
multi-tissue, multi-omics transformer-based age 
prediction model aims to harness the power of deep 
learning to effectively integrate diverse data sources and 
improve age prediction accuracy. 
 
Transformers have demonstrated remarkable success in 
various applications, particularly in natural language 
processing tasks. Their capacity to model long-range 
dependencies and capture complex relationships among 
features makes them well-suited for multi-omics data 
integration. By leveraging the transformer architecture, 
our proposed model is able to identify and exploit 
relevant information from different omics data types, 
such as genomics, transcriptomics, proteomics, and 
metabolomics, as well as different tissue types. 
 
By developing a multi-tissue, multi-omics transformer-
based age prediction model, we hope to enhance the 
accuracy and generalizability of aging clocks, 
ultimately contributing to a better understanding of the 
aging process and facilitating the development of 
targeted therapies for age-related diseases. 
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More formally about the transformer model. Let 𝑋𝑋 be 
the input matrix of size (N, D) containing epigenetic 
(methylation) and expression data, and Z be the input 
matrix of size (N, M) containing categorical data. Let Y 
be the output matrix of size (N, 1) containing the 
predicted age values. Since we used TabTransformer 
(LINK), we represented the model as a function F that 
takes X and Z as input and returns Y as output: Y = F 
(X, Z). The model consists of multiple linear and 
attention layers, each of which applies a set of 
learnable parameters to the input and produces an 
output. We represent each layer as a function G that 
takes an input matrix A and a set of  
learnable parameters W and b, and produces an output 
matrix: 
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The TabTransformer [54] model consists of multiple 
layers, including self-attention layers and feedforward 
layers. Let A be the output of the previous layer, and let 
Wq, Wk, and Wv be learnable weight matrices of size (D, 
dk). The self-attention layer computes the attention 
matrix A’ as follows: 
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where Wq, Wk, and Wv are weight matrices of size (D, 
dk). The feedforward layer computes the output matrix 
H as follows: 
 
 ( ) ( ) H G O,W ,b ReLU OW b= = +1 1 1 1  
 
where W1 is a weight matrix of size (h, dh), and b1 is a 
bias vector of size (1, dh). We repeat the self-attention 
and feedforward layers multiple times to create a deep 
TabTransformer model. Next, we apply a feedforward 
layer with weight matrix W1 and bias b1 to the output of 
the self-attention layer: H = ReLU (OW1 + b1). Finally, 
we apply a linear layer with weight matrix W2 and bias 
b2 to the output of the last feedforward layer to produce 
the final output matrix Y: 
 

 Y HW b= +2 2  
 
To train the TabTransformer model, we used mean 
squared error (MSE) loss that measures the difference 
between the predicted age values and the true age 
values. Let 𝑌𝑌�  be the predicted age values and Ytrue be the 
true age values: 

 ( )
N

l true,i
i

ˆL Y Y
N =

= −∑ 2

1

1
 

 
Overall, the experiment involves training a 
TabTransformer model on a dataset containing 
epigenetic (methylation) and expression data, as well as 
categorical data (tissue and dataset type), to predict age 
values. The model consists of multiple layers, including 
self-attention and feedforward layers, and is trained 
using a loss function such as MSE. 
 
In the present study, we utilized PyTorch Tabular [55], 
which is built on top of PyTorch, for all the work with the 
transformer. PyTorch Tabular provides a highly 
optimized and efficient way of handling tabular data with 
PyTorch. We used PyTorch Tabular’s various functions 
and modules to preprocess the input data, construct the 
transformer architecture, and train it on the data. 
 
In the model, all the hyperparameters, such as learning 
rate, dropout rate, number of hidden layers, and 
activation functions, were determined through the use of 
Optuna [23], a hyperparameter optimization framework. 
The values of these parameters were chosen based on 
their performance during multiple rounds of training 
and validation. Based on our experiments, the optimal 
hyperparameters for TabTransformer are a model 
architecture with hidden layers of size 128, 2048, and 
128, dropout probability of 0, “ELU” activation 
function, a learning rate of 0.00023, “AdamW” 
optimizer, weight decay of 0, and a batch size of 96. 
 
Transfer learning for case-control classification 
 
To build models which take into account both senescent 
and clinical status, we employed a transfer learning 
strategy. Initially, we trained a model as a regressor to 
predict age in an age dataset. Subsequently, we froze 
the model weights, excluding the final layer, and re-
trained the resulting model as a case-control classifier. 
The derived SHAP values indicate the significance of 
each molecular feature in disease development 
concerning aging. This approach enabled us to 
determine the relative importance of various molecular 
features in driving disease development within the 
aging context. The pipeline is depicted in Figure 1. 
 
Feature importance analysis 
 
SHAP values, a mathematical method of feature 
importance analysis that constitutes a robust and 
interpretable technique for elucidating the contributions 
of individual features in complex predictive models, is 
based on the Shapley value from game theory and 
involves computing the contribution of each feature to 
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explain the final predictions of machine learning models 
[24]. SHAP values explain individual predictions and 
identify the most important features in the model. 
Additionally, the employment of SHAP values for 
feature analysis offers a considerable advantage in 
multimodal settings, where discerning the interplay 
between various factors is indispensable for the 
development of accurate and efficacious aging clocks. 
 
Pathway enrichment analysis 
 
Pathway enrichment analysis was performed on the list 
of top-100 genes ranked by their SHAP values obtained 
from the regressor model with the pathways available 
on the Reactome database. R package Enrichr was used 
to calculate the enrichment levels and p-values. 
Pathways with p-value < 0.05 were considered as 
significantly enriched. 
 
Manual analysis of resulting targets 
 
Combination of aging clocks and target ID represents an 
interesting approach to identifying targets for aging-
associated diseases. To illustrate the applicability of this 
approach for target identification, we have investigated 
4 diseases associated with aging: idiopathic pulmonary 
fibrosis, chronic obstructive pulmonary disease 
(COPD), Parkinson’s disease (PD), and heart failure in 
PandaOmics. Gene lists of top-200 genes ranked by 
expression classifiers were used in Target ID projects 
for the mentioned diseases, along with a filter for small 
molecules to identify potential druggable proteins 
across these lists. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 
 

 
 

Supplementary Figure 1. Multimodal transformer learning curves on the train and 20% hold-out test datasets. 
 

 
 
Supplementary Figure 2. Example of target ID output for idiopathic pulmonary fibrosis. Top-200 genes from expression 
classifiers were applied as a gene list in PandaOmics corresponding project for idiopathic pulmonary fibrosis, and a filter for small molecules 
was applied to identify druggable targets. Twenty genes highly ranked by PandaOmics are shown. 
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Supplementary Figure 3. Example of target ID output for Parkinson’s disease. Top-200 genes from expression classifiers were 
applied as a gene list in PandaOmics corresponding project for PD, and a filter for small molecules was applied to identify druggable targets. 
Twenty genes highly ranked by PandaOmics are shown. 
 

 
 
Supplementary Figure 4. Example of target ID output for heart failure. Top-200 genes from expression classifiers were applied as a 
gene list in PandaOmics corresponding project for heart failure, and a filter for small molecules was applied to identify druggable targets. 
Twenty genes highly ranked by PandaOmics are shown. 
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Supplementary Figure 5. Distribution by age (A) and tissues (B) for DNAm samples. Data was obtained from CNCB EWAS data hub. Ages 
distributed from 0 to 110 years. Most of the samples are blood samples. 
 
 

 
 
Supplementary Figure 6. Distribution by age (A) and tissues (B) for RNA-seq samples. Data are obtained from the GTEx project. Ages are 
distributed between 20 and 70 years. Brain and Skin samples comprise a bigger part of the dataset. 
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Supplementary Tables 
 
Please browse Full Text version to see the data of Supplementary Tables 3–8. 
 
Supplementary Table 1. 5-fold cross-validation for multimodal transformer age prediction. 

Metric Combined Methylation Expression 
MAE 5.800+/−0.437 4.815+/−0.458 6.469+/−0.427 
RMSE 7.665+/−0.436 6.680+/−0.520 8.266+/−0.403 
R2 0.823+/−0.021 0.923+/−0.013 0.572+/−0.041 
MdAE 4.546+/−0.517 3.569+/−0.486 5.335+/−0.588 

 
 
Supplementary Table 2. Performance of multimodal model on different combinations of tissues and data 
modalities. Estimates on 20% tissue-stratified hold-out test dataset. 

TISSUE MODALITY MAE R2 RMSE MSE MdAE MAD TEST_SAMPLES 

Thyroid METHYLATION 2.456 0.900 4.287 18.381 0.567 0.609 21 

Buccal epithelium METHYLATION 2.656 0.972 3.618 13.092 1.707 1.669 69 

Saliva METHYLATION 3.170 0.959 4.237 17.948 2.249 2.069 107 

Mucosa METHYLATION 3.358 0.896 3.988 15.903 2.879 3.010 29 

Brain METHYLATION 3.749 0.949 6.381 40.716 1.851 1.922 345 

Blood METHYLATION 4.291 0.928 5.990 35.880 3.168 3.177 863 

Brain EXPRESSION 4.483 0.640 5.954 35.446 3.539 3.372 528 

Blood Vessel EXPRESSION 5.229 0.715 6.680 44.621 4.159 4.515 267 

Thyroid EXPRESSION 5.367 0.698 6.967 48.539 4.406 4.195 129 

Nerve EXPRESSION 5.461 0.656 7.075 50.061 4.479 4.448 124 

Testis EXPRESSION 5.714 0.673 7.298 53.268 5.423 5.411 72 

Breast METHYLATION 5.797 0.738 7.738 59.876 4.477 4.443 106 

Liver METHYLATION 6.036 0.744 7.749 60.047 5.300 4.857 59 

Ovary EXPRESSION 6.070 0.672 8.488 72.052 4.460 4.425 36 

Adrenal Gland EXPRESSION 6.085 0.683 7.431 55.216 5.729 5.729 52 

Pituitary EXPRESSION 6.154 0.199 7.633 58.267 5.666 5.091 56 

Small Intestine EXPRESSION 6.204 0.708 7.533 56.739 6.014 6.007 38 

Adipose Tissue EXPRESSION 6.210 0.529 7.976 63.624 5.219 5.279 241 

Salivary Gland EXPRESSION 6.296 0.532 8.413 70.781 4.595 4.454 33 

Kidney METHYLATION 6.315 0.908 7.951 63.222 5.968 5.826 58 

Skin EXPRESSION 6.602 0.538 8.664 75.069 5.031 4.817 362 

Esophagus EXPRESSION 6.647 0.626 8.317 69.169 5.484 5.507 289 

Prostate EXPRESSION 6.670 0.669 8.349 69.711 5.096 5.345 49 

Uterus EXPRESSION 6.724 0.619 8.063 65.016 5.714 5.905 29 

Lung EXPRESSION 7.018 0.399 9.223 85.067 5.069 5.393 115 

Breast EXPRESSION 7.037 0.521 8.919 79.541 5.798 5.230 92 

Muscle EXPRESSION 7.040 0.558 8.604 74.027 5.981 5.584 160 

Heart EXPRESSION 7.059 0.403 8.799 77.421 6.302 6.405 172 

Colon EXPRESSION 7.204 0.590 9.143 83.598 6.241 6.118 156 

Stomach EXPRESSION 7.242 0.469 8.924 79.640 6.177 6.177 72 
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Pancreas EXPRESSION 7.291 0.429 9.043 81.774 6.549 6.176 65 

Vagina EXPRESSION 7.436 0.311 9.372 87.826 5.883 5.364 31 

Liver EXPRESSION 7.592 0.243 9.372 87.829 7.066 5.343 45 

Blood EXPRESSION 8.158 0.397 10.617 112.724 6.288 6.303 186 

Spleen EXPRESSION 9.050 0.346 11.204 125.526 6.770 7.227 48 

Kidney EXPRESSION 9.715 −0.118 12.731 162.079 8.318 7.508 18 

 
Supplementary Table 3. Feature importance analysis for Aging clock. 

 
Supplementary Table 4. Feature importance analysis for Pulmonary fibrosis case-control classifier. 

 
Supplementary Table 5. Feature importance analysis for Chronic Obstructive Pulmonary Disease case-control 
classifier. 

 
Supplementary Table 6. Feature importance analysis for Parkinson's disease case-control classifier. 

 
Supplementary Table 7. Feature importance analysis for Heart failure case-control classifier. 

 
Supplementary Table 8. Metrics for multimodal transformer-based case-control classifiers with and without 
pretraining on aging data. 

 
 


